123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785 |
- #[compute]
- #version 450
- #VERSION_DEFINES
- /* Do not use subgroups here, seems there is not much advantage and causes glitches
- #if defined(has_GL_KHR_shader_subgroup_ballot) && defined(has_GL_KHR_shader_subgroup_arithmetic)
- #extension GL_KHR_shader_subgroup_ballot: enable
- #extension GL_KHR_shader_subgroup_arithmetic: enable
- #define USE_SUBGROUPS
- #endif
- */
- #ifdef MODE_DENSITY
- layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
- #else
- layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
- #endif
- #include "../cluster_data_inc.glsl"
- #include "../light_data_inc.glsl"
- #define M_PI 3.14159265359
- #define DENSITY_SCALE 1024.0
- layout(set = 0, binding = 1) uniform texture2D shadow_atlas;
- layout(set = 0, binding = 2) uniform texture2D directional_shadow_atlas;
- layout(set = 0, binding = 3, std430) restrict readonly buffer OmniLights {
- LightData data[];
- }
- omni_lights;
- layout(set = 0, binding = 4, std430) restrict readonly buffer SpotLights {
- LightData data[];
- }
- spot_lights;
- layout(set = 0, binding = 5, std140) uniform DirectionalLights {
- DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
- }
- directional_lights;
- layout(set = 0, binding = 6, std430) buffer restrict readonly ClusterBuffer {
- uint data[];
- }
- cluster_buffer;
- layout(set = 0, binding = 7) uniform sampler linear_sampler;
- #ifdef MODE_DENSITY
- layout(rgba16f, set = 0, binding = 8) uniform restrict writeonly image3D density_map;
- #endif
- #ifdef MODE_FOG
- layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D density_map;
- layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D fog_map;
- #endif
- #ifdef MODE_COPY
- layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D source_map;
- layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D dest_map;
- #endif
- #ifdef MODE_FILTER
- layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D source_map;
- layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D dest_map;
- #endif
- layout(set = 0, binding = 10) uniform sampler shadow_sampler;
- #define MAX_VOXEL_GI_INSTANCES 8
- struct VoxelGIData {
- mat4 xform; // 64 - 64
- vec3 bounds; // 12 - 76
- float dynamic_range; // 4 - 80
- float bias; // 4 - 84
- float normal_bias; // 4 - 88
- bool blend_ambient; // 4 - 92
- uint mipmaps; // 4 - 96
- vec3 pad; // 12 - 108
- float exposure_normalization; // 4 - 112
- };
- layout(set = 0, binding = 11, std140) uniform VoxelGIs {
- VoxelGIData data[MAX_VOXEL_GI_INSTANCES];
- }
- voxel_gi_instances;
- layout(set = 0, binding = 12) uniform texture3D voxel_gi_textures[MAX_VOXEL_GI_INSTANCES];
- layout(set = 0, binding = 13) uniform sampler linear_sampler_with_mipmaps;
- #ifdef ENABLE_SDFGI
- // SDFGI Integration on set 1
- #define SDFGI_MAX_CASCADES 8
- struct SDFVoxelGICascadeData {
- vec3 position;
- float to_probe;
- ivec3 probe_world_offset;
- float to_cell; // 1/bounds * grid_size
- vec3 pad;
- float exposure_normalization;
- };
- layout(set = 1, binding = 0, std140) uniform SDFGI {
- vec3 grid_size;
- uint max_cascades;
- bool use_occlusion;
- int probe_axis_size;
- float probe_to_uvw;
- float normal_bias;
- vec3 lightprobe_tex_pixel_size;
- float energy;
- vec3 lightprobe_uv_offset;
- float y_mult;
- vec3 occlusion_clamp;
- uint pad3;
- vec3 occlusion_renormalize;
- uint pad4;
- vec3 cascade_probe_size;
- uint pad5;
- SDFVoxelGICascadeData cascades[SDFGI_MAX_CASCADES];
- }
- sdfgi;
- layout(set = 1, binding = 1) uniform texture2DArray sdfgi_ambient_texture;
- layout(set = 1, binding = 2) uniform texture3D sdfgi_occlusion_texture;
- #endif //SDFGI
- layout(set = 0, binding = 14, std140) uniform Params {
- vec2 fog_frustum_size_begin;
- vec2 fog_frustum_size_end;
- float fog_frustum_end;
- float ambient_inject;
- float z_far;
- int filter_axis;
- vec3 ambient_color;
- float sky_contribution;
- ivec3 fog_volume_size;
- uint directional_light_count;
- vec3 base_emission;
- float base_density;
- vec3 base_scattering;
- float phase_g;
- float detail_spread;
- float gi_inject;
- uint max_voxel_gi_instances;
- uint cluster_type_size;
- vec2 screen_size;
- uint cluster_shift;
- uint cluster_width;
- uint max_cluster_element_count_div_32;
- bool use_temporal_reprojection;
- uint temporal_frame;
- float temporal_blend;
- mat3x4 cam_rotation;
- mat4 to_prev_view;
- mat3 radiance_inverse_xform;
- }
- params;
- #ifndef MODE_COPY
- layout(set = 0, binding = 15) uniform texture3D prev_density_texture;
- #ifdef MOLTENVK_USED
- layout(set = 0, binding = 16) buffer density_only_map_buffer {
- uint density_only_map[];
- };
- layout(set = 0, binding = 17) buffer light_only_map_buffer {
- uint light_only_map[];
- };
- layout(set = 0, binding = 18) buffer emissive_only_map_buffer {
- uint emissive_only_map[];
- };
- #else
- layout(r32ui, set = 0, binding = 16) uniform uimage3D density_only_map;
- layout(r32ui, set = 0, binding = 17) uniform uimage3D light_only_map;
- layout(r32ui, set = 0, binding = 18) uniform uimage3D emissive_only_map;
- #endif
- #ifdef USE_RADIANCE_CUBEMAP_ARRAY
- layout(set = 0, binding = 19) uniform textureCubeArray sky_texture;
- #else
- layout(set = 0, binding = 19) uniform textureCube sky_texture;
- #endif
- #endif // MODE_COPY
- float get_depth_at_pos(float cell_depth_size, int z) {
- float d = float(z) * cell_depth_size + cell_depth_size * 0.5; //center of voxels
- d = pow(d, params.detail_spread);
- return params.fog_frustum_end * d;
- }
- vec3 hash3f(uvec3 x) {
- x = ((x >> 16) ^ x) * 0x45d9f3b;
- x = ((x >> 16) ^ x) * 0x45d9f3b;
- x = (x >> 16) ^ x;
- return vec3(x & 0xFFFFF) / vec3(float(0xFFFFF));
- }
- float get_omni_attenuation(float dist, float inv_range, float decay) {
- float nd = dist * inv_range;
- nd *= nd;
- nd *= nd; // nd^4
- nd = max(1.0 - nd, 0.0);
- nd *= nd; // nd^2
- return nd * pow(max(dist, 0.0001), -decay);
- }
- void cluster_get_item_range(uint p_offset, out uint item_min, out uint item_max, out uint item_from, out uint item_to) {
- uint item_min_max = cluster_buffer.data[p_offset];
- item_min = item_min_max & 0xFFFF;
- item_max = item_min_max >> 16;
- item_from = item_min >> 5;
- item_to = (item_max == 0) ? 0 : ((item_max - 1) >> 5) + 1; //side effect of how it is stored, as item_max 0 means no elements
- }
- uint cluster_get_range_clip_mask(uint i, uint z_min, uint z_max) {
- int local_min = clamp(int(z_min) - int(i) * 32, 0, 31);
- int mask_width = min(int(z_max) - int(z_min), 32 - local_min);
- return bitfieldInsert(uint(0), uint(0xFFFFFFFF), local_min, mask_width);
- }
- float henyey_greenstein(float cos_theta, float g) {
- const float k = 0.0795774715459; // 1 / (4 * PI)
- return k * (1.0 - g * g) / (pow(1.0 + g * g - 2.0 * g * cos_theta, 1.5));
- }
- #define TEMPORAL_FRAMES 16
- const vec3 halton_map[TEMPORAL_FRAMES] = vec3[](
- vec3(0.5, 0.33333333, 0.2),
- vec3(0.25, 0.66666667, 0.4),
- vec3(0.75, 0.11111111, 0.6),
- vec3(0.125, 0.44444444, 0.8),
- vec3(0.625, 0.77777778, 0.04),
- vec3(0.375, 0.22222222, 0.24),
- vec3(0.875, 0.55555556, 0.44),
- vec3(0.0625, 0.88888889, 0.64),
- vec3(0.5625, 0.03703704, 0.84),
- vec3(0.3125, 0.37037037, 0.08),
- vec3(0.8125, 0.7037037, 0.28),
- vec3(0.1875, 0.14814815, 0.48),
- vec3(0.6875, 0.48148148, 0.68),
- vec3(0.4375, 0.81481481, 0.88),
- vec3(0.9375, 0.25925926, 0.12),
- vec3(0.03125, 0.59259259, 0.32));
- // Higher values will make light in volumetric fog fade out sooner when it's occluded by shadow.
- const float INV_FOG_FADE = 10.0;
- void main() {
- vec3 fog_cell_size = 1.0 / vec3(params.fog_volume_size);
- #ifdef MODE_DENSITY
- ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
- if (any(greaterThanEqual(pos, params.fog_volume_size))) {
- return; //do not compute
- }
- #ifdef MOLTENVK_USED
- uint lpos = pos.z * params.fog_volume_size.x * params.fog_volume_size.y + pos.y * params.fog_volume_size.x + pos.x;
- #endif
- vec3 posf = vec3(pos);
- //posf += mix(vec3(0.0),vec3(1.0),0.3) * hash3f(uvec3(pos)) * 2.0 - 1.0;
- vec3 fog_unit_pos = posf * fog_cell_size + fog_cell_size * 0.5; //center of voxels
- uvec2 screen_pos = uvec2(fog_unit_pos.xy * params.screen_size);
- uvec2 cluster_pos = screen_pos >> params.cluster_shift;
- uint cluster_offset = (params.cluster_width * cluster_pos.y + cluster_pos.x) * (params.max_cluster_element_count_div_32 + 32);
- //positions in screen are too spread apart, no hopes for optimizing with subgroups
- fog_unit_pos.z = pow(fog_unit_pos.z, params.detail_spread);
- vec3 view_pos;
- view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(fog_unit_pos.z));
- view_pos.z = -params.fog_frustum_end * fog_unit_pos.z;
- view_pos.y = -view_pos.y;
- vec4 reprojected_density = vec4(0.0);
- float reproject_amount = 0.0;
- if (params.use_temporal_reprojection) {
- vec3 prev_view = (params.to_prev_view * vec4(view_pos, 1.0)).xyz;
- //undo transform into prev view
- prev_view.y = -prev_view.y;
- //z back to unit size
- prev_view.z /= -params.fog_frustum_end;
- //xy back to unit size
- prev_view.xy /= mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(prev_view.z));
- prev_view.xy = prev_view.xy * 0.5 + 0.5;
- //z back to unspread value
- prev_view.z = pow(prev_view.z, 1.0 / params.detail_spread);
- if (all(greaterThan(prev_view, vec3(0.0))) && all(lessThan(prev_view, vec3(1.0)))) {
- //reprojectinon fits
- reprojected_density = textureLod(sampler3D(prev_density_texture, linear_sampler), prev_view, 0.0);
- reproject_amount = params.temporal_blend;
- // Since we can reproject, now we must jitter the current view pos.
- // This is done here because cells that can't reproject should not jitter.
- fog_unit_pos = posf * fog_cell_size + fog_cell_size * halton_map[params.temporal_frame]; //center of voxels, offset by halton table
- screen_pos = uvec2(fog_unit_pos.xy * params.screen_size);
- cluster_pos = screen_pos >> params.cluster_shift;
- cluster_offset = (params.cluster_width * cluster_pos.y + cluster_pos.x) * (params.max_cluster_element_count_div_32 + 32);
- //positions in screen are too spread apart, no hopes for optimizing with subgroups
- fog_unit_pos.z = pow(fog_unit_pos.z, params.detail_spread);
- view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(fog_unit_pos.z));
- view_pos.z = -params.fog_frustum_end * fog_unit_pos.z;
- view_pos.y = -view_pos.y;
- }
- }
- uint cluster_z = uint(clamp((abs(view_pos.z) / params.z_far) * 32.0, 0.0, 31.0));
- vec3 total_light = vec3(0.0);
- float total_density = params.base_density;
- #ifdef MOLTENVK_USED
- uint local_density = density_only_map[lpos];
- #else
- uint local_density = imageLoad(density_only_map, pos).x;
- #endif
- total_density += float(int(local_density)) / DENSITY_SCALE;
- total_density = max(0.0, total_density);
- #ifdef MOLTENVK_USED
- uint scattering_u = light_only_map[lpos];
- #else
- uint scattering_u = imageLoad(light_only_map, pos).x;
- #endif
- vec3 scattering = vec3(scattering_u >> 21, (scattering_u << 11) >> 21, scattering_u % 1024) / vec3(2047.0, 2047.0, 1023.0);
- scattering += params.base_scattering * params.base_density;
- #ifdef MOLTENVK_USED
- uint emission_u = emissive_only_map[lpos];
- #else
- uint emission_u = imageLoad(emissive_only_map, pos).x;
- #endif
- vec3 emission = vec3(emission_u >> 21, (emission_u << 11) >> 21, emission_u % 1024) / vec3(511.0, 511.0, 255.0);
- emission += params.base_emission * params.base_density;
- float cell_depth_size = abs(view_pos.z - get_depth_at_pos(fog_cell_size.z, pos.z + 1));
- //compute directional lights
- if (total_density > 0.00005) {
- for (uint i = 0; i < params.directional_light_count; i++) {
- if (directional_lights.data[i].volumetric_fog_energy > 0.001) {
- vec3 shadow_attenuation = vec3(1.0);
- if (directional_lights.data[i].shadow_opacity > 0.001) {
- float depth_z = -view_pos.z;
- vec4 pssm_coord;
- vec3 light_dir = directional_lights.data[i].direction;
- vec4 v = vec4(view_pos, 1.0);
- float z_range;
- if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
- pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
- pssm_coord /= pssm_coord.w;
- z_range = directional_lights.data[i].shadow_z_range.x;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
- pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
- pssm_coord /= pssm_coord.w;
- z_range = directional_lights.data[i].shadow_z_range.y;
- } else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
- pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
- pssm_coord /= pssm_coord.w;
- z_range = directional_lights.data[i].shadow_z_range.z;
- } else {
- pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
- pssm_coord /= pssm_coord.w;
- z_range = directional_lights.data[i].shadow_z_range.w;
- }
- float depth = texture(sampler2D(directional_shadow_atlas, linear_sampler), pssm_coord.xy).r;
- float shadow = exp(min(0.0, (pssm_coord.z - depth)) * z_range * INV_FOG_FADE);
- shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, view_pos.z)); //done with negative values for performance
- shadow_attenuation = mix(vec3(1.0 - directional_lights.data[i].shadow_opacity), vec3(1.0), shadow);
- }
- total_light += shadow_attenuation * directional_lights.data[i].color * directional_lights.data[i].energy * henyey_greenstein(dot(normalize(view_pos), normalize(directional_lights.data[i].direction)), params.phase_g) * directional_lights.data[i].volumetric_fog_energy;
- }
- }
- // Compute light from sky
- if (params.ambient_inject > 0.0) {
- vec3 isotropic = vec3(0.0);
- vec3 anisotropic = vec3(0.0);
- if (params.sky_contribution > 0.0) {
- float mip_bias = 2.0 + total_density * (MAX_SKY_LOD - 2.0); // Not physically based, but looks nice
- vec3 scatter_direction = (params.radiance_inverse_xform * normalize(view_pos)) * sign(params.phase_g);
- #ifdef USE_RADIANCE_CUBEMAP_ARRAY
- isotropic = texture(samplerCubeArray(sky_texture, linear_sampler_with_mipmaps), vec4(0.0, 1.0, 0.0, mip_bias)).rgb;
- anisotropic = texture(samplerCubeArray(sky_texture, linear_sampler_with_mipmaps), vec4(scatter_direction, mip_bias)).rgb;
- #else
- isotropic = textureLod(samplerCube(sky_texture, linear_sampler_with_mipmaps), vec3(0.0, 1.0, 0.0), mip_bias).rgb;
- anisotropic = textureLod(samplerCube(sky_texture, linear_sampler_with_mipmaps), vec3(scatter_direction), mip_bias).rgb;
- #endif //USE_RADIANCE_CUBEMAP_ARRAY
- }
- total_light += mix(params.ambient_color, mix(isotropic, anisotropic, abs(params.phase_g)), params.sky_contribution) * params.ambient_inject;
- }
- //compute lights from cluster
- { //omni lights
- uint cluster_omni_offset = cluster_offset;
- uint item_min;
- uint item_max;
- uint item_from;
- uint item_to;
- cluster_get_item_range(cluster_omni_offset + params.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- #ifdef USE_SUBGROUPS
- item_from = subgroupBroadcastFirst(subgroupMin(item_from));
- item_to = subgroupBroadcastFirst(subgroupMax(item_to));
- #endif
- for (uint i = item_from; i < item_to; i++) {
- uint mask = cluster_buffer.data[cluster_omni_offset + i];
- mask &= cluster_get_range_clip_mask(i, item_min, item_max);
- #ifdef USE_SUBGROUPS
- uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
- #else
- uint merged_mask = mask;
- #endif
- while (merged_mask != 0) {
- uint bit = findMSB(merged_mask);
- merged_mask &= ~(1 << bit);
- #ifdef USE_SUBGROUPS
- if (((1 << bit) & mask) == 0) { //do not process if not originally here
- continue;
- }
- #endif
- uint light_index = 32 * i + bit;
- //if (!bool(omni_omni_lights.data[light_index].mask & draw_call.layer_mask)) {
- // continue; //not masked
- //}
- vec3 light_pos = omni_lights.data[light_index].position;
- float d = distance(omni_lights.data[light_index].position, view_pos);
- float shadow_attenuation = 1.0;
- if (omni_lights.data[light_index].volumetric_fog_energy > 0.001 && d * omni_lights.data[light_index].inv_radius < 1.0) {
- float attenuation = get_omni_attenuation(d, omni_lights.data[light_index].inv_radius, omni_lights.data[light_index].attenuation);
- vec3 light = omni_lights.data[light_index].color;
- if (omni_lights.data[light_index].shadow_opacity > 0.001) {
- //has shadow
- vec4 uv_rect = omni_lights.data[light_index].atlas_rect;
- vec2 flip_offset = omni_lights.data[light_index].direction.xy;
- vec3 local_vert = (omni_lights.data[light_index].shadow_matrix * vec4(view_pos, 1.0)).xyz;
- float shadow_len = length(local_vert); //need to remember shadow len from here
- vec3 shadow_sample = normalize(local_vert);
- if (shadow_sample.z >= 0.0) {
- uv_rect.xy += flip_offset;
- }
- shadow_sample.z = 1.0 + abs(shadow_sample.z);
- vec3 pos = vec3(shadow_sample.xy / shadow_sample.z, shadow_len - omni_lights.data[light_index].shadow_bias);
- pos.z *= omni_lights.data[light_index].inv_radius;
- pos.xy = pos.xy * 0.5 + 0.5;
- pos.xy = uv_rect.xy + pos.xy * uv_rect.zw;
- float depth = texture(sampler2D(shadow_atlas, linear_sampler), pos.xy).r;
- shadow_attenuation = mix(1.0 - omni_lights.data[light_index].shadow_opacity, 1.0, exp(min(0.0, (pos.z - depth)) / omni_lights.data[light_index].inv_radius * INV_FOG_FADE));
- }
- total_light += light * attenuation * shadow_attenuation * henyey_greenstein(dot(normalize(light_pos - view_pos), normalize(view_pos)), params.phase_g) * omni_lights.data[light_index].volumetric_fog_energy;
- }
- }
- }
- }
- { //spot lights
- uint cluster_spot_offset = cluster_offset + params.cluster_type_size;
- uint item_min;
- uint item_max;
- uint item_from;
- uint item_to;
- cluster_get_item_range(cluster_spot_offset + params.max_cluster_element_count_div_32 + cluster_z, item_min, item_max, item_from, item_to);
- #ifdef USE_SUBGROUPS
- item_from = subgroupBroadcastFirst(subgroupMin(item_from));
- item_to = subgroupBroadcastFirst(subgroupMax(item_to));
- #endif
- for (uint i = item_from; i < item_to; i++) {
- uint mask = cluster_buffer.data[cluster_spot_offset + i];
- mask &= cluster_get_range_clip_mask(i, item_min, item_max);
- #ifdef USE_SUBGROUPS
- uint merged_mask = subgroupBroadcastFirst(subgroupOr(mask));
- #else
- uint merged_mask = mask;
- #endif
- while (merged_mask != 0) {
- uint bit = findMSB(merged_mask);
- merged_mask &= ~(1 << bit);
- #ifdef USE_SUBGROUPS
- if (((1 << bit) & mask) == 0) { //do not process if not originally here
- continue;
- }
- #endif
- //if (!bool(omni_lights.data[light_index].mask & draw_call.layer_mask)) {
- // continue; //not masked
- //}
- uint light_index = 32 * i + bit;
- vec3 light_pos = spot_lights.data[light_index].position;
- vec3 light_rel_vec = spot_lights.data[light_index].position - view_pos;
- float d = length(light_rel_vec);
- float shadow_attenuation = 1.0;
- if (spot_lights.data[light_index].volumetric_fog_energy > 0.001 && d * spot_lights.data[light_index].inv_radius < 1.0) {
- float attenuation = get_omni_attenuation(d, spot_lights.data[light_index].inv_radius, spot_lights.data[light_index].attenuation);
- vec3 spot_dir = spot_lights.data[light_index].direction;
- highp float cone_angle = spot_lights.data[light_index].cone_angle;
- float scos = max(dot(-normalize(light_rel_vec), spot_dir), cone_angle);
- float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - cone_angle));
- attenuation *= 1.0 - pow(spot_rim, spot_lights.data[light_index].cone_attenuation);
- vec3 light = spot_lights.data[light_index].color;
- if (spot_lights.data[light_index].shadow_opacity > 0.001) {
- //has shadow
- vec4 uv_rect = spot_lights.data[light_index].atlas_rect;
- vec4 v = vec4(view_pos, 1.0);
- vec4 splane = (spot_lights.data[light_index].shadow_matrix * v);
- splane.z -= spot_lights.data[light_index].shadow_bias / (d * spot_lights.data[light_index].inv_radius);
- splane /= splane.w;
- vec3 pos = vec3(splane.xy * spot_lights.data[light_index].atlas_rect.zw + spot_lights.data[light_index].atlas_rect.xy, splane.z);
- float depth = texture(sampler2D(shadow_atlas, linear_sampler), pos.xy).r;
- shadow_attenuation = mix(1.0 - spot_lights.data[light_index].shadow_opacity, 1.0, exp(min(0.0, (pos.z - depth)) / spot_lights.data[light_index].inv_radius * INV_FOG_FADE));
- }
- total_light += light * attenuation * shadow_attenuation * henyey_greenstein(dot(normalize(light_rel_vec), normalize(view_pos)), params.phase_g) * spot_lights.data[light_index].volumetric_fog_energy;
- }
- }
- }
- }
- vec3 world_pos = mat3(params.cam_rotation) * view_pos;
- for (uint i = 0; i < params.max_voxel_gi_instances; i++) {
- vec3 position = (voxel_gi_instances.data[i].xform * vec4(world_pos, 1.0)).xyz;
- //this causes corrupted pixels, i have no idea why..
- if (all(bvec2(all(greaterThanEqual(position, vec3(0.0))), all(lessThan(position, voxel_gi_instances.data[i].bounds))))) {
- position /= voxel_gi_instances.data[i].bounds;
- vec4 light = vec4(0.0);
- for (uint j = 0; j < voxel_gi_instances.data[i].mipmaps; j++) {
- vec4 slight = textureLod(sampler3D(voxel_gi_textures[i], linear_sampler_with_mipmaps), position, float(j));
- float a = (1.0 - light.a);
- light += a * slight;
- }
- light.rgb *= voxel_gi_instances.data[i].dynamic_range * params.gi_inject * voxel_gi_instances.data[i].exposure_normalization;
- total_light += light.rgb;
- }
- }
- //sdfgi
- #ifdef ENABLE_SDFGI
- {
- float blend = -1.0;
- vec3 ambient_total = vec3(0.0);
- for (uint i = 0; i < sdfgi.max_cascades; i++) {
- vec3 cascade_pos = (world_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;
- if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
- continue; //skip cascade
- }
- vec3 base_pos = floor(cascade_pos);
- ivec3 probe_base_pos = ivec3(base_pos);
- vec4 ambient_accum = vec4(0.0);
- ivec3 tex_pos = ivec3(probe_base_pos.xy, int(i));
- tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;
- for (uint j = 0; j < 8; j++) {
- ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
- ivec3 probe_posi = probe_base_pos;
- probe_posi += offset;
- // Compute weight
- vec3 probe_pos = vec3(probe_posi);
- vec3 probe_to_pos = cascade_pos - probe_pos;
- vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
- float weight = trilinear.x * trilinear.y * trilinear.z;
- // Compute lightprobe occlusion
- if (sdfgi.use_occlusion) {
- ivec3 occ_indexv = abs((sdfgi.cascades[i].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
- vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));
- vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
- occ_pos.z += float(i);
- if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
- occ_pos.x += 1.0;
- }
- occ_pos *= sdfgi.occlusion_renormalize;
- float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_texture, linear_sampler), occ_pos, 0.0), occ_mask);
- weight *= max(occlusion, 0.01);
- }
- // Compute ambient texture position
- ivec3 uvw = tex_pos;
- uvw.xy += offset.xy;
- uvw.x += offset.z * sdfgi.probe_axis_size;
- vec3 ambient = texelFetch(sampler2DArray(sdfgi_ambient_texture, linear_sampler), uvw, 0).rgb;
- ambient_accum.rgb += ambient * weight * sdfgi.cascades[i].exposure_normalization;
- ambient_accum.a += weight;
- }
- if (ambient_accum.a > 0) {
- ambient_accum.rgb /= ambient_accum.a;
- }
- ambient_total = ambient_accum.rgb;
- break;
- }
- total_light += ambient_total * params.gi_inject;
- }
- #endif
- }
- vec4 final_density = vec4(total_light * scattering + emission, total_density);
- final_density = mix(final_density, reprojected_density, reproject_amount);
- imageStore(density_map, pos, final_density);
- #ifdef MOLTENVK_USED
- density_only_map[lpos] = 0;
- light_only_map[lpos] = 0;
- emissive_only_map[lpos] = 0;
- #else
- imageStore(density_only_map, pos, uvec4(0));
- imageStore(light_only_map, pos, uvec4(0));
- imageStore(emissive_only_map, pos, uvec4(0));
- #endif
- #endif
- #ifdef MODE_FOG
- ivec3 pos = ivec3(gl_GlobalInvocationID.xy, 0);
- if (any(greaterThanEqual(pos, params.fog_volume_size))) {
- return; //do not compute
- }
- vec4 fog_accum = vec4(0.0, 0.0, 0.0, 1.0);
- float prev_z = 0.0;
- for (int i = 0; i < params.fog_volume_size.z; i++) {
- //compute fog position
- ivec3 fog_pos = pos + ivec3(0, 0, i);
- //get fog value
- vec4 fog = imageLoad(density_map, fog_pos);
- //get depth at cell pos
- float z = get_depth_at_pos(fog_cell_size.z, i);
- //get distance from previous pos
- float d = abs(prev_z - z);
- //compute transmittance using beer's law
- float transmittance = exp(-d * fog.a);
- fog_accum.rgb += ((fog.rgb - fog.rgb * transmittance) / max(fog.a, 0.00001)) * fog_accum.a;
- fog_accum.a *= transmittance;
- prev_z = z;
- imageStore(fog_map, fog_pos, vec4(fog_accum.rgb, 1.0 - fog_accum.a));
- }
- #endif
- #ifdef MODE_FILTER
- ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
- const float gauss[7] = float[](0.071303, 0.131514, 0.189879, 0.214607, 0.189879, 0.131514, 0.071303);
- const ivec3 filter_dir[3] = ivec3[](ivec3(1, 0, 0), ivec3(0, 1, 0), ivec3(0, 0, 1));
- ivec3 offset = filter_dir[params.filter_axis];
- vec4 accum = vec4(0.0);
- for (int i = -3; i <= 3; i++) {
- accum += imageLoad(source_map, clamp(pos + offset * i, ivec3(0), params.fog_volume_size - ivec3(1))) * gauss[i + 3];
- }
- imageStore(dest_map, pos, accum);
- #endif
- #ifdef MODE_COPY
- ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
- if (any(greaterThanEqual(pos, params.fog_volume_size))) {
- return; //do not compute
- }
- imageStore(dest_map, pos, imageLoad(source_map, pos));
- #endif
- }
|