vertexcodec.cpp 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250
  1. // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
  2. #include "meshoptimizer.h"
  3. #include <assert.h>
  4. #include <string.h>
  5. // The block below auto-detects SIMD ISA that can be used on the target platform
  6. #ifndef MESHOPTIMIZER_NO_SIMD
  7. // The SIMD implementation requires SSSE3, which can be enabled unconditionally through compiler settings
  8. #if defined(__AVX__) || defined(__SSSE3__)
  9. #define SIMD_SSE
  10. #endif
  11. // An experimental implementation using AVX512 instructions; it's only enabled when AVX512 is enabled through compiler settings
  12. #if defined(__AVX512VBMI2__) && defined(__AVX512VBMI__) && defined(__AVX512VL__) && defined(__POPCNT__)
  13. #undef SIMD_SSE
  14. #define SIMD_AVX
  15. #endif
  16. // MSVC supports compiling SSSE3 code regardless of compile options; we use a cpuid-based scalar fallback
  17. #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && defined(_MSC_VER) && !defined(__clang__) && (defined(_M_IX86) || defined(_M_X64))
  18. #define SIMD_SSE
  19. #define SIMD_FALLBACK
  20. #endif
  21. // GCC 4.9+ and clang 3.8+ support targeting SIMD ISA from individual functions; we use a cpuid-based scalar fallback
  22. #if !defined(SIMD_SSE) && !defined(SIMD_AVX) && ((defined(__clang__) && __clang_major__ * 100 + __clang_minor__ >= 308) || (defined(__GNUC__) && __GNUC__ * 100 + __GNUC_MINOR__ >= 409)) && (defined(__i386__) || defined(__x86_64__))
  23. #define SIMD_SSE
  24. #define SIMD_FALLBACK
  25. #define SIMD_TARGET __attribute__((target("ssse3")))
  26. #endif
  27. // GCC/clang define these when NEON support is available
  28. #if defined(__ARM_NEON__) || defined(__ARM_NEON)
  29. #define SIMD_NEON
  30. #endif
  31. // On MSVC, we assume that ARM builds always target NEON-capable devices
  32. #if !defined(SIMD_NEON) && defined(_MSC_VER) && (defined(_M_ARM) || defined(_M_ARM64))
  33. #define SIMD_NEON
  34. #endif
  35. // When targeting Wasm SIMD we can't use runtime cpuid checks so we unconditionally enable SIMD
  36. #if defined(__wasm_simd128__)
  37. #define SIMD_WASM
  38. #endif
  39. #ifndef SIMD_TARGET
  40. #define SIMD_TARGET
  41. #endif
  42. // When targeting AArch64/x64, optimize for latency to allow decoding of individual 16-byte groups to overlap
  43. // We don't do this for 32-bit systems because we need 64-bit math for this and this will hurt in-order CPUs
  44. #if defined(__x86_64__) || defined(_M_X64) || defined(__aarch64__) || defined(_M_ARM64)
  45. #define SIMD_LATENCYOPT
  46. #endif
  47. #endif // !MESHOPTIMIZER_NO_SIMD
  48. #ifdef SIMD_SSE
  49. #include <tmmintrin.h>
  50. #endif
  51. #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
  52. #ifdef _MSC_VER
  53. #include <intrin.h> // __cpuid
  54. #else
  55. #include <cpuid.h> // __cpuid
  56. #endif
  57. #endif
  58. #ifdef SIMD_AVX
  59. #include <immintrin.h>
  60. #endif
  61. #ifdef SIMD_NEON
  62. #if defined(_MSC_VER) && defined(_M_ARM64)
  63. #include <arm64_neon.h>
  64. #else
  65. #include <arm_neon.h>
  66. #endif
  67. #endif
  68. #ifdef SIMD_WASM
  69. #undef __DEPRECATED
  70. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  71. #include <wasm_simd128.h>
  72. #endif
  73. #ifdef SIMD_WASM
  74. #define wasmx_splat_v32x4(v, i) wasm_v32x4_shuffle(v, v, i, i, i, i)
  75. #define wasmx_unpacklo_v8x16(a, b) wasm_v8x16_shuffle(a, b, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23)
  76. #define wasmx_unpackhi_v8x16(a, b) wasm_v8x16_shuffle(a, b, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31)
  77. #define wasmx_unpacklo_v16x8(a, b) wasm_v16x8_shuffle(a, b, 0, 8, 1, 9, 2, 10, 3, 11)
  78. #define wasmx_unpackhi_v16x8(a, b) wasm_v16x8_shuffle(a, b, 4, 12, 5, 13, 6, 14, 7, 15)
  79. #define wasmx_unpacklo_v64x2(a, b) wasm_v64x2_shuffle(a, b, 0, 2)
  80. #define wasmx_unpackhi_v64x2(a, b) wasm_v64x2_shuffle(a, b, 1, 3)
  81. #endif
  82. namespace meshopt
  83. {
  84. const unsigned char kVertexHeader = 0xa0;
  85. static int gEncodeVertexVersion = 0;
  86. const size_t kVertexBlockSizeBytes = 8192;
  87. const size_t kVertexBlockMaxSize = 256;
  88. const size_t kByteGroupSize = 16;
  89. const size_t kByteGroupDecodeLimit = 24;
  90. const size_t kTailMaxSize = 32;
  91. static size_t getVertexBlockSize(size_t vertex_size)
  92. {
  93. // make sure the entire block fits into the scratch buffer
  94. size_t result = kVertexBlockSizeBytes / vertex_size;
  95. // align to byte group size; we encode each byte as a byte group
  96. // if vertex block is misaligned, it results in wasted bytes, so just truncate the block size
  97. result &= ~(kByteGroupSize - 1);
  98. return (result < kVertexBlockMaxSize) ? result : kVertexBlockMaxSize;
  99. }
  100. inline unsigned char zigzag8(unsigned char v)
  101. {
  102. return ((signed char)(v) >> 7) ^ (v << 1);
  103. }
  104. inline unsigned char unzigzag8(unsigned char v)
  105. {
  106. return -(v & 1) ^ (v >> 1);
  107. }
  108. static bool encodeBytesGroupZero(const unsigned char* buffer)
  109. {
  110. for (size_t i = 0; i < kByteGroupSize; ++i)
  111. if (buffer[i])
  112. return false;
  113. return true;
  114. }
  115. static size_t encodeBytesGroupMeasure(const unsigned char* buffer, int bits)
  116. {
  117. assert(bits >= 1 && bits <= 8);
  118. if (bits == 1)
  119. return encodeBytesGroupZero(buffer) ? 0 : size_t(-1);
  120. if (bits == 8)
  121. return kByteGroupSize;
  122. size_t result = kByteGroupSize * bits / 8;
  123. unsigned char sentinel = (1 << bits) - 1;
  124. for (size_t i = 0; i < kByteGroupSize; ++i)
  125. result += buffer[i] >= sentinel;
  126. return result;
  127. }
  128. static unsigned char* encodeBytesGroup(unsigned char* data, const unsigned char* buffer, int bits)
  129. {
  130. assert(bits >= 1 && bits <= 8);
  131. if (bits == 1)
  132. return data;
  133. if (bits == 8)
  134. {
  135. memcpy(data, buffer, kByteGroupSize);
  136. return data + kByteGroupSize;
  137. }
  138. size_t byte_size = 8 / bits;
  139. assert(kByteGroupSize % byte_size == 0);
  140. // fixed portion: bits bits for each value
  141. // variable portion: full byte for each out-of-range value (using 1...1 as sentinel)
  142. unsigned char sentinel = (1 << bits) - 1;
  143. for (size_t i = 0; i < kByteGroupSize; i += byte_size)
  144. {
  145. unsigned char byte = 0;
  146. for (size_t k = 0; k < byte_size; ++k)
  147. {
  148. unsigned char enc = (buffer[i + k] >= sentinel) ? sentinel : buffer[i + k];
  149. byte <<= bits;
  150. byte |= enc;
  151. }
  152. *data++ = byte;
  153. }
  154. for (size_t i = 0; i < kByteGroupSize; ++i)
  155. {
  156. if (buffer[i] >= sentinel)
  157. {
  158. *data++ = buffer[i];
  159. }
  160. }
  161. return data;
  162. }
  163. static unsigned char* encodeBytes(unsigned char* data, unsigned char* data_end, const unsigned char* buffer, size_t buffer_size)
  164. {
  165. assert(buffer_size % kByteGroupSize == 0);
  166. unsigned char* header = data;
  167. // round number of groups to 4 to get number of header bytes
  168. size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
  169. if (size_t(data_end - data) < header_size)
  170. return 0;
  171. data += header_size;
  172. memset(header, 0, header_size);
  173. for (size_t i = 0; i < buffer_size; i += kByteGroupSize)
  174. {
  175. if (size_t(data_end - data) < kByteGroupDecodeLimit)
  176. return 0;
  177. int best_bits = 8;
  178. size_t best_size = encodeBytesGroupMeasure(buffer + i, 8);
  179. for (int bits = 1; bits < 8; bits *= 2)
  180. {
  181. size_t size = encodeBytesGroupMeasure(buffer + i, bits);
  182. if (size < best_size)
  183. {
  184. best_bits = bits;
  185. best_size = size;
  186. }
  187. }
  188. int bitslog2 = (best_bits == 1) ? 0 : (best_bits == 2) ? 1 : (best_bits == 4) ? 2 : 3;
  189. assert((1 << bitslog2) == best_bits);
  190. size_t header_offset = i / kByteGroupSize;
  191. header[header_offset / 4] |= bitslog2 << ((header_offset % 4) * 2);
  192. unsigned char* next = encodeBytesGroup(data, buffer + i, best_bits);
  193. assert(data + best_size == next);
  194. data = next;
  195. }
  196. return data;
  197. }
  198. static unsigned char* encodeVertexBlock(unsigned char* data, unsigned char* data_end, const unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256])
  199. {
  200. assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
  201. unsigned char buffer[kVertexBlockMaxSize];
  202. assert(sizeof(buffer) % kByteGroupSize == 0);
  203. // we sometimes encode elements we didn't fill when rounding to kByteGroupSize
  204. memset(buffer, 0, sizeof(buffer));
  205. for (size_t k = 0; k < vertex_size; ++k)
  206. {
  207. size_t vertex_offset = k;
  208. unsigned char p = last_vertex[k];
  209. for (size_t i = 0; i < vertex_count; ++i)
  210. {
  211. buffer[i] = zigzag8(vertex_data[vertex_offset] - p);
  212. p = vertex_data[vertex_offset];
  213. vertex_offset += vertex_size;
  214. }
  215. data = encodeBytes(data, data_end, buffer, (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1));
  216. if (!data)
  217. return 0;
  218. }
  219. memcpy(last_vertex, &vertex_data[vertex_size * (vertex_count - 1)], vertex_size);
  220. return data;
  221. }
  222. #if defined(SIMD_FALLBACK) || (!defined(SIMD_SSE) && !defined(SIMD_NEON) && !defined(SIMD_AVX))
  223. static const unsigned char* decodeBytesGroup(const unsigned char* data, unsigned char* buffer, int bitslog2)
  224. {
  225. #define READ() byte = *data++
  226. #define NEXT(bits) enc = byte >> (8 - bits), byte <<= bits, encv = *data_var, *buffer++ = (enc == (1 << bits) - 1) ? encv : enc, data_var += (enc == (1 << bits) - 1)
  227. unsigned char byte, enc, encv;
  228. const unsigned char* data_var;
  229. switch (bitslog2)
  230. {
  231. case 0:
  232. memset(buffer, 0, kByteGroupSize);
  233. return data;
  234. case 1:
  235. data_var = data + 4;
  236. // 4 groups with 4 2-bit values in each byte
  237. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  238. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  239. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  240. READ(), NEXT(2), NEXT(2), NEXT(2), NEXT(2);
  241. return data_var;
  242. case 2:
  243. data_var = data + 8;
  244. // 8 groups with 2 4-bit values in each byte
  245. READ(), NEXT(4), NEXT(4);
  246. READ(), NEXT(4), NEXT(4);
  247. READ(), NEXT(4), NEXT(4);
  248. READ(), NEXT(4), NEXT(4);
  249. READ(), NEXT(4), NEXT(4);
  250. READ(), NEXT(4), NEXT(4);
  251. READ(), NEXT(4), NEXT(4);
  252. READ(), NEXT(4), NEXT(4);
  253. return data_var;
  254. case 3:
  255. memcpy(buffer, data, kByteGroupSize);
  256. return data + kByteGroupSize;
  257. default:
  258. assert(!"Unexpected bit length"); // unreachable since bitslog2 is a 2-bit value
  259. return data;
  260. }
  261. #undef READ
  262. #undef NEXT
  263. }
  264. static const unsigned char* decodeBytes(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size)
  265. {
  266. assert(buffer_size % kByteGroupSize == 0);
  267. const unsigned char* header = data;
  268. // round number of groups to 4 to get number of header bytes
  269. size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
  270. if (size_t(data_end - data) < header_size)
  271. return 0;
  272. data += header_size;
  273. for (size_t i = 0; i < buffer_size; i += kByteGroupSize)
  274. {
  275. if (size_t(data_end - data) < kByteGroupDecodeLimit)
  276. return 0;
  277. size_t header_offset = i / kByteGroupSize;
  278. int bitslog2 = (header[header_offset / 4] >> ((header_offset % 4) * 2)) & 3;
  279. data = decodeBytesGroup(data, buffer + i, bitslog2);
  280. }
  281. return data;
  282. }
  283. static const unsigned char* decodeVertexBlock(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256])
  284. {
  285. assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
  286. unsigned char buffer[kVertexBlockMaxSize];
  287. unsigned char transposed[kVertexBlockSizeBytes];
  288. size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
  289. for (size_t k = 0; k < vertex_size; ++k)
  290. {
  291. data = decodeBytes(data, data_end, buffer, vertex_count_aligned);
  292. if (!data)
  293. return 0;
  294. size_t vertex_offset = k;
  295. unsigned char p = last_vertex[k];
  296. for (size_t i = 0; i < vertex_count; ++i)
  297. {
  298. unsigned char v = unzigzag8(buffer[i]) + p;
  299. transposed[vertex_offset] = v;
  300. p = v;
  301. vertex_offset += vertex_size;
  302. }
  303. }
  304. memcpy(vertex_data, transposed, vertex_count * vertex_size);
  305. memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size);
  306. return data;
  307. }
  308. #endif
  309. #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
  310. static unsigned char kDecodeBytesGroupShuffle[256][8];
  311. static unsigned char kDecodeBytesGroupCount[256];
  312. #ifdef __wasm__
  313. __attribute__((cold)) // this saves 500 bytes in the output binary - we don't need to vectorize this loop!
  314. #endif
  315. static bool
  316. decodeBytesGroupBuildTables()
  317. {
  318. for (int mask = 0; mask < 256; ++mask)
  319. {
  320. unsigned char shuffle[8];
  321. unsigned char count = 0;
  322. for (int i = 0; i < 8; ++i)
  323. {
  324. int maski = (mask >> i) & 1;
  325. shuffle[i] = maski ? count : 0x80;
  326. count += (unsigned char)(maski);
  327. }
  328. memcpy(kDecodeBytesGroupShuffle[mask], shuffle, 8);
  329. kDecodeBytesGroupCount[mask] = count;
  330. }
  331. return true;
  332. }
  333. static bool gDecodeBytesGroupInitialized = decodeBytesGroupBuildTables();
  334. #endif
  335. #ifdef SIMD_SSE
  336. SIMD_TARGET
  337. static __m128i decodeShuffleMask(unsigned char mask0, unsigned char mask1)
  338. {
  339. __m128i sm0 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&kDecodeBytesGroupShuffle[mask0]));
  340. __m128i sm1 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(&kDecodeBytesGroupShuffle[mask1]));
  341. __m128i sm1off = _mm_set1_epi8(kDecodeBytesGroupCount[mask0]);
  342. __m128i sm1r = _mm_add_epi8(sm1, sm1off);
  343. return _mm_unpacklo_epi64(sm0, sm1r);
  344. }
  345. SIMD_TARGET
  346. static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2)
  347. {
  348. switch (bitslog2)
  349. {
  350. case 0:
  351. {
  352. __m128i result = _mm_setzero_si128();
  353. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  354. return data;
  355. }
  356. case 1:
  357. {
  358. #ifdef __GNUC__
  359. typedef int __attribute__((aligned(1))) unaligned_int;
  360. #else
  361. typedef int unaligned_int;
  362. #endif
  363. #ifdef SIMD_LATENCYOPT
  364. unsigned int data32;
  365. memcpy(&data32, data, 4);
  366. data32 &= data32 >> 1;
  367. // arrange bits such that low bits of nibbles of data64 contain all 2-bit elements of data32
  368. unsigned long long data64 = ((unsigned long long)data32 << 30) | (data32 & 0x3fffffff);
  369. // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
  370. int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
  371. #endif
  372. __m128i sel2 = _mm_cvtsi32_si128(*reinterpret_cast<const unaligned_int*>(data));
  373. __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 4));
  374. __m128i sel22 = _mm_unpacklo_epi8(_mm_srli_epi16(sel2, 4), sel2);
  375. __m128i sel2222 = _mm_unpacklo_epi8(_mm_srli_epi16(sel22, 2), sel22);
  376. __m128i sel = _mm_and_si128(sel2222, _mm_set1_epi8(3));
  377. __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(3));
  378. int mask16 = _mm_movemask_epi8(mask);
  379. unsigned char mask0 = (unsigned char)(mask16 & 255);
  380. unsigned char mask1 = (unsigned char)(mask16 >> 8);
  381. __m128i shuf = decodeShuffleMask(mask0, mask1);
  382. __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel));
  383. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  384. #ifdef SIMD_LATENCYOPT
  385. return data + 4 + datacnt;
  386. #else
  387. return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  388. #endif
  389. }
  390. case 2:
  391. {
  392. #ifdef SIMD_LATENCYOPT
  393. unsigned long long data64;
  394. memcpy(&data64, data, 8);
  395. data64 &= data64 >> 1;
  396. data64 &= data64 >> 2;
  397. // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
  398. int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
  399. #endif
  400. __m128i sel4 = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(data));
  401. __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data + 8));
  402. __m128i sel44 = _mm_unpacklo_epi8(_mm_srli_epi16(sel4, 4), sel4);
  403. __m128i sel = _mm_and_si128(sel44, _mm_set1_epi8(15));
  404. __m128i mask = _mm_cmpeq_epi8(sel, _mm_set1_epi8(15));
  405. int mask16 = _mm_movemask_epi8(mask);
  406. unsigned char mask0 = (unsigned char)(mask16 & 255);
  407. unsigned char mask1 = (unsigned char)(mask16 >> 8);
  408. __m128i shuf = decodeShuffleMask(mask0, mask1);
  409. __m128i result = _mm_or_si128(_mm_shuffle_epi8(rest, shuf), _mm_andnot_si128(mask, sel));
  410. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  411. #ifdef SIMD_LATENCYOPT
  412. return data + 8 + datacnt;
  413. #else
  414. return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  415. #endif
  416. }
  417. case 3:
  418. {
  419. __m128i result = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
  420. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  421. return data + 16;
  422. }
  423. default:
  424. assert(!"Unexpected bit length"); // unreachable since bitslog2 is a 2-bit value
  425. return data;
  426. }
  427. }
  428. #endif
  429. #ifdef SIMD_AVX
  430. static const __m128i decodeBytesGroupConfig[] = {
  431. _mm_set1_epi8(3),
  432. _mm_set1_epi8(15),
  433. _mm_setr_epi8(6, 4, 2, 0, 14, 12, 10, 8, 22, 20, 18, 16, 30, 28, 26, 24),
  434. _mm_setr_epi8(4, 0, 12, 8, 20, 16, 28, 24, 36, 32, 44, 40, 52, 48, 60, 56),
  435. };
  436. static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2)
  437. {
  438. switch (bitslog2)
  439. {
  440. case 0:
  441. {
  442. __m128i result = _mm_setzero_si128();
  443. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  444. return data;
  445. }
  446. case 1:
  447. case 2:
  448. {
  449. const unsigned char* skip = data + (bitslog2 << 2);
  450. __m128i selb = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(data));
  451. __m128i rest = _mm_loadu_si128(reinterpret_cast<const __m128i*>(skip));
  452. __m128i sent = decodeBytesGroupConfig[bitslog2 - 1];
  453. __m128i ctrl = decodeBytesGroupConfig[bitslog2 + 1];
  454. __m128i selw = _mm_shuffle_epi32(selb, 0x44);
  455. __m128i sel = _mm_and_si128(sent, _mm_multishift_epi64_epi8(ctrl, selw));
  456. __mmask16 mask16 = _mm_cmp_epi8_mask(sel, sent, _MM_CMPINT_EQ);
  457. __m128i result = _mm_mask_expand_epi8(sel, mask16, rest);
  458. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  459. return skip + _mm_popcnt_u32(mask16);
  460. }
  461. case 3:
  462. {
  463. __m128i result = _mm_loadu_si128(reinterpret_cast<const __m128i*>(data));
  464. _mm_storeu_si128(reinterpret_cast<__m128i*>(buffer), result);
  465. return data + 16;
  466. }
  467. default:
  468. assert(!"Unexpected bit length"); // unreachable since bitslog2 is a 2-bit value
  469. return data;
  470. }
  471. }
  472. #endif
  473. #ifdef SIMD_NEON
  474. static uint8x16_t shuffleBytes(unsigned char mask0, unsigned char mask1, uint8x8_t rest0, uint8x8_t rest1)
  475. {
  476. uint8x8_t sm0 = vld1_u8(kDecodeBytesGroupShuffle[mask0]);
  477. uint8x8_t sm1 = vld1_u8(kDecodeBytesGroupShuffle[mask1]);
  478. uint8x8_t r0 = vtbl1_u8(rest0, sm0);
  479. uint8x8_t r1 = vtbl1_u8(rest1, sm1);
  480. return vcombine_u8(r0, r1);
  481. }
  482. static void neonMoveMask(uint8x16_t mask, unsigned char& mask0, unsigned char& mask1)
  483. {
  484. // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00
  485. const uint64_t magic = 0x000103070f1f3f80ull;
  486. uint64x2_t mask2 = vreinterpretq_u64_u8(mask);
  487. mask0 = uint8_t((vgetq_lane_u64(mask2, 0) * magic) >> 56);
  488. mask1 = uint8_t((vgetq_lane_u64(mask2, 1) * magic) >> 56);
  489. }
  490. static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2)
  491. {
  492. switch (bitslog2)
  493. {
  494. case 0:
  495. {
  496. uint8x16_t result = vdupq_n_u8(0);
  497. vst1q_u8(buffer, result);
  498. return data;
  499. }
  500. case 1:
  501. {
  502. #ifdef SIMD_LATENCYOPT
  503. unsigned int data32;
  504. memcpy(&data32, data, 4);
  505. data32 &= data32 >> 1;
  506. // arrange bits such that low bits of nibbles of data64 contain all 2-bit elements of data32
  507. unsigned long long data64 = ((unsigned long long)data32 << 30) | (data32 & 0x3fffffff);
  508. // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
  509. int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
  510. #endif
  511. uint8x8_t sel2 = vld1_u8(data);
  512. uint8x8_t sel22 = vzip_u8(vshr_n_u8(sel2, 4), sel2).val[0];
  513. uint8x8x2_t sel2222 = vzip_u8(vshr_n_u8(sel22, 2), sel22);
  514. uint8x16_t sel = vandq_u8(vcombine_u8(sel2222.val[0], sel2222.val[1]), vdupq_n_u8(3));
  515. uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(3));
  516. unsigned char mask0, mask1;
  517. neonMoveMask(mask, mask0, mask1);
  518. uint8x8_t rest0 = vld1_u8(data + 4);
  519. uint8x8_t rest1 = vld1_u8(data + 4 + kDecodeBytesGroupCount[mask0]);
  520. uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel);
  521. vst1q_u8(buffer, result);
  522. #ifdef SIMD_LATENCYOPT
  523. return data + 4 + datacnt;
  524. #else
  525. return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  526. #endif
  527. }
  528. case 2:
  529. {
  530. #ifdef SIMD_LATENCYOPT
  531. unsigned long long data64;
  532. memcpy(&data64, data, 8);
  533. data64 &= data64 >> 1;
  534. data64 &= data64 >> 2;
  535. // adds all 1-bit nibbles together; the sum fits in 4 bits because datacnt=16 would have used mode 3
  536. int datacnt = int(((data64 & 0x1111111111111111ull) * 0x1111111111111111ull) >> 60);
  537. #endif
  538. uint8x8_t sel4 = vld1_u8(data);
  539. uint8x8x2_t sel44 = vzip_u8(vshr_n_u8(sel4, 4), vand_u8(sel4, vdup_n_u8(15)));
  540. uint8x16_t sel = vcombine_u8(sel44.val[0], sel44.val[1]);
  541. uint8x16_t mask = vceqq_u8(sel, vdupq_n_u8(15));
  542. unsigned char mask0, mask1;
  543. neonMoveMask(mask, mask0, mask1);
  544. uint8x8_t rest0 = vld1_u8(data + 8);
  545. uint8x8_t rest1 = vld1_u8(data + 8 + kDecodeBytesGroupCount[mask0]);
  546. uint8x16_t result = vbslq_u8(mask, shuffleBytes(mask0, mask1, rest0, rest1), sel);
  547. vst1q_u8(buffer, result);
  548. #ifdef SIMD_LATENCYOPT
  549. return data + 8 + datacnt;
  550. #else
  551. return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  552. #endif
  553. }
  554. case 3:
  555. {
  556. uint8x16_t result = vld1q_u8(data);
  557. vst1q_u8(buffer, result);
  558. return data + 16;
  559. }
  560. default:
  561. assert(!"Unexpected bit length"); // unreachable since bitslog2 is a 2-bit value
  562. return data;
  563. }
  564. }
  565. #endif
  566. #ifdef SIMD_WASM
  567. SIMD_TARGET
  568. static v128_t decodeShuffleMask(unsigned char mask0, unsigned char mask1)
  569. {
  570. v128_t sm0 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask0]);
  571. v128_t sm1 = wasm_v128_load(&kDecodeBytesGroupShuffle[mask1]);
  572. v128_t sm1off = wasm_v128_load(&kDecodeBytesGroupCount[mask0]);
  573. sm1off = wasm_v8x16_shuffle(sm1off, sm1off, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
  574. v128_t sm1r = wasm_i8x16_add(sm1, sm1off);
  575. return wasmx_unpacklo_v64x2(sm0, sm1r);
  576. }
  577. SIMD_TARGET
  578. static void wasmMoveMask(v128_t mask, unsigned char& mask0, unsigned char& mask1)
  579. {
  580. // magic constant found using z3 SMT assuming mask has 8 groups of 0xff or 0x00
  581. const uint64_t magic = 0x000103070f1f3f80ull;
  582. mask0 = uint8_t((wasm_i64x2_extract_lane(mask, 0) * magic) >> 56);
  583. mask1 = uint8_t((wasm_i64x2_extract_lane(mask, 1) * magic) >> 56);
  584. }
  585. SIMD_TARGET
  586. static const unsigned char* decodeBytesGroupSimd(const unsigned char* data, unsigned char* buffer, int bitslog2)
  587. {
  588. unsigned char byte, enc, encv;
  589. const unsigned char* data_var;
  590. switch (bitslog2)
  591. {
  592. case 0:
  593. {
  594. v128_t result = wasm_i8x16_splat(0);
  595. wasm_v128_store(buffer, result);
  596. return data;
  597. }
  598. case 1:
  599. {
  600. v128_t sel2 = wasm_v128_load(data);
  601. v128_t rest = wasm_v128_load(data + 4);
  602. v128_t sel22 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel2, 4), sel2);
  603. v128_t sel2222 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel22, 2), sel22);
  604. v128_t sel = wasm_v128_and(sel2222, wasm_i8x16_splat(3));
  605. v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(3));
  606. unsigned char mask0, mask1;
  607. wasmMoveMask(mask, mask0, mask1);
  608. v128_t shuf = decodeShuffleMask(mask0, mask1);
  609. v128_t result = wasm_v128_bitselect(wasm_v8x16_swizzle(rest, shuf), sel, mask);
  610. wasm_v128_store(buffer, result);
  611. return data + 4 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  612. }
  613. case 2:
  614. {
  615. v128_t sel4 = wasm_v128_load(data);
  616. v128_t rest = wasm_v128_load(data + 8);
  617. v128_t sel44 = wasmx_unpacklo_v8x16(wasm_i16x8_shr(sel4, 4), sel4);
  618. v128_t sel = wasm_v128_and(sel44, wasm_i8x16_splat(15));
  619. v128_t mask = wasm_i8x16_eq(sel, wasm_i8x16_splat(15));
  620. unsigned char mask0, mask1;
  621. wasmMoveMask(mask, mask0, mask1);
  622. v128_t shuf = decodeShuffleMask(mask0, mask1);
  623. v128_t result = wasm_v128_bitselect(wasm_v8x16_swizzle(rest, shuf), sel, mask);
  624. wasm_v128_store(buffer, result);
  625. return data + 8 + kDecodeBytesGroupCount[mask0] + kDecodeBytesGroupCount[mask1];
  626. }
  627. case 3:
  628. {
  629. v128_t result = wasm_v128_load(data);
  630. wasm_v128_store(buffer, result);
  631. return data + 16;
  632. }
  633. default:
  634. assert(!"Unexpected bit length"); // unreachable since bitslog2 is a 2-bit value
  635. return data;
  636. }
  637. }
  638. #endif
  639. #if defined(SIMD_SSE) || defined(SIMD_AVX)
  640. SIMD_TARGET
  641. static void transpose8(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3)
  642. {
  643. __m128i t0 = _mm_unpacklo_epi8(x0, x1);
  644. __m128i t1 = _mm_unpackhi_epi8(x0, x1);
  645. __m128i t2 = _mm_unpacklo_epi8(x2, x3);
  646. __m128i t3 = _mm_unpackhi_epi8(x2, x3);
  647. x0 = _mm_unpacklo_epi16(t0, t2);
  648. x1 = _mm_unpackhi_epi16(t0, t2);
  649. x2 = _mm_unpacklo_epi16(t1, t3);
  650. x3 = _mm_unpackhi_epi16(t1, t3);
  651. }
  652. SIMD_TARGET
  653. static __m128i unzigzag8(__m128i v)
  654. {
  655. __m128i xl = _mm_sub_epi8(_mm_setzero_si128(), _mm_and_si128(v, _mm_set1_epi8(1)));
  656. __m128i xr = _mm_and_si128(_mm_srli_epi16(v, 1), _mm_set1_epi8(127));
  657. return _mm_xor_si128(xl, xr);
  658. }
  659. #endif
  660. #ifdef SIMD_NEON
  661. static void transpose8(uint8x16_t& x0, uint8x16_t& x1, uint8x16_t& x2, uint8x16_t& x3)
  662. {
  663. uint8x16x2_t t01 = vzipq_u8(x0, x1);
  664. uint8x16x2_t t23 = vzipq_u8(x2, x3);
  665. uint16x8x2_t x01 = vzipq_u16(vreinterpretq_u16_u8(t01.val[0]), vreinterpretq_u16_u8(t23.val[0]));
  666. uint16x8x2_t x23 = vzipq_u16(vreinterpretq_u16_u8(t01.val[1]), vreinterpretq_u16_u8(t23.val[1]));
  667. x0 = vreinterpretq_u8_u16(x01.val[0]);
  668. x1 = vreinterpretq_u8_u16(x01.val[1]);
  669. x2 = vreinterpretq_u8_u16(x23.val[0]);
  670. x3 = vreinterpretq_u8_u16(x23.val[1]);
  671. }
  672. static uint8x16_t unzigzag8(uint8x16_t v)
  673. {
  674. uint8x16_t xl = vreinterpretq_u8_s8(vnegq_s8(vreinterpretq_s8_u8(vandq_u8(v, vdupq_n_u8(1)))));
  675. uint8x16_t xr = vshrq_n_u8(v, 1);
  676. return veorq_u8(xl, xr);
  677. }
  678. #endif
  679. #ifdef SIMD_WASM
  680. SIMD_TARGET
  681. static void transpose8(v128_t& x0, v128_t& x1, v128_t& x2, v128_t& x3)
  682. {
  683. v128_t t0 = wasmx_unpacklo_v8x16(x0, x1);
  684. v128_t t1 = wasmx_unpackhi_v8x16(x0, x1);
  685. v128_t t2 = wasmx_unpacklo_v8x16(x2, x3);
  686. v128_t t3 = wasmx_unpackhi_v8x16(x2, x3);
  687. x0 = wasmx_unpacklo_v16x8(t0, t2);
  688. x1 = wasmx_unpackhi_v16x8(t0, t2);
  689. x2 = wasmx_unpacklo_v16x8(t1, t3);
  690. x3 = wasmx_unpackhi_v16x8(t1, t3);
  691. }
  692. SIMD_TARGET
  693. static v128_t unzigzag8(v128_t v)
  694. {
  695. v128_t xl = wasm_i8x16_neg(wasm_v128_and(v, wasm_i8x16_splat(1)));
  696. v128_t xr = wasm_u8x16_shr(v, 1);
  697. return wasm_v128_xor(xl, xr);
  698. }
  699. #endif
  700. #if defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM)
  701. SIMD_TARGET
  702. static const unsigned char* decodeBytesSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* buffer, size_t buffer_size)
  703. {
  704. assert(buffer_size % kByteGroupSize == 0);
  705. assert(kByteGroupSize == 16);
  706. const unsigned char* header = data;
  707. // round number of groups to 4 to get number of header bytes
  708. size_t header_size = (buffer_size / kByteGroupSize + 3) / 4;
  709. if (size_t(data_end - data) < header_size)
  710. return 0;
  711. data += header_size;
  712. size_t i = 0;
  713. // fast-path: process 4 groups at a time, do a shared bounds check - each group reads <=24b
  714. for (; i + kByteGroupSize * 4 <= buffer_size && size_t(data_end - data) >= kByteGroupDecodeLimit * 4; i += kByteGroupSize * 4)
  715. {
  716. size_t header_offset = i / kByteGroupSize;
  717. unsigned char header_byte = header[header_offset / 4];
  718. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 0, (header_byte >> 0) & 3);
  719. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 1, (header_byte >> 2) & 3);
  720. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 2, (header_byte >> 4) & 3);
  721. data = decodeBytesGroupSimd(data, buffer + i + kByteGroupSize * 3, (header_byte >> 6) & 3);
  722. }
  723. // slow-path: process remaining groups
  724. for (; i < buffer_size; i += kByteGroupSize)
  725. {
  726. if (size_t(data_end - data) < kByteGroupDecodeLimit)
  727. return 0;
  728. size_t header_offset = i / kByteGroupSize;
  729. int bitslog2 = (header[header_offset / 4] >> ((header_offset % 4) * 2)) & 3;
  730. data = decodeBytesGroupSimd(data, buffer + i, bitslog2);
  731. }
  732. return data;
  733. }
  734. SIMD_TARGET
  735. static const unsigned char* decodeVertexBlockSimd(const unsigned char* data, const unsigned char* data_end, unsigned char* vertex_data, size_t vertex_count, size_t vertex_size, unsigned char last_vertex[256])
  736. {
  737. assert(vertex_count > 0 && vertex_count <= kVertexBlockMaxSize);
  738. unsigned char buffer[kVertexBlockMaxSize * 4];
  739. unsigned char transposed[kVertexBlockSizeBytes];
  740. size_t vertex_count_aligned = (vertex_count + kByteGroupSize - 1) & ~(kByteGroupSize - 1);
  741. for (size_t k = 0; k < vertex_size; k += 4)
  742. {
  743. for (size_t j = 0; j < 4; ++j)
  744. {
  745. data = decodeBytesSimd(data, data_end, buffer + j * vertex_count_aligned, vertex_count_aligned);
  746. if (!data)
  747. return 0;
  748. }
  749. #if defined(SIMD_SSE) || defined(SIMD_AVX)
  750. #define TEMP __m128i
  751. #define PREP() __m128i pi = _mm_cvtsi32_si128(*reinterpret_cast<const int*>(last_vertex + k))
  752. #define LOAD(i) __m128i r##i = _mm_loadu_si128(reinterpret_cast<const __m128i*>(buffer + j + i * vertex_count_aligned))
  753. #define GRP4(i) t0 = _mm_shuffle_epi32(r##i, 0), t1 = _mm_shuffle_epi32(r##i, 1), t2 = _mm_shuffle_epi32(r##i, 2), t3 = _mm_shuffle_epi32(r##i, 3)
  754. #define FIXD(i) t##i = pi = _mm_add_epi8(pi, t##i)
  755. #define SAVE(i) *reinterpret_cast<int*>(savep) = _mm_cvtsi128_si32(t##i), savep += vertex_size
  756. #endif
  757. #ifdef SIMD_NEON
  758. #define TEMP uint8x8_t
  759. #define PREP() uint8x8_t pi = vreinterpret_u8_u32(vld1_lane_u32(reinterpret_cast<uint32_t*>(last_vertex + k), vdup_n_u32(0), 0))
  760. #define LOAD(i) uint8x16_t r##i = vld1q_u8(buffer + j + i * vertex_count_aligned)
  761. #define GRP4(i) t0 = vget_low_u8(r##i), t1 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t0), 1)), t2 = vget_high_u8(r##i), t3 = vreinterpret_u8_u32(vdup_lane_u32(vreinterpret_u32_u8(t2), 1))
  762. #define FIXD(i) t##i = pi = vadd_u8(pi, t##i)
  763. #define SAVE(i) vst1_lane_u32(reinterpret_cast<uint32_t*>(savep), vreinterpret_u32_u8(t##i), 0), savep += vertex_size
  764. #endif
  765. #ifdef SIMD_WASM
  766. #define TEMP v128_t
  767. #define PREP() v128_t pi = wasm_v128_load(last_vertex + k)
  768. #define LOAD(i) v128_t r##i = wasm_v128_load(buffer + j + i * vertex_count_aligned)
  769. #define GRP4(i) t0 = wasmx_splat_v32x4(r##i, 0), t1 = wasmx_splat_v32x4(r##i, 1), t2 = wasmx_splat_v32x4(r##i, 2), t3 = wasmx_splat_v32x4(r##i, 3)
  770. #define FIXD(i) t##i = pi = wasm_i8x16_add(pi, t##i)
  771. #define SAVE(i) *reinterpret_cast<int*>(savep) = wasm_i32x4_extract_lane(t##i, 0), savep += vertex_size
  772. #endif
  773. PREP();
  774. unsigned char* savep = transposed + k;
  775. for (size_t j = 0; j < vertex_count_aligned; j += 16)
  776. {
  777. LOAD(0);
  778. LOAD(1);
  779. LOAD(2);
  780. LOAD(3);
  781. r0 = unzigzag8(r0);
  782. r1 = unzigzag8(r1);
  783. r2 = unzigzag8(r2);
  784. r3 = unzigzag8(r3);
  785. transpose8(r0, r1, r2, r3);
  786. TEMP t0, t1, t2, t3;
  787. GRP4(0);
  788. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  789. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  790. GRP4(1);
  791. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  792. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  793. GRP4(2);
  794. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  795. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  796. GRP4(3);
  797. FIXD(0), FIXD(1), FIXD(2), FIXD(3);
  798. SAVE(0), SAVE(1), SAVE(2), SAVE(3);
  799. #undef TEMP
  800. #undef PREP
  801. #undef LOAD
  802. #undef GRP4
  803. #undef FIXD
  804. #undef SAVE
  805. }
  806. }
  807. memcpy(vertex_data, transposed, vertex_count * vertex_size);
  808. memcpy(last_vertex, &transposed[vertex_size * (vertex_count - 1)], vertex_size);
  809. return data;
  810. }
  811. #endif
  812. #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
  813. static unsigned int getCpuFeatures()
  814. {
  815. int cpuinfo[4] = {};
  816. #ifdef _MSC_VER
  817. __cpuid(cpuinfo, 1);
  818. #else
  819. __cpuid(1, cpuinfo[0], cpuinfo[1], cpuinfo[2], cpuinfo[3]);
  820. #endif
  821. return cpuinfo[2];
  822. }
  823. static unsigned int cpuid = getCpuFeatures();
  824. #endif
  825. } // namespace meshopt
  826. size_t meshopt_encodeVertexBuffer(unsigned char* buffer, size_t buffer_size, const void* vertices, size_t vertex_count, size_t vertex_size)
  827. {
  828. using namespace meshopt;
  829. assert(vertex_size > 0 && vertex_size <= 256);
  830. assert(vertex_size % 4 == 0);
  831. const unsigned char* vertex_data = static_cast<const unsigned char*>(vertices);
  832. unsigned char* data = buffer;
  833. unsigned char* data_end = buffer + buffer_size;
  834. if (size_t(data_end - data) < 1 + vertex_size)
  835. return 0;
  836. int version = gEncodeVertexVersion;
  837. *data++ = (unsigned char)(kVertexHeader | version);
  838. unsigned char first_vertex[256] = {};
  839. if (vertex_count > 0)
  840. memcpy(first_vertex, vertex_data, vertex_size);
  841. unsigned char last_vertex[256] = {};
  842. memcpy(last_vertex, first_vertex, vertex_size);
  843. size_t vertex_block_size = getVertexBlockSize(vertex_size);
  844. size_t vertex_offset = 0;
  845. while (vertex_offset < vertex_count)
  846. {
  847. size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset;
  848. data = encodeVertexBlock(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex);
  849. if (!data)
  850. return 0;
  851. vertex_offset += block_size;
  852. }
  853. size_t tail_size = vertex_size < kTailMaxSize ? kTailMaxSize : vertex_size;
  854. if (size_t(data_end - data) < tail_size)
  855. return 0;
  856. // write first vertex to the end of the stream and pad it to 32 bytes; this is important to simplify bounds checks in decoder
  857. if (vertex_size < kTailMaxSize)
  858. {
  859. memset(data, 0, kTailMaxSize - vertex_size);
  860. data += kTailMaxSize - vertex_size;
  861. }
  862. memcpy(data, first_vertex, vertex_size);
  863. data += vertex_size;
  864. assert(data >= buffer + tail_size);
  865. assert(data <= buffer + buffer_size);
  866. return data - buffer;
  867. }
  868. size_t meshopt_encodeVertexBufferBound(size_t vertex_count, size_t vertex_size)
  869. {
  870. using namespace meshopt;
  871. assert(vertex_size > 0 && vertex_size <= 256);
  872. assert(vertex_size % 4 == 0);
  873. size_t vertex_block_size = getVertexBlockSize(vertex_size);
  874. size_t vertex_block_count = (vertex_count + vertex_block_size - 1) / vertex_block_size;
  875. size_t vertex_block_header_size = (vertex_block_size / kByteGroupSize + 3) / 4;
  876. size_t vertex_block_data_size = vertex_block_size;
  877. size_t tail_size = vertex_size < kTailMaxSize ? kTailMaxSize : vertex_size;
  878. return 1 + vertex_block_count * vertex_size * (vertex_block_header_size + vertex_block_data_size) + tail_size;
  879. }
  880. void meshopt_encodeVertexVersion(int version)
  881. {
  882. assert(unsigned(version) <= 0);
  883. meshopt::gEncodeVertexVersion = version;
  884. }
  885. int meshopt_decodeVertexBuffer(void* destination, size_t vertex_count, size_t vertex_size, const unsigned char* buffer, size_t buffer_size)
  886. {
  887. using namespace meshopt;
  888. assert(vertex_size > 0 && vertex_size <= 256);
  889. assert(vertex_size % 4 == 0);
  890. const unsigned char* (*decode)(const unsigned char*, const unsigned char*, unsigned char*, size_t, size_t, unsigned char[256]) = 0;
  891. #if defined(SIMD_SSE) && defined(SIMD_FALLBACK)
  892. decode = (cpuid & (1 << 9)) ? decodeVertexBlockSimd : decodeVertexBlock;
  893. #elif defined(SIMD_SSE) || defined(SIMD_AVX) || defined(SIMD_NEON) || defined(SIMD_WASM)
  894. decode = decodeVertexBlockSimd;
  895. #else
  896. decode = decodeVertexBlock;
  897. #endif
  898. #if defined(SIMD_SSE) || defined(SIMD_NEON) || defined(SIMD_WASM)
  899. assert(gDecodeBytesGroupInitialized);
  900. (void)gDecodeBytesGroupInitialized;
  901. #endif
  902. unsigned char* vertex_data = static_cast<unsigned char*>(destination);
  903. const unsigned char* data = buffer;
  904. const unsigned char* data_end = buffer + buffer_size;
  905. if (size_t(data_end - data) < 1 + vertex_size)
  906. return -2;
  907. unsigned char data_header = *data++;
  908. if ((data_header & 0xf0) != kVertexHeader)
  909. return -1;
  910. int version = data_header & 0x0f;
  911. if (version > 0)
  912. return -1;
  913. unsigned char last_vertex[256];
  914. memcpy(last_vertex, data_end - vertex_size, vertex_size);
  915. size_t vertex_block_size = getVertexBlockSize(vertex_size);
  916. size_t vertex_offset = 0;
  917. while (vertex_offset < vertex_count)
  918. {
  919. size_t block_size = (vertex_offset + vertex_block_size < vertex_count) ? vertex_block_size : vertex_count - vertex_offset;
  920. data = decode(data, data_end, vertex_data + vertex_offset * vertex_size, block_size, vertex_size, last_vertex);
  921. if (!data)
  922. return -2;
  923. vertex_offset += block_size;
  924. }
  925. size_t tail_size = vertex_size < kTailMaxSize ? kTailMaxSize : vertex_size;
  926. if (size_t(data_end - data) != tail_size)
  927. return -3;
  928. return 0;
  929. }
  930. #undef SIMD_NEON
  931. #undef SIMD_SSE
  932. #undef SIMD_AVX
  933. #undef SIMD_WASM
  934. #undef SIMD_FALLBACK
  935. #undef SIMD_TARGET