123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675 |
- // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
- #include "meshoptimizer.h"
- #include <assert.h>
- #include <string.h>
- // This work is based on:
- // Fabian Giesen. Simple lossless index buffer compression & follow-up. 2013
- // Conor Stokes. Vertex Cache Optimised Index Buffer Compression. 2014
- namespace meshopt
- {
- const unsigned char kIndexHeader = 0xe0;
- const unsigned char kSequenceHeader = 0xd0;
- static int gEncodeIndexVersion = 0;
- typedef unsigned int VertexFifo[16];
- typedef unsigned int EdgeFifo[16][2];
- static const unsigned int kTriangleIndexOrder[3][3] = {
- {0, 1, 2},
- {1, 2, 0},
- {2, 0, 1},
- };
- static const unsigned char kCodeAuxEncodingTable[16] = {
- 0x00, 0x76, 0x87, 0x56, 0x67, 0x78, 0xa9, 0x86, 0x65, 0x89, 0x68, 0x98, 0x01, 0x69,
- 0, 0, // last two entries aren't used for encoding
- };
- static int rotateTriangle(unsigned int a, unsigned int b, unsigned int c, unsigned int next)
- {
- (void)a;
- return (b == next) ? 1 : (c == next) ? 2 : 0;
- }
- static int getEdgeFifo(EdgeFifo fifo, unsigned int a, unsigned int b, unsigned int c, size_t offset)
- {
- for (int i = 0; i < 16; ++i)
- {
- size_t index = (offset - 1 - i) & 15;
- unsigned int e0 = fifo[index][0];
- unsigned int e1 = fifo[index][1];
- if (e0 == a && e1 == b)
- return (i << 2) | 0;
- if (e0 == b && e1 == c)
- return (i << 2) | 1;
- if (e0 == c && e1 == a)
- return (i << 2) | 2;
- }
- return -1;
- }
- static void pushEdgeFifo(EdgeFifo fifo, unsigned int a, unsigned int b, size_t& offset)
- {
- fifo[offset][0] = a;
- fifo[offset][1] = b;
- offset = (offset + 1) & 15;
- }
- static int getVertexFifo(VertexFifo fifo, unsigned int v, size_t offset)
- {
- for (int i = 0; i < 16; ++i)
- {
- size_t index = (offset - 1 - i) & 15;
- if (fifo[index] == v)
- return i;
- }
- return -1;
- }
- static void pushVertexFifo(VertexFifo fifo, unsigned int v, size_t& offset, int cond = 1)
- {
- fifo[offset] = v;
- offset = (offset + cond) & 15;
- }
- static void encodeVByte(unsigned char*& data, unsigned int v)
- {
- // encode 32-bit value in up to 5 7-bit groups
- do
- {
- *data++ = (v & 127) | (v > 127 ? 128 : 0);
- v >>= 7;
- } while (v);
- }
- static unsigned int decodeVByte(const unsigned char*& data)
- {
- unsigned char lead = *data++;
- // fast path: single byte
- if (lead < 128)
- return lead;
- // slow path: up to 4 extra bytes
- // note that this loop always terminates, which is important for malformed data
- unsigned int result = lead & 127;
- unsigned int shift = 7;
- for (int i = 0; i < 4; ++i)
- {
- unsigned char group = *data++;
- result |= unsigned(group & 127) << shift;
- shift += 7;
- if (group < 128)
- break;
- }
- return result;
- }
- static void encodeIndex(unsigned char*& data, unsigned int index, unsigned int last)
- {
- unsigned int d = index - last;
- unsigned int v = (d << 1) ^ (int(d) >> 31);
- encodeVByte(data, v);
- }
- static unsigned int decodeIndex(const unsigned char*& data, unsigned int last)
- {
- unsigned int v = decodeVByte(data);
- unsigned int d = (v >> 1) ^ -int(v & 1);
- return last + d;
- }
- static int getCodeAuxIndex(unsigned char v, const unsigned char* table)
- {
- for (int i = 0; i < 16; ++i)
- if (table[i] == v)
- return i;
- return -1;
- }
- static void writeTriangle(void* destination, size_t offset, size_t index_size, unsigned int a, unsigned int b, unsigned int c)
- {
- if (index_size == 2)
- {
- static_cast<unsigned short*>(destination)[offset + 0] = (unsigned short)(a);
- static_cast<unsigned short*>(destination)[offset + 1] = (unsigned short)(b);
- static_cast<unsigned short*>(destination)[offset + 2] = (unsigned short)(c);
- }
- else
- {
- static_cast<unsigned int*>(destination)[offset + 0] = a;
- static_cast<unsigned int*>(destination)[offset + 1] = b;
- static_cast<unsigned int*>(destination)[offset + 2] = c;
- }
- }
- } // namespace meshopt
- size_t meshopt_encodeIndexBuffer(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- // the minimum valid encoding is header, 1 byte per triangle and a 16-byte codeaux table
- if (buffer_size < 1 + index_count / 3 + 16)
- return 0;
- int version = gEncodeIndexVersion;
- buffer[0] = (unsigned char)(kIndexHeader | version);
- EdgeFifo edgefifo;
- memset(edgefifo, -1, sizeof(edgefifo));
- VertexFifo vertexfifo;
- memset(vertexfifo, -1, sizeof(vertexfifo));
- size_t edgefifooffset = 0;
- size_t vertexfifooffset = 0;
- unsigned int next = 0;
- unsigned int last = 0;
- unsigned char* code = buffer + 1;
- unsigned char* data = code + index_count / 3;
- unsigned char* data_safe_end = buffer + buffer_size - 16;
- int fecmax = version >= 1 ? 13 : 15;
- // use static encoding table; it's possible to pack the result and then build an optimal table and repack
- // for now we keep it simple and use the table that has been generated based on symbol frequency on a training mesh set
- const unsigned char* codeaux_table = kCodeAuxEncodingTable;
- for (size_t i = 0; i < index_count; i += 3)
- {
- // make sure we have enough space to write a triangle
- // each triangle writes at most 16 bytes: 1b for codeaux and 5b for each free index
- // after this we can be sure we can write without extra bounds checks
- if (data > data_safe_end)
- return 0;
- int fer = getEdgeFifo(edgefifo, indices[i + 0], indices[i + 1], indices[i + 2], edgefifooffset);
- if (fer >= 0 && (fer >> 2) < 15)
- {
- const unsigned int* order = kTriangleIndexOrder[fer & 3];
- unsigned int a = indices[i + order[0]], b = indices[i + order[1]], c = indices[i + order[2]];
- // encode edge index and vertex fifo index, next or free index
- int fe = fer >> 2;
- int fc = getVertexFifo(vertexfifo, c, vertexfifooffset);
- int fec = (fc >= 1 && fc < fecmax) ? fc : (c == next) ? (next++, 0) : 15;
- if (fec == 15 && version >= 1)
- {
- // encode last-1 and last+1 to optimize strip-like sequences
- if (c + 1 == last)
- fec = 13, last = c;
- if (c == last + 1)
- fec = 14, last = c;
- }
- *code++ = (unsigned char)((fe << 4) | fec);
- // note that we need to update the last index since free indices are delta-encoded
- if (fec == 15)
- encodeIndex(data, c, last), last = c;
- // we only need to push third vertex since first two are likely already in the vertex fifo
- if (fec == 0 || fec >= fecmax)
- pushVertexFifo(vertexfifo, c, vertexfifooffset);
- // we only need to push two new edges to edge fifo since the third one is already there
- pushEdgeFifo(edgefifo, c, b, edgefifooffset);
- pushEdgeFifo(edgefifo, a, c, edgefifooffset);
- }
- else
- {
- int rotation = rotateTriangle(indices[i + 0], indices[i + 1], indices[i + 2], next);
- const unsigned int* order = kTriangleIndexOrder[rotation];
- unsigned int a = indices[i + order[0]], b = indices[i + order[1]], c = indices[i + order[2]];
- // if a/b/c are 0/1/2, we emit a reset code
- bool reset = false;
- if (a == 0 && b == 1 && c == 2 && next > 0 && version >= 1)
- {
- reset = true;
- next = 0;
- // reset vertex fifo to make sure we don't accidentally reference vertices from that in the future
- // this makes sure next continues to get incremented instead of being stuck
- memset(vertexfifo, -1, sizeof(vertexfifo));
- }
- int fb = getVertexFifo(vertexfifo, b, vertexfifooffset);
- int fc = getVertexFifo(vertexfifo, c, vertexfifooffset);
- // after rotation, a is almost always equal to next, so we don't waste bits on FIFO encoding for a
- int fea = (a == next) ? (next++, 0) : 15;
- int feb = (fb >= 0 && fb < 14) ? (fb + 1) : (b == next) ? (next++, 0) : 15;
- int fec = (fc >= 0 && fc < 14) ? (fc + 1) : (c == next) ? (next++, 0) : 15;
- // we encode feb & fec in 4 bits using a table if possible, and as a full byte otherwise
- unsigned char codeaux = (unsigned char)((feb << 4) | fec);
- int codeauxindex = getCodeAuxIndex(codeaux, codeaux_table);
- // <14 encodes an index into codeaux table, 14 encodes fea=0, 15 encodes fea=15
- if (fea == 0 && codeauxindex >= 0 && codeauxindex < 14 && !reset)
- {
- *code++ = (unsigned char)((15 << 4) | codeauxindex);
- }
- else
- {
- *code++ = (unsigned char)((15 << 4) | 14 | fea);
- *data++ = codeaux;
- }
- // note that we need to update the last index since free indices are delta-encoded
- if (fea == 15)
- encodeIndex(data, a, last), last = a;
- if (feb == 15)
- encodeIndex(data, b, last), last = b;
- if (fec == 15)
- encodeIndex(data, c, last), last = c;
- // only push vertices that weren't already in fifo
- if (fea == 0 || fea == 15)
- pushVertexFifo(vertexfifo, a, vertexfifooffset);
- if (feb == 0 || feb == 15)
- pushVertexFifo(vertexfifo, b, vertexfifooffset);
- if (fec == 0 || fec == 15)
- pushVertexFifo(vertexfifo, c, vertexfifooffset);
- // all three edges aren't in the fifo; pushing all of them is important so that we can match them for later triangles
- pushEdgeFifo(edgefifo, b, a, edgefifooffset);
- pushEdgeFifo(edgefifo, c, b, edgefifooffset);
- pushEdgeFifo(edgefifo, a, c, edgefifooffset);
- }
- }
- // make sure we have enough space to write codeaux table
- if (data > data_safe_end)
- return 0;
- // add codeaux encoding table to the end of the stream; this is used for decoding codeaux *and* as padding
- // we need padding for decoding to be able to assume that each triangle is encoded as <= 16 bytes of extra data
- // this is enough space for aux byte + 5 bytes per varint index which is the absolute worst case for any input
- for (size_t i = 0; i < 16; ++i)
- {
- // decoder assumes that table entries never refer to separately encoded indices
- assert((codeaux_table[i] & 0xf) != 0xf && (codeaux_table[i] >> 4) != 0xf);
- *data++ = codeaux_table[i];
- }
- // since we encode restarts as codeaux without a table reference, we need to make sure 00 is encoded as a table reference
- assert(codeaux_table[0] == 0);
- assert(data >= buffer + index_count / 3 + 16);
- assert(data <= buffer + buffer_size);
- return data - buffer;
- }
- size_t meshopt_encodeIndexBufferBound(size_t index_count, size_t vertex_count)
- {
- assert(index_count % 3 == 0);
- // compute number of bits required for each index
- unsigned int vertex_bits = 1;
- while (vertex_bits < 32 && vertex_count > size_t(1) << vertex_bits)
- vertex_bits++;
- // worst-case encoding is 2 header bytes + 3 varint-7 encoded index deltas
- unsigned int vertex_groups = (vertex_bits + 1 + 6) / 7;
- return 1 + (index_count / 3) * (2 + 3 * vertex_groups) + 16;
- }
- void meshopt_encodeIndexVersion(int version)
- {
- assert(unsigned(version) <= 1);
- meshopt::gEncodeIndexVersion = version;
- }
- int meshopt_decodeIndexBuffer(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(index_size == 2 || index_size == 4);
- // the minimum valid encoding is header, 1 byte per triangle and a 16-byte codeaux table
- if (buffer_size < 1 + index_count / 3 + 16)
- return -2;
- if ((buffer[0] & 0xf0) != kIndexHeader)
- return -1;
- int version = buffer[0] & 0x0f;
- if (version > 1)
- return -1;
- EdgeFifo edgefifo;
- memset(edgefifo, -1, sizeof(edgefifo));
- VertexFifo vertexfifo;
- memset(vertexfifo, -1, sizeof(vertexfifo));
- size_t edgefifooffset = 0;
- size_t vertexfifooffset = 0;
- unsigned int next = 0;
- unsigned int last = 0;
- int fecmax = version >= 1 ? 13 : 15;
- // since we store 16-byte codeaux table at the end, triangle data has to begin before data_safe_end
- const unsigned char* code = buffer + 1;
- const unsigned char* data = code + index_count / 3;
- const unsigned char* data_safe_end = buffer + buffer_size - 16;
- const unsigned char* codeaux_table = data_safe_end;
- for (size_t i = 0; i < index_count; i += 3)
- {
- // make sure we have enough data to read for a triangle
- // each triangle reads at most 16 bytes of data: 1b for codeaux and 5b for each free index
- // after this we can be sure we can read without extra bounds checks
- if (data > data_safe_end)
- return -2;
- unsigned char codetri = *code++;
- if (codetri < 0xf0)
- {
- int fe = codetri >> 4;
- // fifo reads are wrapped around 16 entry buffer
- unsigned int a = edgefifo[(edgefifooffset - 1 - fe) & 15][0];
- unsigned int b = edgefifo[(edgefifooffset - 1 - fe) & 15][1];
- int fec = codetri & 15;
- // note: this is the most common path in the entire decoder
- // inside this if we try to stay branchless (by using cmov/etc.) since these aren't predictable
- if (fec < fecmax)
- {
- // fifo reads are wrapped around 16 entry buffer
- unsigned int cf = vertexfifo[(vertexfifooffset - 1 - fec) & 15];
- unsigned int c = (fec == 0) ? next : cf;
- int fec0 = fec == 0;
- next += fec0;
- // output triangle
- writeTriangle(destination, i, index_size, a, b, c);
- // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
- pushVertexFifo(vertexfifo, c, vertexfifooffset, fec0);
- pushEdgeFifo(edgefifo, c, b, edgefifooffset);
- pushEdgeFifo(edgefifo, a, c, edgefifooffset);
- }
- else
- {
- unsigned int c = 0;
- // fec - (fec ^ 3) decodes 13, 14 into -1, 1
- // note that we need to update the last index since free indices are delta-encoded
- last = c = (fec != 15) ? last + (fec - (fec ^ 3)) : decodeIndex(data, last);
- // output triangle
- writeTriangle(destination, i, index_size, a, b, c);
- // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
- pushVertexFifo(vertexfifo, c, vertexfifooffset);
- pushEdgeFifo(edgefifo, c, b, edgefifooffset);
- pushEdgeFifo(edgefifo, a, c, edgefifooffset);
- }
- }
- else
- {
- // fast path: read codeaux from the table
- if (codetri < 0xfe)
- {
- unsigned char codeaux = codeaux_table[codetri & 15];
- // note: table can't contain feb/fec=15
- int feb = codeaux >> 4;
- int fec = codeaux & 15;
- // fifo reads are wrapped around 16 entry buffer
- // also note that we increment next for all three vertices before decoding indices - this matches encoder behavior
- unsigned int a = next++;
- unsigned int bf = vertexfifo[(vertexfifooffset - feb) & 15];
- unsigned int b = (feb == 0) ? next : bf;
- int feb0 = feb == 0;
- next += feb0;
- unsigned int cf = vertexfifo[(vertexfifooffset - fec) & 15];
- unsigned int c = (fec == 0) ? next : cf;
- int fec0 = fec == 0;
- next += fec0;
- // output triangle
- writeTriangle(destination, i, index_size, a, b, c);
- // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
- pushVertexFifo(vertexfifo, a, vertexfifooffset);
- pushVertexFifo(vertexfifo, b, vertexfifooffset, feb0);
- pushVertexFifo(vertexfifo, c, vertexfifooffset, fec0);
- pushEdgeFifo(edgefifo, b, a, edgefifooffset);
- pushEdgeFifo(edgefifo, c, b, edgefifooffset);
- pushEdgeFifo(edgefifo, a, c, edgefifooffset);
- }
- else
- {
- // slow path: read a full byte for codeaux instead of using a table lookup
- unsigned char codeaux = *data++;
- int fea = codetri == 0xfe ? 0 : 15;
- int feb = codeaux >> 4;
- int fec = codeaux & 15;
- // reset: codeaux is 0 but encoded as not-a-table
- if (codeaux == 0)
- next = 0;
- // fifo reads are wrapped around 16 entry buffer
- // also note that we increment next for all three vertices before decoding indices - this matches encoder behavior
- unsigned int a = (fea == 0) ? next++ : 0;
- unsigned int b = (feb == 0) ? next++ : vertexfifo[(vertexfifooffset - feb) & 15];
- unsigned int c = (fec == 0) ? next++ : vertexfifo[(vertexfifooffset - fec) & 15];
- // note that we need to update the last index since free indices are delta-encoded
- if (fea == 15)
- last = a = decodeIndex(data, last);
- if (feb == 15)
- last = b = decodeIndex(data, last);
- if (fec == 15)
- last = c = decodeIndex(data, last);
- // output triangle
- writeTriangle(destination, i, index_size, a, b, c);
- // push vertex/edge fifo must match the encoding step *exactly* otherwise the data will not be decoded correctly
- pushVertexFifo(vertexfifo, a, vertexfifooffset);
- pushVertexFifo(vertexfifo, b, vertexfifooffset, (feb == 0) | (feb == 15));
- pushVertexFifo(vertexfifo, c, vertexfifooffset, (fec == 0) | (fec == 15));
- pushEdgeFifo(edgefifo, b, a, edgefifooffset);
- pushEdgeFifo(edgefifo, c, b, edgefifooffset);
- pushEdgeFifo(edgefifo, a, c, edgefifooffset);
- }
- }
- }
- // we should've read all data bytes and stopped at the boundary between data and codeaux table
- if (data != data_safe_end)
- return -3;
- return 0;
- }
- size_t meshopt_encodeIndexSequence(unsigned char* buffer, size_t buffer_size, const unsigned int* indices, size_t index_count)
- {
- using namespace meshopt;
- // the minimum valid encoding is header, 1 byte per index and a 4-byte tail
- if (buffer_size < 1 + index_count + 4)
- return 0;
- int version = gEncodeIndexVersion;
- buffer[0] = (unsigned char)(kSequenceHeader | version);
- unsigned int last[2] = {};
- unsigned int current = 0;
- unsigned char* data = buffer + 1;
- unsigned char* data_safe_end = buffer + buffer_size - 4;
- for (size_t i = 0; i < index_count; ++i)
- {
- // make sure we have enough data to write
- // each index writes at most 5 bytes of data; there's a 4 byte tail after data_safe_end
- // after this we can be sure we can write without extra bounds checks
- if (data >= data_safe_end)
- return 0;
- unsigned int index = indices[i];
- // this is a heuristic that switches between baselines when the delta grows too large
- // we want the encoded delta to fit into one byte (7 bits), but 2 bits are used for sign and baseline index
- // for now we immediately switch the baseline when delta grows too large - this can be adjusted arbitrarily
- int cd = int(index - last[current]);
- current ^= ((cd < 0 ? -cd : cd) >= 30);
- // encode delta from the last index
- unsigned int d = index - last[current];
- unsigned int v = (d << 1) ^ (int(d) >> 31);
- // note: low bit encodes the index of the last baseline which will be used for reconstruction
- encodeVByte(data, (v << 1) | current);
- // update last for the next iteration that uses it
- last[current] = index;
- }
- // make sure we have enough space to write tail
- if (data > data_safe_end)
- return 0;
- for (int k = 0; k < 4; ++k)
- *data++ = 0;
- return data - buffer;
- }
- size_t meshopt_encodeIndexSequenceBound(size_t index_count, size_t vertex_count)
- {
- // compute number of bits required for each index
- unsigned int vertex_bits = 1;
- while (vertex_bits < 32 && vertex_count > size_t(1) << vertex_bits)
- vertex_bits++;
- // worst-case encoding is 1 varint-7 encoded index delta for a K bit value and an extra bit
- unsigned int vertex_groups = (vertex_bits + 1 + 1 + 6) / 7;
- return 1 + index_count * vertex_groups + 4;
- }
- int meshopt_decodeIndexSequence(void* destination, size_t index_count, size_t index_size, const unsigned char* buffer, size_t buffer_size)
- {
- using namespace meshopt;
- // the minimum valid encoding is header, 1 byte per index and a 4-byte tail
- if (buffer_size < 1 + index_count + 4)
- return -2;
- if ((buffer[0] & 0xf0) != kSequenceHeader)
- return -1;
- int version = buffer[0] & 0x0f;
- if (version > 1)
- return -1;
- const unsigned char* data = buffer + 1;
- const unsigned char* data_safe_end = buffer + buffer_size - 4;
- unsigned int last[2] = {};
- for (size_t i = 0; i < index_count; ++i)
- {
- // make sure we have enough data to read
- // each index reads at most 5 bytes of data; there's a 4 byte tail after data_safe_end
- // after this we can be sure we can read without extra bounds checks
- if (data >= data_safe_end)
- return -2;
- unsigned int v = decodeVByte(data);
- // decode the index of the last baseline
- unsigned int current = v & 1;
- v >>= 1;
- // reconstruct index as a delta
- unsigned int d = (v >> 1) ^ -int(v & 1);
- unsigned int index = last[current] + d;
- // update last for the next iteration that uses it
- last[current] = index;
- if (index_size == 2)
- {
- static_cast<unsigned short*>(destination)[i] = (unsigned short)(index);
- }
- else
- {
- static_cast<unsigned int*>(destination)[i] = index;
- }
- }
- // we should've read all data bytes and stopped at the boundary between data and tail
- if (data != data_safe_end)
- return -3;
- return 0;
- }
|