123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 |
- // This file is part of meshoptimizer library; see meshoptimizer.h for version/license details
- #include "meshoptimizer.h"
- #include <assert.h>
- #include <float.h>
- #include <string.h>
- // This work is based on:
- // Fabian Giesen. Decoding Morton codes. 2009
- namespace meshopt
- {
- // "Insert" two 0 bits after each of the 10 low bits of x
- inline unsigned int part1By2(unsigned int x)
- {
- x &= 0x000003ff; // x = ---- ---- ---- ---- ---- --98 7654 3210
- x = (x ^ (x << 16)) & 0xff0000ff; // x = ---- --98 ---- ---- ---- ---- 7654 3210
- x = (x ^ (x << 8)) & 0x0300f00f; // x = ---- --98 ---- ---- 7654 ---- ---- 3210
- x = (x ^ (x << 4)) & 0x030c30c3; // x = ---- --98 ---- 76-- --54 ---- 32-- --10
- x = (x ^ (x << 2)) & 0x09249249; // x = ---- 9--8 --7- -6-- 5--4 --3- -2-- 1--0
- return x;
- }
- static void computeOrder(unsigned int* result, const float* vertex_positions_data, size_t vertex_count, size_t vertex_positions_stride)
- {
- size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
- float minv[3] = {FLT_MAX, FLT_MAX, FLT_MAX};
- float maxv[3] = {-FLT_MAX, -FLT_MAX, -FLT_MAX};
- for (size_t i = 0; i < vertex_count; ++i)
- {
- const float* v = vertex_positions_data + i * vertex_stride_float;
- for (int j = 0; j < 3; ++j)
- {
- float vj = v[j];
- minv[j] = minv[j] > vj ? vj : minv[j];
- maxv[j] = maxv[j] < vj ? vj : maxv[j];
- }
- }
- float extent = 0.f;
- extent = (maxv[0] - minv[0]) < extent ? extent : (maxv[0] - minv[0]);
- extent = (maxv[1] - minv[1]) < extent ? extent : (maxv[1] - minv[1]);
- extent = (maxv[2] - minv[2]) < extent ? extent : (maxv[2] - minv[2]);
- float scale = extent == 0 ? 0.f : 1.f / extent;
- // generate Morton order based on the position inside a unit cube
- for (size_t i = 0; i < vertex_count; ++i)
- {
- const float* v = vertex_positions_data + i * vertex_stride_float;
- int x = int((v[0] - minv[0]) * scale * 1023.f + 0.5f);
- int y = int((v[1] - minv[1]) * scale * 1023.f + 0.5f);
- int z = int((v[2] - minv[2]) * scale * 1023.f + 0.5f);
- result[i] = part1By2(x) | (part1By2(y) << 1) | (part1By2(z) << 2);
- }
- }
- static void computeHistogram(unsigned int (&hist)[1024][3], const unsigned int* data, size_t count)
- {
- memset(hist, 0, sizeof(hist));
- // compute 3 10-bit histograms in parallel
- for (size_t i = 0; i < count; ++i)
- {
- unsigned int id = data[i];
- hist[(id >> 0) & 1023][0]++;
- hist[(id >> 10) & 1023][1]++;
- hist[(id >> 20) & 1023][2]++;
- }
- unsigned int sumx = 0, sumy = 0, sumz = 0;
- // replace histogram data with prefix histogram sums in-place
- for (int i = 0; i < 1024; ++i)
- {
- unsigned int hx = hist[i][0], hy = hist[i][1], hz = hist[i][2];
- hist[i][0] = sumx;
- hist[i][1] = sumy;
- hist[i][2] = sumz;
- sumx += hx;
- sumy += hy;
- sumz += hz;
- }
- assert(sumx == count && sumy == count && sumz == count);
- }
- static void radixPass(unsigned int* destination, const unsigned int* source, const unsigned int* keys, size_t count, unsigned int (&hist)[1024][3], int pass)
- {
- int bitoff = pass * 10;
- for (size_t i = 0; i < count; ++i)
- {
- unsigned int id = (keys[source[i]] >> bitoff) & 1023;
- destination[hist[id][pass]++] = source[i];
- }
- }
- } // namespace meshopt
- void meshopt_spatialSortRemap(unsigned int* destination, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- using namespace meshopt;
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- meshopt_Allocator allocator;
- unsigned int* keys = allocator.allocate<unsigned int>(vertex_count);
- computeOrder(keys, vertex_positions, vertex_count, vertex_positions_stride);
- unsigned int hist[1024][3];
- computeHistogram(hist, keys, vertex_count);
- unsigned int* scratch = allocator.allocate<unsigned int>(vertex_count);
- for (size_t i = 0; i < vertex_count; ++i)
- destination[i] = unsigned(i);
- // 3-pass radix sort computes the resulting order into scratch
- radixPass(scratch, destination, keys, vertex_count, hist, 0);
- radixPass(destination, scratch, keys, vertex_count, hist, 1);
- radixPass(scratch, destination, keys, vertex_count, hist, 2);
- // since our remap table is mapping old=>new, we need to reverse it
- for (size_t i = 0; i < vertex_count; ++i)
- destination[scratch[i]] = unsigned(i);
- }
- void meshopt_spatialSortTriangles(unsigned int* destination, const unsigned int* indices, size_t index_count, const float* vertex_positions, size_t vertex_count, size_t vertex_positions_stride)
- {
- using namespace meshopt;
- assert(index_count % 3 == 0);
- assert(vertex_positions_stride >= 12 && vertex_positions_stride <= 256);
- assert(vertex_positions_stride % sizeof(float) == 0);
- (void)vertex_count;
- size_t face_count = index_count / 3;
- size_t vertex_stride_float = vertex_positions_stride / sizeof(float);
- meshopt_Allocator allocator;
- float* centroids = allocator.allocate<float>(face_count * 3);
- for (size_t i = 0; i < face_count; ++i)
- {
- unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
- assert(a < vertex_count && b < vertex_count && c < vertex_count);
- const float* va = vertex_positions + a * vertex_stride_float;
- const float* vb = vertex_positions + b * vertex_stride_float;
- const float* vc = vertex_positions + c * vertex_stride_float;
- centroids[i * 3 + 0] = (va[0] + vb[0] + vc[0]) / 3.f;
- centroids[i * 3 + 1] = (va[1] + vb[1] + vc[1]) / 3.f;
- centroids[i * 3 + 2] = (va[2] + vb[2] + vc[2]) / 3.f;
- }
- unsigned int* remap = allocator.allocate<unsigned int>(face_count);
- meshopt_spatialSortRemap(remap, centroids, face_count, sizeof(float) * 3);
- // support in-order remap
- if (destination == indices)
- {
- unsigned int* indices_copy = allocator.allocate<unsigned int>(index_count);
- memcpy(indices_copy, indices, index_count * sizeof(unsigned int));
- indices = indices_copy;
- }
- for (size_t i = 0; i < face_count; ++i)
- {
- unsigned int a = indices[i * 3 + 0], b = indices[i * 3 + 1], c = indices[i * 3 + 2];
- unsigned int r = remap[i];
- destination[r * 3 + 0] = a;
- destination[r * 3 + 1] = b;
- destination[r * 3 + 2] = c;
- }
- }
|