123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782 |
- // SPDX-License-Identifier: Apache-2.0
- // ----------------------------------------------------------------------------
- // Copyright 2011-2023 Arm Limited
- //
- // Licensed under the Apache License, Version 2.0 (the "License"); you may not
- // use this file except in compliance with the License. You may obtain a copy
- // of the License at:
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
- // WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
- // License for the specific language governing permissions and limitations
- // under the License.
- // ----------------------------------------------------------------------------
- #if !defined(ASTCENC_DECOMPRESS_ONLY)
- /**
- * @brief Functions for finding best partition for a block.
- *
- * The partition search operates in two stages. The first pass uses kmeans clustering to group
- * texels into an ideal partitioning for the requested partition count, and then compares that
- * against the 1024 partitionings generated by the ASTC partition hash function. The generated
- * partitions are then ranked by the number of texels in the wrong partition, compared to the ideal
- * clustering. All 1024 partitions are tested for similarity and ranked, apart from duplicates and
- * partitionings that actually generate fewer than the requested partition count, but only the top
- * N candidates are actually put through a more detailed search. N is determined by the compressor
- * quality preset.
- *
- * For the detailed search, each candidate is checked against two possible encoding methods:
- *
- * - The best partitioning assuming different chroma colors (RGB + RGB or RGB + delta endpoints).
- * - The best partitioning assuming same chroma colors (RGB + scale endpoints).
- *
- * This is implemented by computing the compute mean color and dominant direction for each
- * partition. This defines two lines, both of which go through the mean color value.
- *
- * - One line has a direction defined by the dominant direction; this is used to assess the error
- * from using an uncorrelated color representation.
- * - The other line goes through (0,0,0,1) and is used to assess the error from using a same chroma
- * (RGB + scale) color representation.
- *
- * The best candidate is selected by computing the squared-errors that result from using these
- * lines for endpoint selection.
- */
- #include <limits>
- #include "astcenc_internal.h"
- /**
- * @brief Pick some initial kmeans cluster centers.
- *
- * @param blk The image block color data to compress.
- * @param texel_count The number of texels in the block.
- * @param partition_count The number of partitions in the block.
- * @param[out] cluster_centers The initial partition cluster center colors.
- */
- static void kmeans_init(
- const image_block& blk,
- unsigned int texel_count,
- unsigned int partition_count,
- vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS]
- ) {
- promise(texel_count > 0);
- promise(partition_count > 0);
- unsigned int clusters_selected = 0;
- float distances[BLOCK_MAX_TEXELS];
- // Pick a random sample as first cluster center; 145897 from random.org
- unsigned int sample = 145897 % texel_count;
- vfloat4 center_color = blk.texel(sample);
- cluster_centers[clusters_selected] = center_color;
- clusters_selected++;
- // Compute the distance to the first cluster center
- float distance_sum = 0.0f;
- for (unsigned int i = 0; i < texel_count; i++)
- {
- vfloat4 color = blk.texel(i);
- vfloat4 diff = color - center_color;
- float distance = dot_s(diff * diff, blk.channel_weight);
- distance_sum += distance;
- distances[i] = distance;
- }
- // More numbers from random.org for weighted-random center selection
- const float cluster_cutoffs[9] {
- 0.626220f, 0.932770f, 0.275454f,
- 0.318558f, 0.240113f, 0.009190f,
- 0.347661f, 0.731960f, 0.156391f
- };
- unsigned int cutoff = (clusters_selected - 1) + 3 * (partition_count - 2);
- // Pick the remaining samples as needed
- while (true)
- {
- // Pick the next center in a weighted-random fashion.
- float summa = 0.0f;
- float distance_cutoff = distance_sum * cluster_cutoffs[cutoff++];
- for (sample = 0; sample < texel_count; sample++)
- {
- summa += distances[sample];
- if (summa >= distance_cutoff)
- {
- break;
- }
- }
- // Clamp to a valid range and store the selected cluster center
- sample = astc::min(sample, texel_count - 1);
- center_color = blk.texel(sample);
- cluster_centers[clusters_selected++] = center_color;
- if (clusters_selected >= partition_count)
- {
- break;
- }
- // Compute the distance to the new cluster center, keep the min dist
- distance_sum = 0.0f;
- for (unsigned int i = 0; i < texel_count; i++)
- {
- vfloat4 color = blk.texel(i);
- vfloat4 diff = color - center_color;
- float distance = dot_s(diff * diff, blk.channel_weight);
- distance = astc::min(distance, distances[i]);
- distance_sum += distance;
- distances[i] = distance;
- }
- }
- }
- /**
- * @brief Assign texels to clusters, based on a set of chosen center points.
- *
- * @param blk The image block color data to compress.
- * @param texel_count The number of texels in the block.
- * @param partition_count The number of partitions in the block.
- * @param cluster_centers The partition cluster center colors.
- * @param[out] partition_of_texel The partition assigned for each texel.
- */
- static void kmeans_assign(
- const image_block& blk,
- unsigned int texel_count,
- unsigned int partition_count,
- const vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
- uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
- ) {
- promise(texel_count > 0);
- promise(partition_count > 0);
- uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
- // Find the best partition for every texel
- for (unsigned int i = 0; i < texel_count; i++)
- {
- float best_distance = std::numeric_limits<float>::max();
- unsigned int best_partition = 0;
- vfloat4 color = blk.texel(i);
- for (unsigned int j = 0; j < partition_count; j++)
- {
- vfloat4 diff = color - cluster_centers[j];
- float distance = dot_s(diff * diff, blk.channel_weight);
- if (distance < best_distance)
- {
- best_distance = distance;
- best_partition = j;
- }
- }
- partition_of_texel[i] = static_cast<uint8_t>(best_partition);
- partition_texel_count[best_partition]++;
- }
- // It is possible to get a situation where a partition ends up without any texels. In this case,
- // assign texel N to partition N. This is silly, but ensures that every partition retains at
- // least one texel. Reassigning a texel in this manner may cause another partition to go empty,
- // so if we actually did a reassignment, run the whole loop over again.
- bool problem_case;
- do
- {
- problem_case = false;
- for (unsigned int i = 0; i < partition_count; i++)
- {
- if (partition_texel_count[i] == 0)
- {
- partition_texel_count[partition_of_texel[i]]--;
- partition_texel_count[i]++;
- partition_of_texel[i] = static_cast<uint8_t>(i);
- problem_case = true;
- }
- }
- } while (problem_case);
- }
- /**
- * @brief Compute new cluster centers based on their center of gravity.
- *
- * @param blk The image block color data to compress.
- * @param texel_count The number of texels in the block.
- * @param partition_count The number of partitions in the block.
- * @param[out] cluster_centers The new cluster center colors.
- * @param partition_of_texel The partition assigned for each texel.
- */
- static void kmeans_update(
- const image_block& blk,
- unsigned int texel_count,
- unsigned int partition_count,
- vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS],
- const uint8_t partition_of_texel[BLOCK_MAX_TEXELS]
- ) {
- promise(texel_count > 0);
- promise(partition_count > 0);
- vfloat4 color_sum[BLOCK_MAX_PARTITIONS] {
- vfloat4::zero(),
- vfloat4::zero(),
- vfloat4::zero(),
- vfloat4::zero()
- };
- uint8_t partition_texel_count[BLOCK_MAX_PARTITIONS] { 0 };
- // Find the center-of-gravity in each cluster
- for (unsigned int i = 0; i < texel_count; i++)
- {
- uint8_t partition = partition_of_texel[i];
- color_sum[partition] += blk.texel(i);
- partition_texel_count[partition]++;
- }
- // Set the center of gravity to be the new cluster center
- for (unsigned int i = 0; i < partition_count; i++)
- {
- float scale = 1.0f / static_cast<float>(partition_texel_count[i]);
- cluster_centers[i] = color_sum[i] * scale;
- }
- }
- /**
- * @brief Compute bit-mismatch for partitioning in 2-partition mode.
- *
- * @param a The texel assignment bitvector for the block.
- * @param b The texel assignment bitvector for the partition table.
- *
- * @return The number of bit mismatches.
- */
- static inline uint8_t partition_mismatch2(
- const uint64_t a[2],
- const uint64_t b[2]
- ) {
- int v1 = popcount(a[0] ^ b[0]) + popcount(a[1] ^ b[1]);
- int v2 = popcount(a[0] ^ b[1]) + popcount(a[1] ^ b[0]);
- // Divide by 2 because XOR always counts errors twice, once when missing
- // in the expected position, and again when present in the wrong partition
- return static_cast<uint8_t>(astc::min(v1, v2) / 2);
- }
- /**
- * @brief Compute bit-mismatch for partitioning in 3-partition mode.
- *
- * @param a The texel assignment bitvector for the block.
- * @param b The texel assignment bitvector for the partition table.
- *
- * @return The number of bit mismatches.
- */
- static inline uint8_t partition_mismatch3(
- const uint64_t a[3],
- const uint64_t b[3]
- ) {
- int p00 = popcount(a[0] ^ b[0]);
- int p01 = popcount(a[0] ^ b[1]);
- int p02 = popcount(a[0] ^ b[2]);
- int p10 = popcount(a[1] ^ b[0]);
- int p11 = popcount(a[1] ^ b[1]);
- int p12 = popcount(a[1] ^ b[2]);
- int p20 = popcount(a[2] ^ b[0]);
- int p21 = popcount(a[2] ^ b[1]);
- int p22 = popcount(a[2] ^ b[2]);
- int s0 = p11 + p22;
- int s1 = p12 + p21;
- int v0 = astc::min(s0, s1) + p00;
- int s2 = p10 + p22;
- int s3 = p12 + p20;
- int v1 = astc::min(s2, s3) + p01;
- int s4 = p10 + p21;
- int s5 = p11 + p20;
- int v2 = astc::min(s4, s5) + p02;
- // Divide by 2 because XOR always counts errors twice, once when missing
- // in the expected position, and again when present in the wrong partition
- return static_cast<uint8_t>(astc::min(v0, v1, v2) / 2);
- }
- /**
- * @brief Compute bit-mismatch for partitioning in 4-partition mode.
- *
- * @param a The texel assignment bitvector for the block.
- * @param b The texel assignment bitvector for the partition table.
- *
- * @return The number of bit mismatches.
- */
- static inline uint8_t partition_mismatch4(
- const uint64_t a[4],
- const uint64_t b[4]
- ) {
- int p00 = popcount(a[0] ^ b[0]);
- int p01 = popcount(a[0] ^ b[1]);
- int p02 = popcount(a[0] ^ b[2]);
- int p03 = popcount(a[0] ^ b[3]);
- int p10 = popcount(a[1] ^ b[0]);
- int p11 = popcount(a[1] ^ b[1]);
- int p12 = popcount(a[1] ^ b[2]);
- int p13 = popcount(a[1] ^ b[3]);
- int p20 = popcount(a[2] ^ b[0]);
- int p21 = popcount(a[2] ^ b[1]);
- int p22 = popcount(a[2] ^ b[2]);
- int p23 = popcount(a[2] ^ b[3]);
- int p30 = popcount(a[3] ^ b[0]);
- int p31 = popcount(a[3] ^ b[1]);
- int p32 = popcount(a[3] ^ b[2]);
- int p33 = popcount(a[3] ^ b[3]);
- int mx23 = astc::min(p22 + p33, p23 + p32);
- int mx13 = astc::min(p21 + p33, p23 + p31);
- int mx12 = astc::min(p21 + p32, p22 + p31);
- int mx03 = astc::min(p20 + p33, p23 + p30);
- int mx02 = astc::min(p20 + p32, p22 + p30);
- int mx01 = astc::min(p21 + p30, p20 + p31);
- int v0 = p00 + astc::min(p11 + mx23, p12 + mx13, p13 + mx12);
- int v1 = p01 + astc::min(p10 + mx23, p12 + mx03, p13 + mx02);
- int v2 = p02 + astc::min(p11 + mx03, p10 + mx13, p13 + mx01);
- int v3 = p03 + astc::min(p11 + mx02, p12 + mx01, p10 + mx12);
- // Divide by 2 because XOR always counts errors twice, once when missing
- // in the expected position, and again when present in the wrong partition
- return static_cast<uint8_t>(astc::min(v0, v1, v2, v3) / 2);
- }
- using mismatch_dispatch = unsigned int (*)(const uint64_t*, const uint64_t*);
- /**
- * @brief Count the partition table mismatches vs the data clustering.
- *
- * @param bsd The block size information.
- * @param partition_count The number of partitions in the block.
- * @param bitmaps The block texel partition assignment patterns.
- * @param[out] mismatch_counts The array storing per partitioning mismatch counts.
- */
- static void count_partition_mismatch_bits(
- const block_size_descriptor& bsd,
- unsigned int partition_count,
- const uint64_t bitmaps[BLOCK_MAX_PARTITIONS],
- uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS]
- ) {
- unsigned int active_count = bsd.partitioning_count_selected[partition_count - 1];
- promise(active_count > 0);
- if (partition_count == 2)
- {
- for (unsigned int i = 0; i < active_count; i++)
- {
- mismatch_counts[i] = partition_mismatch2(bitmaps, bsd.coverage_bitmaps_2[i]);
- assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
- assert(mismatch_counts[i] < bsd.texel_count);
- }
- }
- else if (partition_count == 3)
- {
- for (unsigned int i = 0; i < active_count; i++)
- {
- mismatch_counts[i] = partition_mismatch3(bitmaps, bsd.coverage_bitmaps_3[i]);
- assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
- assert(mismatch_counts[i] < bsd.texel_count);
- }
- }
- else
- {
- for (unsigned int i = 0; i < active_count; i++)
- {
- mismatch_counts[i] = partition_mismatch4(bitmaps, bsd.coverage_bitmaps_4[i]);
- assert(mismatch_counts[i] < BLOCK_MAX_KMEANS_TEXELS);
- assert(mismatch_counts[i] < bsd.texel_count);
- }
- }
- }
- /**
- * @brief Use counting sort on the mismatch array to sort partition candidates.
- *
- * @param partitioning_count The number of packed partitionings.
- * @param mismatch_count Partitioning mismatch counts, in index order.
- * @param[out] partition_ordering Partition index values, in mismatch order.
- *
- * @return The number of active partitions in this selection.
- */
- static unsigned int get_partition_ordering_by_mismatch_bits(
- unsigned int texel_count,
- unsigned int partitioning_count,
- const uint8_t mismatch_count[BLOCK_MAX_PARTITIONINGS],
- uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS]
- ) {
- promise(partitioning_count > 0);
- uint16_t mscount[BLOCK_MAX_KMEANS_TEXELS] { 0 };
- // Create the histogram of mismatch counts
- for (unsigned int i = 0; i < partitioning_count; i++)
- {
- mscount[mismatch_count[i]]++;
- }
- // Create a running sum from the histogram array
- // Cells store previous values only; i.e. exclude self after sum
- unsigned int sum = 0;
- for (unsigned int i = 0; i < texel_count; i++)
- {
- uint16_t cnt = mscount[i];
- mscount[i] = sum;
- sum += cnt;
- }
- // Use the running sum as the index, incrementing after read to allow
- // sequential entries with the same count
- for (unsigned int i = 0; i < partitioning_count; i++)
- {
- unsigned int idx = mscount[mismatch_count[i]]++;
- partition_ordering[idx] = static_cast<uint16_t>(i);
- }
- return partitioning_count;
- }
- /**
- * @brief Use k-means clustering to compute a partition ordering for a block..
- *
- * @param bsd The block size information.
- * @param blk The image block color data to compress.
- * @param partition_count The desired number of partitions in the block.
- * @param[out] partition_ordering The list of recommended partition indices, in priority order.
- *
- * @return The number of active partitionings in this selection.
- */
- static unsigned int compute_kmeans_partition_ordering(
- const block_size_descriptor& bsd,
- const image_block& blk,
- unsigned int partition_count,
- uint16_t partition_ordering[BLOCK_MAX_PARTITIONINGS]
- ) {
- vfloat4 cluster_centers[BLOCK_MAX_PARTITIONS];
- uint8_t texel_partitions[BLOCK_MAX_TEXELS];
- // Use three passes of k-means clustering to partition the block data
- for (unsigned int i = 0; i < 3; i++)
- {
- if (i == 0)
- {
- kmeans_init(blk, bsd.texel_count, partition_count, cluster_centers);
- }
- else
- {
- kmeans_update(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
- }
- kmeans_assign(blk, bsd.texel_count, partition_count, cluster_centers, texel_partitions);
- }
- // Construct the block bitmaps of texel assignments to each partition
- uint64_t bitmaps[BLOCK_MAX_PARTITIONS] { 0 };
- unsigned int texels_to_process = astc::min(bsd.texel_count, BLOCK_MAX_KMEANS_TEXELS);
- promise(texels_to_process > 0);
- for (unsigned int i = 0; i < texels_to_process; i++)
- {
- unsigned int idx = bsd.kmeans_texels[i];
- bitmaps[texel_partitions[idx]] |= 1ULL << i;
- }
- // Count the mismatch between the block and the format's partition tables
- uint8_t mismatch_counts[BLOCK_MAX_PARTITIONINGS];
- count_partition_mismatch_bits(bsd, partition_count, bitmaps, mismatch_counts);
- // Sort the partitions based on the number of mismatched bits
- return get_partition_ordering_by_mismatch_bits(
- texels_to_process,
- bsd.partitioning_count_selected[partition_count - 1],
- mismatch_counts, partition_ordering);
- }
- /**
- * @brief Insert a partitioning into an order list of results, sorted by error.
- *
- * @param max_values The max number of entries in the best result arrays.
- * @param this_error The error of the new entry.
- * @param this_partition The partition ID of the new entry.
- * @param[out] best_errors The array of best error values.
- * @param[out] best_partitions The array of best partition values.
- */
- static void insert_result(
- unsigned int max_values,
- float this_error,
- unsigned int this_partition,
- float* best_errors,
- unsigned int* best_partitions)
- {
- promise(max_values > 0);
- // Don't bother searching if the current worst error beats the new error
- if (this_error >= best_errors[max_values - 1])
- {
- return;
- }
- // Else insert into the list in error-order
- for (unsigned int i = 0; i < max_values; i++)
- {
- // Existing result is better - move on ...
- if (this_error > best_errors[i])
- {
- continue;
- }
- // Move existing results down one
- for (unsigned int j = max_values - 1; j > i; j--)
- {
- best_errors[j] = best_errors[j - 1];
- best_partitions[j] = best_partitions[j - 1];
- }
- // Insert new result
- best_errors[i] = this_error;
- best_partitions[i] = this_partition;
- break;
- }
- }
- /* See header for documentation. */
- unsigned int find_best_partition_candidates(
- const block_size_descriptor& bsd,
- const image_block& blk,
- unsigned int partition_count,
- unsigned int partition_search_limit,
- unsigned int best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES],
- unsigned int requested_candidates
- ) {
- // Constant used to estimate quantization error for a given partitioning; the optimal value for
- // this depends on bitrate. These values have been determined empirically.
- unsigned int texels_per_block = bsd.texel_count;
- float weight_imprecision_estim = 0.055f;
- if (texels_per_block <= 20)
- {
- weight_imprecision_estim = 0.03f;
- }
- else if (texels_per_block <= 31)
- {
- weight_imprecision_estim = 0.04f;
- }
- else if (texels_per_block <= 41)
- {
- weight_imprecision_estim = 0.05f;
- }
- promise(partition_count > 0);
- promise(partition_search_limit > 0);
- weight_imprecision_estim = weight_imprecision_estim * weight_imprecision_estim;
- uint16_t partition_sequence[BLOCK_MAX_PARTITIONINGS];
- unsigned int sequence_len = compute_kmeans_partition_ordering(bsd, blk, partition_count, partition_sequence);
- partition_search_limit = astc::min(partition_search_limit, sequence_len);
- requested_candidates = astc::min(partition_search_limit, requested_candidates);
- bool uses_alpha = !blk.is_constant_channel(3);
- // Partitioning errors assuming uncorrelated-chrominance endpoints
- float uncor_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
- unsigned int uncor_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];
- // Partitioning errors assuming same-chrominance endpoints
- float samec_best_errors[TUNE_MAX_PARTITIONING_CANDIDATES];
- unsigned int samec_best_partitions[TUNE_MAX_PARTITIONING_CANDIDATES];
- for (unsigned int i = 0; i < requested_candidates; i++)
- {
- uncor_best_errors[i] = ERROR_CALC_DEFAULT;
- samec_best_errors[i] = ERROR_CALC_DEFAULT;
- }
- if (uses_alpha)
- {
- for (unsigned int i = 0; i < partition_search_limit; i++)
- {
- unsigned int partition = partition_sequence[i];
- const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
- // Compute weighting to give to each component in each partition
- partition_metrics pms[BLOCK_MAX_PARTITIONS];
- compute_avgs_and_dirs_4_comp(pi, blk, pms);
- line4 uncor_lines[BLOCK_MAX_PARTITIONS];
- line4 samec_lines[BLOCK_MAX_PARTITIONS];
- processed_line4 uncor_plines[BLOCK_MAX_PARTITIONS];
- processed_line4 samec_plines[BLOCK_MAX_PARTITIONS];
- float line_lengths[BLOCK_MAX_PARTITIONS];
- for (unsigned int j = 0; j < partition_count; j++)
- {
- partition_metrics& pm = pms[j];
- uncor_lines[j].a = pm.avg;
- uncor_lines[j].b = normalize_safe(pm.dir, unit4());
- uncor_plines[j].amod = uncor_lines[j].a - uncor_lines[j].b * dot(uncor_lines[j].a, uncor_lines[j].b);
- uncor_plines[j].bs = uncor_lines[j].b;
- samec_lines[j].a = vfloat4::zero();
- samec_lines[j].b = normalize_safe(pm.avg, unit4());
- samec_plines[j].amod = vfloat4::zero();
- samec_plines[j].bs = samec_lines[j].b;
- }
- float uncor_error = 0.0f;
- float samec_error = 0.0f;
- compute_error_squared_rgba(pi,
- blk,
- uncor_plines,
- samec_plines,
- line_lengths,
- uncor_error,
- samec_error);
- // Compute an estimate of error introduced by weight quantization imprecision.
- // This error is computed as follows, for each partition
- // 1: compute the principal-axis vector (full length) in error-space
- // 2: convert the principal-axis vector to regular RGB-space
- // 3: scale the vector by a constant that estimates average quantization error
- // 4: for each texel, square the vector, then do a dot-product with the texel's
- // error weight; sum up the results across all texels.
- // 4(optimized): square the vector once, then do a dot-product with the average
- // texel error, then multiply by the number of texels.
- for (unsigned int j = 0; j < partition_count; j++)
- {
- float tpp = static_cast<float>(pi.partition_texel_count[j]);
- vfloat4 error_weights(tpp * weight_imprecision_estim);
- vfloat4 uncor_vector = uncor_lines[j].b * line_lengths[j];
- vfloat4 samec_vector = samec_lines[j].b * line_lengths[j];
- uncor_error += dot_s(uncor_vector * uncor_vector, error_weights);
- samec_error += dot_s(samec_vector * samec_vector, error_weights);
- }
- insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
- insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
- }
- }
- else
- {
- for (unsigned int i = 0; i < partition_search_limit; i++)
- {
- unsigned int partition = partition_sequence[i];
- const auto& pi = bsd.get_raw_partition_info(partition_count, partition);
- // Compute weighting to give to each component in each partition
- partition_metrics pms[BLOCK_MAX_PARTITIONS];
- compute_avgs_and_dirs_3_comp_rgb(pi, blk, pms);
- partition_lines3 plines[BLOCK_MAX_PARTITIONS];
- for (unsigned int j = 0; j < partition_count; j++)
- {
- partition_metrics& pm = pms[j];
- partition_lines3& pl = plines[j];
- pl.uncor_line.a = pm.avg;
- pl.uncor_line.b = normalize_safe(pm.dir, unit3());
- pl.samec_line.a = vfloat4::zero();
- pl.samec_line.b = normalize_safe(pm.avg, unit3());
- pl.uncor_pline.amod = pl.uncor_line.a - pl.uncor_line.b * dot3(pl.uncor_line.a, pl.uncor_line.b);
- pl.uncor_pline.bs = pl.uncor_line.b;
- pl.samec_pline.amod = vfloat4::zero();
- pl.samec_pline.bs = pl.samec_line.b;
- }
- float uncor_error = 0.0f;
- float samec_error = 0.0f;
- compute_error_squared_rgb(pi,
- blk,
- plines,
- uncor_error,
- samec_error);
- // Compute an estimate of error introduced by weight quantization imprecision.
- // This error is computed as follows, for each partition
- // 1: compute the principal-axis vector (full length) in error-space
- // 2: convert the principal-axis vector to regular RGB-space
- // 3: scale the vector by a constant that estimates average quantization error
- // 4: for each texel, square the vector, then do a dot-product with the texel's
- // error weight; sum up the results across all texels.
- // 4(optimized): square the vector once, then do a dot-product with the average
- // texel error, then multiply by the number of texels.
- for (unsigned int j = 0; j < partition_count; j++)
- {
- partition_lines3& pl = plines[j];
- float tpp = static_cast<float>(pi.partition_texel_count[j]);
- vfloat4 error_weights(tpp * weight_imprecision_estim);
- vfloat4 uncor_vector = pl.uncor_line.b * pl.line_length;
- vfloat4 samec_vector = pl.samec_line.b * pl.line_length;
- uncor_error += dot3_s(uncor_vector * uncor_vector, error_weights);
- samec_error += dot3_s(samec_vector * samec_vector, error_weights);
- }
- insert_result(requested_candidates, uncor_error, partition, uncor_best_errors, uncor_best_partitions);
- insert_result(requested_candidates, samec_error, partition, samec_best_errors, samec_best_partitions);
- }
- }
- unsigned int interleave[2 * TUNE_MAX_PARTITIONING_CANDIDATES];
- for (unsigned int i = 0; i < requested_candidates; i++)
- {
- interleave[2 * i] = bsd.get_raw_partition_info(partition_count, uncor_best_partitions[i]).partition_index;
- interleave[2 * i + 1] = bsd.get_raw_partition_info(partition_count, samec_best_partitions[i]).partition_index;
- }
- uint64_t bitmasks[1024/64] { 0 };
- unsigned int emitted = 0;
- // Deduplicate the first "requested" entries
- for (unsigned int i = 0; i < requested_candidates * 2; i++)
- {
- unsigned int partition = interleave[i];
- unsigned int word = partition / 64;
- unsigned int bit = partition % 64;
- bool written = bitmasks[word] & (1ull << bit);
- if (!written)
- {
- best_partitions[emitted] = partition;
- bitmasks[word] |= 1ull << bit;
- emitted++;
- if (emitted == requested_candidates)
- {
- break;
- }
- }
- }
- return emitted;
- }
- #endif
|