123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264 |
- /**************************************************************************/
- /* transform.h */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #ifndef TRANSFORM_H
- #define TRANSFORM_H
- #include "core/math/aabb.h"
- #include "core/math/basis.h"
- #include "core/math/plane.h"
- #include "core/pool_vector.h"
- class _NO_DISCARD_CLASS_ Transform {
- public:
- Basis basis;
- Vector3 origin;
- void invert();
- Transform inverse() const;
- void affine_invert();
- Transform affine_inverse() const;
- Transform rotated(const Vector3 &p_axis, real_t p_angle) const;
- void rotate(const Vector3 &p_axis, real_t p_angle);
- void rotate_basis(const Vector3 &p_axis, real_t p_angle);
- void set_look_at(const Vector3 &p_eye, const Vector3 &p_target, const Vector3 &p_up);
- Transform looking_at(const Vector3 &p_target, const Vector3 &p_up) const;
- void scale(const Vector3 &p_scale);
- Transform scaled(const Vector3 &p_scale) const;
- void scale_basis(const Vector3 &p_scale);
- void translate(real_t p_tx, real_t p_ty, real_t p_tz);
- void translate(const Vector3 &p_translation);
- Transform translated(const Vector3 &p_translation) const;
- const Basis &get_basis() const { return basis; }
- void set_basis(const Basis &p_basis) { basis = p_basis; }
- const Vector3 &get_origin() const { return origin; }
- void set_origin(const Vector3 &p_origin) { origin = p_origin; }
- void orthonormalize();
- Transform orthonormalized() const;
- bool is_equal_approx(const Transform &p_transform) const;
- bool operator==(const Transform &p_transform) const;
- bool operator!=(const Transform &p_transform) const;
- _FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
- _FORCE_INLINE_ AABB xform(const AABB &p_aabb) const;
- _FORCE_INLINE_ PoolVector<Vector3> xform(const PoolVector<Vector3> &p_array) const;
- // NOTE: These are UNSAFE with non-uniform scaling, and will produce incorrect results.
- // They use the transpose.
- // For safe inverse transforms, xform by the affine_inverse.
- _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
- _FORCE_INLINE_ AABB xform_inv(const AABB &p_aabb) const;
- _FORCE_INLINE_ PoolVector<Vector3> xform_inv(const PoolVector<Vector3> &p_array) const;
- // Safe with non-uniform scaling (uses affine_inverse).
- _FORCE_INLINE_ Plane xform(const Plane &p_plane) const;
- _FORCE_INLINE_ Plane xform_inv(const Plane &p_plane) const;
- // These fast versions use precomputed affine inverse, and should be used in bottleneck areas where
- // multiple planes are to be transformed.
- _FORCE_INLINE_ Plane xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const;
- static _FORCE_INLINE_ Plane xform_inv_fast(const Plane &p_plane, const Transform &p_inverse, const Basis &p_basis_transpose);
- void operator*=(const Transform &p_transform);
- Transform operator*(const Transform &p_transform) const;
- Transform interpolate_with(const Transform &p_transform, real_t p_c) const;
- _FORCE_INLINE_ Transform inverse_xform(const Transform &t) const {
- Vector3 v = t.origin - origin;
- return Transform(basis.transpose_xform(t.basis),
- basis.xform(v));
- }
- void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t tx, real_t ty, real_t tz) {
- basis.set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
- origin.x = tx;
- origin.y = ty;
- origin.z = tz;
- }
- operator String() const;
- Transform(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz, real_t ox, real_t oy, real_t oz);
- Transform(const Basis &p_basis, const Vector3 &p_origin = Vector3());
- Transform() {}
- };
- _FORCE_INLINE_ Vector3 Transform::xform(const Vector3 &p_vector) const {
- return Vector3(
- basis[0].dot(p_vector) + origin.x,
- basis[1].dot(p_vector) + origin.y,
- basis[2].dot(p_vector) + origin.z);
- }
- _FORCE_INLINE_ Vector3 Transform::xform_inv(const Vector3 &p_vector) const {
- Vector3 v = p_vector - origin;
- return Vector3(
- (basis.elements[0][0] * v.x) + (basis.elements[1][0] * v.y) + (basis.elements[2][0] * v.z),
- (basis.elements[0][1] * v.x) + (basis.elements[1][1] * v.y) + (basis.elements[2][1] * v.z),
- (basis.elements[0][2] * v.x) + (basis.elements[1][2] * v.y) + (basis.elements[2][2] * v.z));
- }
- // Neither the plane regular xform or xform_inv are particularly efficient,
- // as they do a basis inverse. For xforming a large number
- // of planes it is better to pre-calculate the inverse transpose basis once
- // and reuse it for each plane, by using the 'fast' version of the functions.
- _FORCE_INLINE_ Plane Transform::xform(const Plane &p_plane) const {
- Basis b = basis.inverse();
- b.transpose();
- return xform_fast(p_plane, b);
- }
- _FORCE_INLINE_ Plane Transform::xform_inv(const Plane &p_plane) const {
- Transform inv = affine_inverse();
- Basis basis_transpose = basis.transposed();
- return xform_inv_fast(p_plane, inv, basis_transpose);
- }
- _FORCE_INLINE_ AABB Transform::xform(const AABB &p_aabb) const {
- /* http://dev.theomader.com/transform-bounding-boxes/ */
- Vector3 min = p_aabb.position;
- Vector3 max = p_aabb.position + p_aabb.size;
- Vector3 tmin, tmax;
- for (int i = 0; i < 3; i++) {
- tmin[i] = tmax[i] = origin[i];
- for (int j = 0; j < 3; j++) {
- real_t e = basis[i][j] * min[j];
- real_t f = basis[i][j] * max[j];
- if (e < f) {
- tmin[i] += e;
- tmax[i] += f;
- } else {
- tmin[i] += f;
- tmax[i] += e;
- }
- }
- }
- AABB r_aabb;
- r_aabb.position = tmin;
- r_aabb.size = tmax - tmin;
- return r_aabb;
- }
- _FORCE_INLINE_ AABB Transform::xform_inv(const AABB &p_aabb) const {
- /* define vertices */
- Vector3 vertices[8] = {
- Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
- Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
- Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
- Vector3(p_aabb.position.x + p_aabb.size.x, p_aabb.position.y, p_aabb.position.z),
- Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z + p_aabb.size.z),
- Vector3(p_aabb.position.x, p_aabb.position.y + p_aabb.size.y, p_aabb.position.z),
- Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z + p_aabb.size.z),
- Vector3(p_aabb.position.x, p_aabb.position.y, p_aabb.position.z)
- };
- AABB ret;
- ret.position = xform_inv(vertices[0]);
- for (int i = 1; i < 8; i++) {
- ret.expand_to(xform_inv(vertices[i]));
- }
- return ret;
- }
- PoolVector<Vector3> Transform::xform(const PoolVector<Vector3> &p_array) const {
- PoolVector<Vector3> array;
- array.resize(p_array.size());
- PoolVector<Vector3>::Read r = p_array.read();
- PoolVector<Vector3>::Write w = array.write();
- for (int i = 0; i < p_array.size(); ++i) {
- w[i] = xform(r[i]);
- }
- return array;
- }
- PoolVector<Vector3> Transform::xform_inv(const PoolVector<Vector3> &p_array) const {
- PoolVector<Vector3> array;
- array.resize(p_array.size());
- PoolVector<Vector3>::Read r = p_array.read();
- PoolVector<Vector3>::Write w = array.write();
- for (int i = 0; i < p_array.size(); ++i) {
- w[i] = xform_inv(r[i]);
- }
- return array;
- }
- _FORCE_INLINE_ Plane Transform::xform_fast(const Plane &p_plane, const Basis &p_basis_inverse_transpose) const {
- // Transform a single point on the plane.
- Vector3 point = p_plane.normal * p_plane.d;
- point = xform(point);
- // Use inverse transpose for correct normals with non-uniform scaling.
- Vector3 normal = p_basis_inverse_transpose.xform(p_plane.normal);
- normal.normalize();
- real_t d = normal.dot(point);
- return Plane(normal, d);
- }
- _FORCE_INLINE_ Plane Transform::xform_inv_fast(const Plane &p_plane, const Transform &p_inverse, const Basis &p_basis_transpose) {
- // Transform a single point on the plane.
- Vector3 point = p_plane.normal * p_plane.d;
- point = p_inverse.xform(point);
- // Note that instead of precalculating the transpose, an alternative
- // would be to use the transpose for the basis transform.
- // However that would be less SIMD friendly (requiring a swizzle).
- // So the cost is one extra precalced value in the calling code.
- // This is probably worth it, as this could be used in bottleneck areas. And
- // where it is not a bottleneck, the non-fast method is fine.
- // Use transpose for correct normals with non-uniform scaling.
- Vector3 normal = p_basis_transpose.xform(p_plane.normal);
- normal.normalize();
- real_t d = normal.dot(point);
- return Plane(normal, d);
- }
- #endif // TRANSFORM_H
|