camera_matrix.cpp 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666
  1. /**************************************************************************/
  2. /* camera_matrix.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #include "camera_matrix.h"
  31. #include "core/math/math_funcs.h"
  32. #include "core/print_string.h"
  33. void CameraMatrix::set_identity() {
  34. for (int i = 0; i < 4; i++) {
  35. for (int j = 0; j < 4; j++) {
  36. matrix[i][j] = (i == j) ? 1 : 0;
  37. }
  38. }
  39. }
  40. void CameraMatrix::set_zero() {
  41. for (int i = 0; i < 4; i++) {
  42. for (int j = 0; j < 4; j++) {
  43. matrix[i][j] = 0;
  44. }
  45. }
  46. }
  47. Plane CameraMatrix::xform4(const Plane &p_vec4) const {
  48. Plane ret;
  49. ret.normal.x = matrix[0][0] * p_vec4.normal.x + matrix[1][0] * p_vec4.normal.y + matrix[2][0] * p_vec4.normal.z + matrix[3][0] * p_vec4.d;
  50. ret.normal.y = matrix[0][1] * p_vec4.normal.x + matrix[1][1] * p_vec4.normal.y + matrix[2][1] * p_vec4.normal.z + matrix[3][1] * p_vec4.d;
  51. ret.normal.z = matrix[0][2] * p_vec4.normal.x + matrix[1][2] * p_vec4.normal.y + matrix[2][2] * p_vec4.normal.z + matrix[3][2] * p_vec4.d;
  52. ret.d = matrix[0][3] * p_vec4.normal.x + matrix[1][3] * p_vec4.normal.y + matrix[2][3] * p_vec4.normal.z + matrix[3][3] * p_vec4.d;
  53. return ret;
  54. }
  55. void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov) {
  56. if (p_flip_fov) {
  57. p_fovy_degrees = get_fovy(p_fovy_degrees, 1.0 / p_aspect);
  58. }
  59. real_t sine, cotangent, deltaZ;
  60. real_t radians = p_fovy_degrees / 2.0 * Math_PI / 180.0;
  61. deltaZ = p_z_far - p_z_near;
  62. sine = Math::sin(radians);
  63. if ((deltaZ == 0) || (sine == 0) || (p_aspect == 0)) {
  64. return;
  65. }
  66. cotangent = Math::cos(radians) / sine;
  67. set_identity();
  68. matrix[0][0] = cotangent / p_aspect;
  69. matrix[1][1] = cotangent;
  70. matrix[2][2] = -(p_z_far + p_z_near) / deltaZ;
  71. matrix[2][3] = -1;
  72. matrix[3][2] = -2 * p_z_near * p_z_far / deltaZ;
  73. matrix[3][3] = 0;
  74. }
  75. void CameraMatrix::set_perspective(real_t p_fovy_degrees, real_t p_aspect, real_t p_z_near, real_t p_z_far, bool p_flip_fov, int p_eye, real_t p_intraocular_dist, real_t p_convergence_dist) {
  76. if (p_flip_fov) {
  77. p_fovy_degrees = get_fovy(p_fovy_degrees, 1.0 / p_aspect);
  78. }
  79. real_t left, right, modeltranslation, ymax, xmax, frustumshift;
  80. ymax = p_z_near * tan(p_fovy_degrees * Math_PI / 360.0f);
  81. xmax = ymax * p_aspect;
  82. frustumshift = (p_intraocular_dist / 2.0) * p_z_near / p_convergence_dist;
  83. switch (p_eye) {
  84. case 1: { // left eye
  85. left = -xmax + frustumshift;
  86. right = xmax + frustumshift;
  87. modeltranslation = p_intraocular_dist / 2.0;
  88. }; break;
  89. case 2: { // right eye
  90. left = -xmax - frustumshift;
  91. right = xmax - frustumshift;
  92. modeltranslation = -p_intraocular_dist / 2.0;
  93. }; break;
  94. default: { // mono, should give the same result as set_perspective(p_fovy_degrees,p_aspect,p_z_near,p_z_far,p_flip_fov)
  95. left = -xmax;
  96. right = xmax;
  97. modeltranslation = 0.0;
  98. }; break;
  99. };
  100. set_frustum(left, right, -ymax, ymax, p_z_near, p_z_far);
  101. // translate matrix by (modeltranslation, 0.0, 0.0)
  102. CameraMatrix cm;
  103. cm.set_identity();
  104. cm.matrix[3][0] = modeltranslation;
  105. *this = *this * cm;
  106. }
  107. void CameraMatrix::set_for_hmd(int p_eye, real_t p_aspect, real_t p_intraocular_dist, real_t p_display_width, real_t p_display_to_lens, real_t p_oversample, real_t p_z_near, real_t p_z_far) {
  108. // we first calculate our base frustum on our values without taking our lens magnification into account.
  109. real_t f1 = (p_intraocular_dist * 0.5) / p_display_to_lens;
  110. real_t f2 = ((p_display_width - p_intraocular_dist) * 0.5) / p_display_to_lens;
  111. real_t f3 = (p_display_width / 4.0) / p_display_to_lens;
  112. // now we apply our oversample factor to increase our FOV. how much we oversample is always a balance we strike between performance and how much
  113. // we're willing to sacrifice in FOV.
  114. real_t add = ((f1 + f2) * (p_oversample - 1.0)) / 2.0;
  115. f1 += add;
  116. f2 += add;
  117. f3 *= p_oversample;
  118. // always apply KEEP_WIDTH aspect ratio
  119. f3 /= p_aspect;
  120. switch (p_eye) {
  121. case 1: { // left eye
  122. set_frustum(-f2 * p_z_near, f1 * p_z_near, -f3 * p_z_near, f3 * p_z_near, p_z_near, p_z_far);
  123. }; break;
  124. case 2: { // right eye
  125. set_frustum(-f1 * p_z_near, f2 * p_z_near, -f3 * p_z_near, f3 * p_z_near, p_z_near, p_z_far);
  126. }; break;
  127. default: { // mono, does not apply here!
  128. }; break;
  129. };
  130. };
  131. void CameraMatrix::set_orthogonal(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_znear, real_t p_zfar) {
  132. set_identity();
  133. matrix[0][0] = 2 / (p_right - p_left);
  134. matrix[3][0] = -((p_right + p_left) / (p_right - p_left));
  135. matrix[1][1] = 2 / (p_top - p_bottom);
  136. matrix[3][1] = -((p_top + p_bottom) / (p_top - p_bottom));
  137. matrix[2][2] = -2 / (p_zfar - p_znear);
  138. matrix[3][2] = -((p_zfar + p_znear) / (p_zfar - p_znear));
  139. matrix[3][3] = 1.0;
  140. }
  141. void CameraMatrix::set_orthogonal(real_t p_size, real_t p_aspect, real_t p_znear, real_t p_zfar, bool p_flip_fov) {
  142. if (!p_flip_fov) {
  143. p_size *= p_aspect;
  144. }
  145. set_orthogonal(-p_size / 2, +p_size / 2, -p_size / p_aspect / 2, +p_size / p_aspect / 2, p_znear, p_zfar);
  146. }
  147. void CameraMatrix::set_frustum(real_t p_left, real_t p_right, real_t p_bottom, real_t p_top, real_t p_near, real_t p_far) {
  148. ERR_FAIL_COND(p_right <= p_left);
  149. ERR_FAIL_COND(p_top <= p_bottom);
  150. ERR_FAIL_COND(p_far <= p_near);
  151. real_t *te = &matrix[0][0];
  152. real_t x = 2 * p_near / (p_right - p_left);
  153. real_t y = 2 * p_near / (p_top - p_bottom);
  154. real_t a = (p_right + p_left) / (p_right - p_left);
  155. real_t b = (p_top + p_bottom) / (p_top - p_bottom);
  156. real_t c = -(p_far + p_near) / (p_far - p_near);
  157. real_t d = -2 * p_far * p_near / (p_far - p_near);
  158. te[0] = x;
  159. te[1] = 0;
  160. te[2] = 0;
  161. te[3] = 0;
  162. te[4] = 0;
  163. te[5] = y;
  164. te[6] = 0;
  165. te[7] = 0;
  166. te[8] = a;
  167. te[9] = b;
  168. te[10] = c;
  169. te[11] = -1;
  170. te[12] = 0;
  171. te[13] = 0;
  172. te[14] = d;
  173. te[15] = 0;
  174. }
  175. void CameraMatrix::set_frustum(real_t p_size, real_t p_aspect, Vector2 p_offset, real_t p_near, real_t p_far, bool p_flip_fov) {
  176. if (!p_flip_fov) {
  177. p_size *= p_aspect;
  178. }
  179. set_frustum(-p_size / 2 + p_offset.x, +p_size / 2 + p_offset.x, -p_size / p_aspect / 2 + p_offset.y, +p_size / p_aspect / 2 + p_offset.y, p_near, p_far);
  180. }
  181. real_t CameraMatrix::get_z_far() const {
  182. const real_t *matrix = (const real_t *)this->matrix;
  183. Plane new_plane = Plane(matrix[3] - matrix[2],
  184. matrix[7] - matrix[6],
  185. matrix[11] - matrix[10],
  186. matrix[15] - matrix[14]);
  187. new_plane.normal = -new_plane.normal;
  188. new_plane.normalize();
  189. return new_plane.d;
  190. }
  191. real_t CameraMatrix::get_z_near() const {
  192. const real_t *matrix = (const real_t *)this->matrix;
  193. Plane new_plane = Plane(matrix[3] + matrix[2],
  194. matrix[7] + matrix[6],
  195. matrix[11] + matrix[10],
  196. -matrix[15] - matrix[14]);
  197. new_plane.normalize();
  198. return new_plane.d;
  199. }
  200. Vector2 CameraMatrix::get_viewport_half_extents() const {
  201. const real_t *matrix = (const real_t *)this->matrix;
  202. ///////--- Near Plane ---///////
  203. Plane near_plane = Plane(matrix[3] + matrix[2],
  204. matrix[7] + matrix[6],
  205. matrix[11] + matrix[10],
  206. -matrix[15] - matrix[14]);
  207. near_plane.normalize();
  208. ///////--- Right Plane ---///////
  209. Plane right_plane = Plane(matrix[3] - matrix[0],
  210. matrix[7] - matrix[4],
  211. matrix[11] - matrix[8],
  212. -matrix[15] + matrix[12]);
  213. right_plane.normalize();
  214. Plane top_plane = Plane(matrix[3] - matrix[1],
  215. matrix[7] - matrix[5],
  216. matrix[11] - matrix[9],
  217. -matrix[15] + matrix[13]);
  218. top_plane.normalize();
  219. Vector3 res;
  220. near_plane.intersect_3(right_plane, top_plane, &res);
  221. return Vector2(res.x, res.y);
  222. }
  223. bool CameraMatrix::get_endpoints(const Transform &p_transform, Vector3 *p_8points) const {
  224. Vector<Plane> planes = get_projection_planes(Transform());
  225. const Planes intersections[8][3] = {
  226. { PLANE_FAR, PLANE_LEFT, PLANE_TOP },
  227. { PLANE_FAR, PLANE_LEFT, PLANE_BOTTOM },
  228. { PLANE_FAR, PLANE_RIGHT, PLANE_TOP },
  229. { PLANE_FAR, PLANE_RIGHT, PLANE_BOTTOM },
  230. { PLANE_NEAR, PLANE_LEFT, PLANE_TOP },
  231. { PLANE_NEAR, PLANE_LEFT, PLANE_BOTTOM },
  232. { PLANE_NEAR, PLANE_RIGHT, PLANE_TOP },
  233. { PLANE_NEAR, PLANE_RIGHT, PLANE_BOTTOM },
  234. };
  235. for (int i = 0; i < 8; i++) {
  236. Vector3 point;
  237. bool res = planes[intersections[i][0]].intersect_3(planes[intersections[i][1]], planes[intersections[i][2]], &point);
  238. ERR_FAIL_COND_V(!res, false);
  239. p_8points[i] = p_transform.xform(point);
  240. }
  241. return true;
  242. }
  243. Vector<Plane> CameraMatrix::get_projection_planes(const Transform &p_transform) const {
  244. /** Fast Plane Extraction from combined modelview/projection matrices.
  245. * References:
  246. * https://web.archive.org/web/20011221205252/http://www.markmorley.com/opengl/frustumculling.html
  247. * https://web.archive.org/web/20061020020112/http://www2.ravensoft.com/users/ggribb/plane%20extraction.pdf
  248. */
  249. Vector<Plane> planes;
  250. const real_t *matrix = (const real_t *)this->matrix;
  251. Plane new_plane;
  252. ///////--- Near Plane ---///////
  253. new_plane = Plane(matrix[3] + matrix[2],
  254. matrix[7] + matrix[6],
  255. matrix[11] + matrix[10],
  256. matrix[15] + matrix[14]);
  257. new_plane.normal = -new_plane.normal;
  258. new_plane.normalize();
  259. planes.push_back(p_transform.xform(new_plane));
  260. ///////--- Far Plane ---///////
  261. new_plane = Plane(matrix[3] - matrix[2],
  262. matrix[7] - matrix[6],
  263. matrix[11] - matrix[10],
  264. matrix[15] - matrix[14]);
  265. new_plane.normal = -new_plane.normal;
  266. new_plane.normalize();
  267. planes.push_back(p_transform.xform(new_plane));
  268. ///////--- Left Plane ---///////
  269. new_plane = Plane(matrix[3] + matrix[0],
  270. matrix[7] + matrix[4],
  271. matrix[11] + matrix[8],
  272. matrix[15] + matrix[12]);
  273. new_plane.normal = -new_plane.normal;
  274. new_plane.normalize();
  275. planes.push_back(p_transform.xform(new_plane));
  276. ///////--- Top Plane ---///////
  277. new_plane = Plane(matrix[3] - matrix[1],
  278. matrix[7] - matrix[5],
  279. matrix[11] - matrix[9],
  280. matrix[15] - matrix[13]);
  281. new_plane.normal = -new_plane.normal;
  282. new_plane.normalize();
  283. planes.push_back(p_transform.xform(new_plane));
  284. ///////--- Right Plane ---///////
  285. new_plane = Plane(matrix[3] - matrix[0],
  286. matrix[7] - matrix[4],
  287. matrix[11] - matrix[8],
  288. matrix[15] - matrix[12]);
  289. new_plane.normal = -new_plane.normal;
  290. new_plane.normalize();
  291. planes.push_back(p_transform.xform(new_plane));
  292. ///////--- Bottom Plane ---///////
  293. new_plane = Plane(matrix[3] + matrix[1],
  294. matrix[7] + matrix[5],
  295. matrix[11] + matrix[9],
  296. matrix[15] + matrix[13]);
  297. new_plane.normal = -new_plane.normal;
  298. new_plane.normalize();
  299. planes.push_back(p_transform.xform(new_plane));
  300. return planes;
  301. }
  302. CameraMatrix CameraMatrix::inverse() const {
  303. CameraMatrix cm = *this;
  304. cm.invert();
  305. return cm;
  306. }
  307. void CameraMatrix::invert() {
  308. int i, j, k;
  309. int pvt_i[4], pvt_j[4]; /* Locations of pivot matrix */
  310. real_t pvt_val; /* Value of current pivot element */
  311. real_t hold; /* Temporary storage */
  312. real_t determinat; /* Determinant */
  313. determinat = 1.0;
  314. for (k = 0; k < 4; k++) {
  315. /** Locate k'th pivot element **/
  316. pvt_val = matrix[k][k]; /** Initialize for search **/
  317. pvt_i[k] = k;
  318. pvt_j[k] = k;
  319. for (i = k; i < 4; i++) {
  320. for (j = k; j < 4; j++) {
  321. if (Math::abs(matrix[i][j]) > Math::abs(pvt_val)) {
  322. pvt_i[k] = i;
  323. pvt_j[k] = j;
  324. pvt_val = matrix[i][j];
  325. }
  326. }
  327. }
  328. /** Product of pivots, gives determinant when finished **/
  329. determinat *= pvt_val;
  330. if (Math::abs(determinat) < (real_t)1e-7) {
  331. return; //(false); /** Matrix is singular (zero determinant). **/
  332. }
  333. /** "Interchange" rows (with sign change stuff) **/
  334. i = pvt_i[k];
  335. if (i != k) { /** If rows are different **/
  336. for (j = 0; j < 4; j++) {
  337. hold = -matrix[k][j];
  338. matrix[k][j] = matrix[i][j];
  339. matrix[i][j] = hold;
  340. }
  341. }
  342. /** "Interchange" columns **/
  343. j = pvt_j[k];
  344. if (j != k) { /** If columns are different **/
  345. for (i = 0; i < 4; i++) {
  346. hold = -matrix[i][k];
  347. matrix[i][k] = matrix[i][j];
  348. matrix[i][j] = hold;
  349. }
  350. }
  351. /** Divide column by minus pivot value **/
  352. for (i = 0; i < 4; i++) {
  353. if (i != k) {
  354. matrix[i][k] /= (-pvt_val);
  355. }
  356. }
  357. /** Reduce the matrix **/
  358. for (i = 0; i < 4; i++) {
  359. hold = matrix[i][k];
  360. for (j = 0; j < 4; j++) {
  361. if (i != k && j != k) {
  362. matrix[i][j] += hold * matrix[k][j];
  363. }
  364. }
  365. }
  366. /** Divide row by pivot **/
  367. for (j = 0; j < 4; j++) {
  368. if (j != k) {
  369. matrix[k][j] /= pvt_val;
  370. }
  371. }
  372. /** Replace pivot by reciprocal (at last we can touch it). **/
  373. matrix[k][k] = 1.0 / pvt_val;
  374. }
  375. /* That was most of the work, one final pass of row/column interchange */
  376. /* to finish */
  377. for (k = 4 - 2; k >= 0; k--) { /* Don't need to work with 1 by 1 corner*/
  378. i = pvt_j[k]; /* Rows to swap correspond to pivot COLUMN */
  379. if (i != k) { /* If rows are different */
  380. for (j = 0; j < 4; j++) {
  381. hold = matrix[k][j];
  382. matrix[k][j] = -matrix[i][j];
  383. matrix[i][j] = hold;
  384. }
  385. }
  386. j = pvt_i[k]; /* Columns to swap correspond to pivot ROW */
  387. if (j != k) { /* If columns are different */
  388. for (i = 0; i < 4; i++) {
  389. hold = matrix[i][k];
  390. matrix[i][k] = -matrix[i][j];
  391. matrix[i][j] = hold;
  392. }
  393. }
  394. }
  395. }
  396. CameraMatrix::CameraMatrix() {
  397. set_identity();
  398. }
  399. CameraMatrix CameraMatrix::operator*(const CameraMatrix &p_matrix) const {
  400. CameraMatrix new_matrix;
  401. for (int j = 0; j < 4; j++) {
  402. for (int i = 0; i < 4; i++) {
  403. real_t ab = 0;
  404. for (int k = 0; k < 4; k++) {
  405. ab += matrix[k][i] * p_matrix.matrix[j][k];
  406. }
  407. new_matrix.matrix[j][i] = ab;
  408. }
  409. }
  410. return new_matrix;
  411. }
  412. void CameraMatrix::set_light_bias() {
  413. real_t *m = &matrix[0][0];
  414. m[0] = 0.5;
  415. m[1] = 0.0;
  416. m[2] = 0.0;
  417. m[3] = 0.0;
  418. m[4] = 0.0;
  419. m[5] = 0.5;
  420. m[6] = 0.0;
  421. m[7] = 0.0;
  422. m[8] = 0.0;
  423. m[9] = 0.0;
  424. m[10] = 0.5;
  425. m[11] = 0.0;
  426. m[12] = 0.5;
  427. m[13] = 0.5;
  428. m[14] = 0.5;
  429. m[15] = 1.0;
  430. }
  431. void CameraMatrix::set_light_atlas_rect(const Rect2 &p_rect) {
  432. real_t *m = &matrix[0][0];
  433. m[0] = p_rect.size.width;
  434. m[1] = 0.0;
  435. m[2] = 0.0;
  436. m[3] = 0.0;
  437. m[4] = 0.0;
  438. m[5] = p_rect.size.height;
  439. m[6] = 0.0;
  440. m[7] = 0.0;
  441. m[8] = 0.0;
  442. m[9] = 0.0;
  443. m[10] = 1.0;
  444. m[11] = 0.0;
  445. m[12] = p_rect.position.x;
  446. m[13] = p_rect.position.y;
  447. m[14] = 0.0;
  448. m[15] = 1.0;
  449. }
  450. CameraMatrix::operator String() const {
  451. String str;
  452. for (int i = 0; i < 4; i++) {
  453. for (int j = 0; j < 4; j++) {
  454. str += String((j > 0) ? ", " : "\n") + rtos(matrix[i][j]);
  455. }
  456. }
  457. return str;
  458. }
  459. real_t CameraMatrix::get_aspect() const {
  460. Vector2 vp_he = get_viewport_half_extents();
  461. return vp_he.x / vp_he.y;
  462. }
  463. int CameraMatrix::get_pixels_per_meter(int p_for_pixel_width) const {
  464. Vector3 result = xform(Vector3(1, 0, -1));
  465. return int((result.x * 0.5f + 0.5f) * p_for_pixel_width);
  466. }
  467. bool CameraMatrix::is_orthogonal() const {
  468. return matrix[3][3] == 1.0;
  469. }
  470. real_t CameraMatrix::get_fov() const {
  471. const real_t *matrix = (const real_t *)this->matrix;
  472. Plane right_plane = Plane(matrix[3] - matrix[0],
  473. matrix[7] - matrix[4],
  474. matrix[11] - matrix[8],
  475. -matrix[15] + matrix[12]);
  476. right_plane.normalize();
  477. if ((matrix[8] == 0) && (matrix[9] == 0)) {
  478. return Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x))) * 2;
  479. } else {
  480. // our frustum is asymmetrical need to calculate the left planes angle separately..
  481. Plane left_plane = Plane(matrix[3] + matrix[0],
  482. matrix[7] + matrix[4],
  483. matrix[11] + matrix[8],
  484. matrix[15] + matrix[12]);
  485. left_plane.normalize();
  486. return Math::rad2deg(Math::acos(Math::abs(left_plane.normal.x))) + Math::rad2deg(Math::acos(Math::abs(right_plane.normal.x)));
  487. }
  488. }
  489. void CameraMatrix::make_scale(const Vector3 &p_scale) {
  490. set_identity();
  491. matrix[0][0] = p_scale.x;
  492. matrix[1][1] = p_scale.y;
  493. matrix[2][2] = p_scale.z;
  494. }
  495. void CameraMatrix::scale_translate_to_fit(const AABB &p_aabb) {
  496. Vector3 min = p_aabb.position;
  497. Vector3 max = p_aabb.position + p_aabb.size;
  498. matrix[0][0] = 2 / (max.x - min.x);
  499. matrix[1][0] = 0;
  500. matrix[2][0] = 0;
  501. matrix[3][0] = -(max.x + min.x) / (max.x - min.x);
  502. matrix[0][1] = 0;
  503. matrix[1][1] = 2 / (max.y - min.y);
  504. matrix[2][1] = 0;
  505. matrix[3][1] = -(max.y + min.y) / (max.y - min.y);
  506. matrix[0][2] = 0;
  507. matrix[1][2] = 0;
  508. matrix[2][2] = 2 / (max.z - min.z);
  509. matrix[3][2] = -(max.z + min.z) / (max.z - min.z);
  510. matrix[0][3] = 0;
  511. matrix[1][3] = 0;
  512. matrix[2][3] = 0;
  513. matrix[3][3] = 1;
  514. }
  515. CameraMatrix::operator Transform() const {
  516. Transform tr;
  517. const real_t *m = &matrix[0][0];
  518. tr.basis.elements[0][0] = m[0];
  519. tr.basis.elements[1][0] = m[1];
  520. tr.basis.elements[2][0] = m[2];
  521. tr.basis.elements[0][1] = m[4];
  522. tr.basis.elements[1][1] = m[5];
  523. tr.basis.elements[2][1] = m[6];
  524. tr.basis.elements[0][2] = m[8];
  525. tr.basis.elements[1][2] = m[9];
  526. tr.basis.elements[2][2] = m[10];
  527. tr.origin.x = m[12];
  528. tr.origin.y = m[13];
  529. tr.origin.z = m[14];
  530. return tr;
  531. }
  532. CameraMatrix::CameraMatrix(const Transform &p_transform) {
  533. const Transform &tr = p_transform;
  534. real_t *m = &matrix[0][0];
  535. m[0] = tr.basis.elements[0][0];
  536. m[1] = tr.basis.elements[1][0];
  537. m[2] = tr.basis.elements[2][0];
  538. m[3] = 0.0;
  539. m[4] = tr.basis.elements[0][1];
  540. m[5] = tr.basis.elements[1][1];
  541. m[6] = tr.basis.elements[2][1];
  542. m[7] = 0.0;
  543. m[8] = tr.basis.elements[0][2];
  544. m[9] = tr.basis.elements[1][2];
  545. m[10] = tr.basis.elements[2][2];
  546. m[11] = 0.0;
  547. m[12] = tr.origin.x;
  548. m[13] = tr.origin.y;
  549. m[14] = tr.origin.z;
  550. m[15] = 1.0;
  551. }
  552. CameraMatrix::~CameraMatrix() {
  553. }