123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355 |
- /**************************************************************************/
- /* basis.h */
- /**************************************************************************/
- /* This file is part of: */
- /* GODOT ENGINE */
- /* https://godotengine.org */
- /**************************************************************************/
- /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
- /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
- /* */
- /* Permission is hereby granted, free of charge, to any person obtaining */
- /* a copy of this software and associated documentation files (the */
- /* "Software"), to deal in the Software without restriction, including */
- /* without limitation the rights to use, copy, modify, merge, publish, */
- /* distribute, sublicense, and/or sell copies of the Software, and to */
- /* permit persons to whom the Software is furnished to do so, subject to */
- /* the following conditions: */
- /* */
- /* The above copyright notice and this permission notice shall be */
- /* included in all copies or substantial portions of the Software. */
- /* */
- /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
- /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
- /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
- /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
- /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
- /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
- /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
- /**************************************************************************/
- #ifndef BASIS_H
- #define BASIS_H
- #include "core/math/quat.h"
- #include "core/math/vector3.h"
- class _NO_DISCARD_CLASS_ Basis {
- public:
- Vector3 elements[3] = {
- Vector3(1, 0, 0),
- Vector3(0, 1, 0),
- Vector3(0, 0, 1)
- };
- _FORCE_INLINE_ const Vector3 &operator[](int axis) const {
- return elements[axis];
- }
- _FORCE_INLINE_ Vector3 &operator[](int axis) {
- return elements[axis];
- }
- void invert();
- void transpose();
- Basis inverse() const;
- Basis transposed() const;
- _FORCE_INLINE_ real_t determinant() const;
- void from_z(const Vector3 &p_z);
- _FORCE_INLINE_ Vector3 get_axis(int p_axis) const {
- // get actual basis axis (elements is transposed for performance)
- return Vector3(elements[0][p_axis], elements[1][p_axis], elements[2][p_axis]);
- }
- _FORCE_INLINE_ void set_axis(int p_axis, const Vector3 &p_value) {
- // get actual basis axis (elements is transposed for performance)
- elements[0][p_axis] = p_value.x;
- elements[1][p_axis] = p_value.y;
- elements[2][p_axis] = p_value.z;
- }
- void rotate(const Vector3 &p_axis, real_t p_angle);
- Basis rotated(const Vector3 &p_axis, real_t p_angle) const;
- void rotate_local(const Vector3 &p_axis, real_t p_angle);
- Basis rotated_local(const Vector3 &p_axis, real_t p_angle) const;
- void rotate(const Vector3 &p_euler);
- Basis rotated(const Vector3 &p_euler) const;
- void rotate(const Quat &p_quat);
- Basis rotated(const Quat &p_quat) const;
- Vector3 get_rotation_euler() const;
- void get_rotation_axis_angle(Vector3 &p_axis, real_t &p_angle) const;
- void get_rotation_axis_angle_local(Vector3 &p_axis, real_t &p_angle) const;
- Quat get_rotation_quat() const;
- Vector3 get_rotation() const { return get_rotation_euler(); };
- Vector3 rotref_posscale_decomposition(Basis &rotref) const;
- Vector3 get_euler_xyz() const;
- void set_euler_xyz(const Vector3 &p_euler);
- Vector3 get_euler_xzy() const;
- void set_euler_xzy(const Vector3 &p_euler);
- Vector3 get_euler_yzx() const;
- void set_euler_yzx(const Vector3 &p_euler);
- Vector3 get_euler_yxz() const;
- void set_euler_yxz(const Vector3 &p_euler);
- Vector3 get_euler_zxy() const;
- void set_euler_zxy(const Vector3 &p_euler);
- Vector3 get_euler_zyx() const;
- void set_euler_zyx(const Vector3 &p_euler);
- Quat get_quat() const;
- void set_quat(const Quat &p_quat);
- Vector3 get_euler() const { return get_euler_yxz(); }
- void set_euler(const Vector3 &p_euler) { set_euler_yxz(p_euler); }
- void get_axis_angle(Vector3 &r_axis, real_t &r_angle) const;
- void set_axis_angle(const Vector3 &p_axis, real_t p_angle);
- void scale(const Vector3 &p_scale);
- Basis scaled(const Vector3 &p_scale) const;
- void scale_local(const Vector3 &p_scale);
- Basis scaled_local(const Vector3 &p_scale) const;
- Vector3 get_scale() const;
- Vector3 get_scale_abs() const;
- Vector3 get_scale_local() const;
- void set_axis_angle_scale(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale);
- void set_euler_scale(const Vector3 &p_euler, const Vector3 &p_scale);
- void set_quat_scale(const Quat &p_quat, const Vector3 &p_scale);
- // transposed dot products
- _FORCE_INLINE_ real_t tdotx(const Vector3 &v) const {
- return elements[0][0] * v[0] + elements[1][0] * v[1] + elements[2][0] * v[2];
- }
- _FORCE_INLINE_ real_t tdoty(const Vector3 &v) const {
- return elements[0][1] * v[0] + elements[1][1] * v[1] + elements[2][1] * v[2];
- }
- _FORCE_INLINE_ real_t tdotz(const Vector3 &v) const {
- return elements[0][2] * v[0] + elements[1][2] * v[1] + elements[2][2] * v[2];
- }
- bool is_equal_approx(const Basis &p_basis) const;
- // For complicated reasons, the second argument is always discarded. See #45062.
- bool is_equal_approx(const Basis &a, const Basis &b) const { return is_equal_approx(a); }
- bool is_equal_approx_ratio(const Basis &a, const Basis &b, real_t p_epsilon = UNIT_EPSILON) const;
- bool operator==(const Basis &p_matrix) const;
- bool operator!=(const Basis &p_matrix) const;
- _FORCE_INLINE_ Vector3 xform(const Vector3 &p_vector) const;
- _FORCE_INLINE_ Vector3 xform_inv(const Vector3 &p_vector) const;
- _FORCE_INLINE_ void operator*=(const Basis &p_matrix);
- _FORCE_INLINE_ Basis operator*(const Basis &p_matrix) const;
- _FORCE_INLINE_ void operator+=(const Basis &p_matrix);
- _FORCE_INLINE_ Basis operator+(const Basis &p_matrix) const;
- _FORCE_INLINE_ void operator-=(const Basis &p_matrix);
- _FORCE_INLINE_ Basis operator-(const Basis &p_matrix) const;
- _FORCE_INLINE_ void operator*=(real_t p_val);
- _FORCE_INLINE_ Basis operator*(real_t p_val) const;
- int get_orthogonal_index() const;
- void set_orthogonal_index(int p_index);
- void set_diagonal(const Vector3 &p_diag);
- bool is_orthogonal() const;
- bool is_diagonal() const;
- bool is_rotation() const;
- Basis slerp(const Basis &p_to, const real_t &p_weight) const;
- _FORCE_INLINE_ Basis lerp(const Basis &p_to, const real_t &p_weight) const;
- operator String() const;
- /* create / set */
- _FORCE_INLINE_ void set(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
- elements[0][0] = xx;
- elements[0][1] = xy;
- elements[0][2] = xz;
- elements[1][0] = yx;
- elements[1][1] = yy;
- elements[1][2] = yz;
- elements[2][0] = zx;
- elements[2][1] = zy;
- elements[2][2] = zz;
- }
- _FORCE_INLINE_ void set(const Vector3 &p_x, const Vector3 &p_y, const Vector3 &p_z) {
- set_axis(0, p_x);
- set_axis(1, p_y);
- set_axis(2, p_z);
- }
- _FORCE_INLINE_ Vector3 get_column(int i) const {
- return Vector3(elements[0][i], elements[1][i], elements[2][i]);
- }
- _FORCE_INLINE_ Vector3 get_row(int i) const {
- return Vector3(elements[i][0], elements[i][1], elements[i][2]);
- }
- _FORCE_INLINE_ Vector3 get_main_diagonal() const {
- return Vector3(elements[0][0], elements[1][1], elements[2][2]);
- }
- _FORCE_INLINE_ void set_row(int i, const Vector3 &p_row) {
- elements[i][0] = p_row.x;
- elements[i][1] = p_row.y;
- elements[i][2] = p_row.z;
- }
- _FORCE_INLINE_ void set_zero() {
- elements[0].zero();
- elements[1].zero();
- elements[2].zero();
- }
- _FORCE_INLINE_ Basis transpose_xform(const Basis &m) const {
- return Basis(
- elements[0].x * m[0].x + elements[1].x * m[1].x + elements[2].x * m[2].x,
- elements[0].x * m[0].y + elements[1].x * m[1].y + elements[2].x * m[2].y,
- elements[0].x * m[0].z + elements[1].x * m[1].z + elements[2].x * m[2].z,
- elements[0].y * m[0].x + elements[1].y * m[1].x + elements[2].y * m[2].x,
- elements[0].y * m[0].y + elements[1].y * m[1].y + elements[2].y * m[2].y,
- elements[0].y * m[0].z + elements[1].y * m[1].z + elements[2].y * m[2].z,
- elements[0].z * m[0].x + elements[1].z * m[1].x + elements[2].z * m[2].x,
- elements[0].z * m[0].y + elements[1].z * m[1].y + elements[2].z * m[2].y,
- elements[0].z * m[0].z + elements[1].z * m[1].z + elements[2].z * m[2].z);
- }
- Basis(real_t xx, real_t xy, real_t xz, real_t yx, real_t yy, real_t yz, real_t zx, real_t zy, real_t zz) {
- set(xx, xy, xz, yx, yy, yz, zx, zy, zz);
- }
- void orthonormalize();
- Basis orthonormalized() const;
- bool is_symmetric() const;
- Basis diagonalize();
- // The following normal xform functions are correct for non-uniform scales.
- // Use these two functions in combination to xform a series of normals.
- // First use get_normal_xform_basis() to precalculate the inverse transpose.
- // Then apply xform_normal_fast() multiple times using the inverse transpose basis.
- Basis get_normal_xform_basis() const { return inverse().transposed(); }
- // N.B. This only does a normal transform if the basis used is the inverse transpose!
- // Otherwise use xform_normal().
- Vector3 xform_normal_fast(const Vector3 &p_vector) const { return xform(p_vector).normalized(); }
- // This function does the above but for a single normal vector. It is considerably slower, so should usually
- // only be used in cases of single normals, or when the basis changes each time.
- Vector3 xform_normal(const Vector3 &p_vector) const { return get_normal_xform_basis().xform_normal_fast(p_vector); }
- operator Quat() const { return get_quat(); }
- Basis(const Quat &p_quat) { set_quat(p_quat); }
- Basis(const Quat &p_quat, const Vector3 &p_scale) { set_quat_scale(p_quat, p_scale); }
- Basis(const Vector3 &p_euler) { set_euler(p_euler); }
- Basis(const Vector3 &p_euler, const Vector3 &p_scale) { set_euler_scale(p_euler, p_scale); }
- Basis(const Vector3 &p_axis, real_t p_angle) { set_axis_angle(p_axis, p_angle); }
- Basis(const Vector3 &p_axis, real_t p_angle, const Vector3 &p_scale) { set_axis_angle_scale(p_axis, p_angle, p_scale); }
- _FORCE_INLINE_ Basis(const Vector3 &row0, const Vector3 &row1, const Vector3 &row2) {
- elements[0] = row0;
- elements[1] = row1;
- elements[2] = row2;
- }
- _FORCE_INLINE_ Basis() {}
- };
- _FORCE_INLINE_ void Basis::operator*=(const Basis &p_matrix) {
- set(
- p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
- p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
- p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
- }
- _FORCE_INLINE_ Basis Basis::operator*(const Basis &p_matrix) const {
- return Basis(
- p_matrix.tdotx(elements[0]), p_matrix.tdoty(elements[0]), p_matrix.tdotz(elements[0]),
- p_matrix.tdotx(elements[1]), p_matrix.tdoty(elements[1]), p_matrix.tdotz(elements[1]),
- p_matrix.tdotx(elements[2]), p_matrix.tdoty(elements[2]), p_matrix.tdotz(elements[2]));
- }
- _FORCE_INLINE_ void Basis::operator+=(const Basis &p_matrix) {
- elements[0] += p_matrix.elements[0];
- elements[1] += p_matrix.elements[1];
- elements[2] += p_matrix.elements[2];
- }
- _FORCE_INLINE_ Basis Basis::operator+(const Basis &p_matrix) const {
- Basis ret(*this);
- ret += p_matrix;
- return ret;
- }
- _FORCE_INLINE_ void Basis::operator-=(const Basis &p_matrix) {
- elements[0] -= p_matrix.elements[0];
- elements[1] -= p_matrix.elements[1];
- elements[2] -= p_matrix.elements[2];
- }
- _FORCE_INLINE_ Basis Basis::operator-(const Basis &p_matrix) const {
- Basis ret(*this);
- ret -= p_matrix;
- return ret;
- }
- _FORCE_INLINE_ void Basis::operator*=(real_t p_val) {
- elements[0] *= p_val;
- elements[1] *= p_val;
- elements[2] *= p_val;
- }
- _FORCE_INLINE_ Basis Basis::operator*(real_t p_val) const {
- Basis ret(*this);
- ret *= p_val;
- return ret;
- }
- Vector3 Basis::xform(const Vector3 &p_vector) const {
- return Vector3(
- elements[0].dot(p_vector),
- elements[1].dot(p_vector),
- elements[2].dot(p_vector));
- }
- Vector3 Basis::xform_inv(const Vector3 &p_vector) const {
- return Vector3(
- (elements[0][0] * p_vector.x) + (elements[1][0] * p_vector.y) + (elements[2][0] * p_vector.z),
- (elements[0][1] * p_vector.x) + (elements[1][1] * p_vector.y) + (elements[2][1] * p_vector.z),
- (elements[0][2] * p_vector.x) + (elements[1][2] * p_vector.y) + (elements[2][2] * p_vector.z));
- }
- real_t Basis::determinant() const {
- return elements[0][0] * (elements[1][1] * elements[2][2] - elements[2][1] * elements[1][2]) -
- elements[1][0] * (elements[0][1] * elements[2][2] - elements[2][1] * elements[0][2]) +
- elements[2][0] * (elements[0][1] * elements[1][2] - elements[1][1] * elements[0][2]);
- }
- Basis Basis::lerp(const Basis &p_to, const real_t &p_weight) const {
- Basis b;
- b.elements[0] = elements[0].linear_interpolate(p_to.elements[0], p_weight);
- b.elements[1] = elements[1].linear_interpolate(p_to.elements[1], p_weight);
- b.elements[2] = elements[2].linear_interpolate(p_to.elements[2], p_weight);
- return b;
- }
- #endif // BASIS_H
|