btCollisionWorld.cpp 62 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626
  1. /*
  2. Bullet Continuous Collision Detection and Physics Library
  3. Copyright (c) 2003-2006 Erwin Coumans http://continuousphysics.com/Bullet/
  4. This software is provided 'as-is', without any express or implied warranty.
  5. In no event will the authors be held liable for any damages arising from the use of this software.
  6. Permission is granted to anyone to use this software for any purpose,
  7. including commercial applications, and to alter it and redistribute it freely,
  8. subject to the following restrictions:
  9. 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required.
  10. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software.
  11. 3. This notice may not be removed or altered from any source distribution.
  12. */
  13. #include "btCollisionWorld.h"
  14. #include "btCollisionDispatcher.h"
  15. #include "BulletCollision/CollisionDispatch/btCollisionObject.h"
  16. #include "BulletCollision/CollisionShapes/btCollisionShape.h"
  17. #include "BulletCollision/CollisionShapes/btConvexShape.h"
  18. #include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
  19. #include "BulletCollision/CollisionShapes/btSphereShape.h" //for raycasting
  20. #include "BulletCollision/CollisionShapes/btBvhTriangleMeshShape.h" //for raycasting
  21. #include "BulletCollision/CollisionShapes/btScaledBvhTriangleMeshShape.h" //for raycasting
  22. #include "BulletCollision/CollisionShapes/btHeightfieldTerrainShape.h" //for raycasting
  23. #include "BulletCollision/NarrowPhaseCollision/btRaycastCallback.h"
  24. #include "BulletCollision/CollisionShapes/btCompoundShape.h"
  25. #include "BulletCollision/NarrowPhaseCollision/btSubSimplexConvexCast.h"
  26. #include "BulletCollision/NarrowPhaseCollision/btGjkConvexCast.h"
  27. #include "BulletCollision/NarrowPhaseCollision/btContinuousConvexCollision.h"
  28. #include "BulletCollision/BroadphaseCollision/btCollisionAlgorithm.h"
  29. #include "BulletCollision/BroadphaseCollision/btBroadphaseInterface.h"
  30. #include "BulletCollision/BroadphaseCollision/btDbvt.h"
  31. #include "LinearMath/btAabbUtil2.h"
  32. #include "LinearMath/btQuickprof.h"
  33. #include "LinearMath/btSerializer.h"
  34. #include "BulletCollision/CollisionShapes/btConvexPolyhedron.h"
  35. #include "BulletCollision/CollisionDispatch/btCollisionObjectWrapper.h"
  36. //#define DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  37. //#define USE_BRUTEFORCE_RAYBROADPHASE 1
  38. //RECALCULATE_AABB is slower, but benefit is that you don't need to call 'stepSimulation' or 'updateAabbs' before using a rayTest
  39. //#define RECALCULATE_AABB_RAYCAST 1
  40. //When the user doesn't provide dispatcher or broadphase, create basic versions (and delete them in destructor)
  41. #include "BulletCollision/CollisionDispatch/btCollisionDispatcher.h"
  42. #include "BulletCollision/BroadphaseCollision/btSimpleBroadphase.h"
  43. #include "BulletCollision/CollisionDispatch/btCollisionConfiguration.h"
  44. ///for debug drawing
  45. //for debug rendering
  46. #include "BulletCollision/CollisionShapes/btBoxShape.h"
  47. #include "BulletCollision/CollisionShapes/btCapsuleShape.h"
  48. #include "BulletCollision/CollisionShapes/btCompoundShape.h"
  49. #include "BulletCollision/CollisionShapes/btConeShape.h"
  50. #include "BulletCollision/CollisionShapes/btConvexTriangleMeshShape.h"
  51. #include "BulletCollision/CollisionShapes/btCylinderShape.h"
  52. #include "BulletCollision/CollisionShapes/btMultiSphereShape.h"
  53. #include "BulletCollision/CollisionShapes/btPolyhedralConvexShape.h"
  54. #include "BulletCollision/CollisionShapes/btSphereShape.h"
  55. #include "BulletCollision/CollisionShapes/btTriangleCallback.h"
  56. #include "BulletCollision/CollisionShapes/btTriangleMeshShape.h"
  57. #include "BulletCollision/CollisionShapes/btStaticPlaneShape.h"
  58. btCollisionWorld::btCollisionWorld(btDispatcher* dispatcher, btBroadphaseInterface* pairCache, btCollisionConfiguration* collisionConfiguration)
  59. : m_dispatcher1(dispatcher),
  60. m_broadphasePairCache(pairCache),
  61. m_debugDrawer(0),
  62. m_forceUpdateAllAabbs(true)
  63. {
  64. }
  65. btCollisionWorld::~btCollisionWorld()
  66. {
  67. //clean up remaining objects
  68. int i;
  69. for (i = 0; i < m_collisionObjects.size(); i++)
  70. {
  71. btCollisionObject* collisionObject = m_collisionObjects[i];
  72. btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
  73. if (bp)
  74. {
  75. //
  76. // only clear the cached algorithms
  77. //
  78. getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp, m_dispatcher1);
  79. getBroadphase()->destroyProxy(bp, m_dispatcher1);
  80. collisionObject->setBroadphaseHandle(0);
  81. }
  82. }
  83. }
  84. void btCollisionWorld::refreshBroadphaseProxy(btCollisionObject* collisionObject)
  85. {
  86. if (collisionObject->getBroadphaseHandle())
  87. {
  88. int collisionFilterGroup = collisionObject->getBroadphaseHandle()->m_collisionFilterGroup;
  89. int collisionFilterMask = collisionObject->getBroadphaseHandle()->m_collisionFilterMask;
  90. getBroadphase()->destroyProxy(collisionObject->getBroadphaseHandle(), getDispatcher());
  91. //calculate new AABB
  92. btTransform trans = collisionObject->getWorldTransform();
  93. btVector3 minAabb;
  94. btVector3 maxAabb;
  95. collisionObject->getCollisionShape()->getAabb(trans, minAabb, maxAabb);
  96. int type = collisionObject->getCollisionShape()->getShapeType();
  97. collisionObject->setBroadphaseHandle(getBroadphase()->createProxy(
  98. minAabb,
  99. maxAabb,
  100. type,
  101. collisionObject,
  102. collisionFilterGroup,
  103. collisionFilterMask,
  104. m_dispatcher1));
  105. }
  106. }
  107. void btCollisionWorld::addCollisionObject(btCollisionObject* collisionObject, int collisionFilterGroup, int collisionFilterMask)
  108. {
  109. btAssert(collisionObject);
  110. //check that the object isn't already added
  111. btAssert(m_collisionObjects.findLinearSearch(collisionObject) == m_collisionObjects.size());
  112. btAssert(collisionObject->getWorldArrayIndex() == -1); // do not add the same object to more than one collision world
  113. collisionObject->setWorldArrayIndex(m_collisionObjects.size());
  114. m_collisionObjects.push_back(collisionObject);
  115. //calculate new AABB
  116. btTransform trans = collisionObject->getWorldTransform();
  117. btVector3 minAabb;
  118. btVector3 maxAabb;
  119. collisionObject->getCollisionShape()->getAabb(trans, minAabb, maxAabb);
  120. int type = collisionObject->getCollisionShape()->getShapeType();
  121. collisionObject->setBroadphaseHandle(getBroadphase()->createProxy(
  122. minAabb,
  123. maxAabb,
  124. type,
  125. collisionObject,
  126. collisionFilterGroup,
  127. collisionFilterMask,
  128. m_dispatcher1));
  129. }
  130. void btCollisionWorld::updateSingleAabb(btCollisionObject* colObj)
  131. {
  132. btVector3 minAabb, maxAabb;
  133. colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb, maxAabb);
  134. //need to increase the aabb for contact thresholds
  135. btVector3 contactThreshold(gContactBreakingThreshold, gContactBreakingThreshold, gContactBreakingThreshold);
  136. minAabb -= contactThreshold;
  137. maxAabb += contactThreshold;
  138. if (getDispatchInfo().m_useContinuous && colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY && !colObj->isStaticOrKinematicObject())
  139. {
  140. btVector3 minAabb2, maxAabb2;
  141. colObj->getCollisionShape()->getAabb(colObj->getInterpolationWorldTransform(), minAabb2, maxAabb2);
  142. minAabb2 -= contactThreshold;
  143. maxAabb2 += contactThreshold;
  144. minAabb.setMin(minAabb2);
  145. maxAabb.setMax(maxAabb2);
  146. }
  147. btBroadphaseInterface* bp = (btBroadphaseInterface*)m_broadphasePairCache;
  148. //moving objects should be moderately sized, probably something wrong if not
  149. if (colObj->isStaticObject() || ((maxAabb - minAabb).length2() < btScalar(1e12)))
  150. {
  151. bp->setAabb(colObj->getBroadphaseHandle(), minAabb, maxAabb, m_dispatcher1);
  152. }
  153. else
  154. {
  155. //something went wrong, investigate
  156. //this assert is unwanted in 3D modelers (danger of loosing work)
  157. colObj->setActivationState(DISABLE_SIMULATION);
  158. static bool reportMe = true;
  159. if (reportMe && m_debugDrawer)
  160. {
  161. reportMe = false;
  162. m_debugDrawer->reportErrorWarning("Overflow in AABB, object removed from simulation");
  163. m_debugDrawer->reportErrorWarning("If you can reproduce this, please email bugs@continuousphysics.com\n");
  164. m_debugDrawer->reportErrorWarning("Please include above information, your Platform, version of OS.\n");
  165. m_debugDrawer->reportErrorWarning("Thanks.\n");
  166. }
  167. }
  168. }
  169. void btCollisionWorld::updateAabbs()
  170. {
  171. BT_PROFILE("updateAabbs");
  172. btTransform predictedTrans;
  173. for (int i = 0; i < m_collisionObjects.size(); i++)
  174. {
  175. btCollisionObject* colObj = m_collisionObjects[i];
  176. btAssert(colObj->getWorldArrayIndex() == i);
  177. //only update aabb of active objects
  178. if (m_forceUpdateAllAabbs || colObj->isActive())
  179. {
  180. updateSingleAabb(colObj);
  181. }
  182. }
  183. }
  184. void btCollisionWorld::computeOverlappingPairs()
  185. {
  186. BT_PROFILE("calculateOverlappingPairs");
  187. m_broadphasePairCache->calculateOverlappingPairs(m_dispatcher1);
  188. }
  189. void btCollisionWorld::performDiscreteCollisionDetection()
  190. {
  191. BT_PROFILE("performDiscreteCollisionDetection");
  192. btDispatcherInfo& dispatchInfo = getDispatchInfo();
  193. updateAabbs();
  194. computeOverlappingPairs();
  195. btDispatcher* dispatcher = getDispatcher();
  196. {
  197. BT_PROFILE("dispatchAllCollisionPairs");
  198. if (dispatcher)
  199. dispatcher->dispatchAllCollisionPairs(m_broadphasePairCache->getOverlappingPairCache(), dispatchInfo, m_dispatcher1);
  200. }
  201. }
  202. void btCollisionWorld::removeCollisionObject(btCollisionObject* collisionObject)
  203. {
  204. //bool removeFromBroadphase = false;
  205. {
  206. btBroadphaseProxy* bp = collisionObject->getBroadphaseHandle();
  207. if (bp)
  208. {
  209. //
  210. // only clear the cached algorithms
  211. //
  212. getBroadphase()->getOverlappingPairCache()->cleanProxyFromPairs(bp, m_dispatcher1);
  213. getBroadphase()->destroyProxy(bp, m_dispatcher1);
  214. collisionObject->setBroadphaseHandle(0);
  215. }
  216. }
  217. int iObj = collisionObject->getWorldArrayIndex();
  218. // btAssert(iObj >= 0 && iObj < m_collisionObjects.size()); // trying to remove an object that was never added or already removed previously?
  219. if (iObj >= 0 && iObj < m_collisionObjects.size())
  220. {
  221. btAssert(collisionObject == m_collisionObjects[iObj]);
  222. m_collisionObjects.swap(iObj, m_collisionObjects.size() - 1);
  223. m_collisionObjects.pop_back();
  224. if (iObj < m_collisionObjects.size())
  225. {
  226. m_collisionObjects[iObj]->setWorldArrayIndex(iObj);
  227. }
  228. }
  229. else
  230. {
  231. // slow linear search
  232. //swapremove
  233. m_collisionObjects.remove(collisionObject);
  234. }
  235. collisionObject->setWorldArrayIndex(-1);
  236. }
  237. void btCollisionWorld::rayTestSingle(const btTransform& rayFromTrans, const btTransform& rayToTrans,
  238. btCollisionObject* collisionObject,
  239. const btCollisionShape* collisionShape,
  240. const btTransform& colObjWorldTransform,
  241. RayResultCallback& resultCallback)
  242. {
  243. btCollisionObjectWrapper colObWrap(0, collisionShape, collisionObject, colObjWorldTransform, -1, -1);
  244. btCollisionWorld::rayTestSingleInternal(rayFromTrans, rayToTrans, &colObWrap, resultCallback);
  245. }
  246. void btCollisionWorld::rayTestSingleInternal(const btTransform& rayFromTrans, const btTransform& rayToTrans,
  247. const btCollisionObjectWrapper* collisionObjectWrap,
  248. RayResultCallback& resultCallback)
  249. {
  250. btSphereShape pointShape(btScalar(0.0));
  251. pointShape.setMargin(0.f);
  252. const btConvexShape* castShape = &pointShape;
  253. const btCollisionShape* collisionShape = collisionObjectWrap->getCollisionShape();
  254. const btTransform& colObjWorldTransform = collisionObjectWrap->getWorldTransform();
  255. if (collisionShape->isConvex())
  256. {
  257. // BT_PROFILE("rayTestConvex");
  258. btConvexCast::CastResult castResult;
  259. castResult.m_fraction = resultCallback.m_closestHitFraction;
  260. btConvexShape* convexShape = (btConvexShape*)collisionShape;
  261. btVoronoiSimplexSolver simplexSolver;
  262. btSubsimplexConvexCast subSimplexConvexCaster(castShape, convexShape, &simplexSolver);
  263. btGjkConvexCast gjkConvexCaster(castShape, convexShape, &simplexSolver);
  264. //btContinuousConvexCollision convexCaster(castShape,convexShape,&simplexSolver,0);
  265. btConvexCast* convexCasterPtr = 0;
  266. //use kF_UseSubSimplexConvexCastRaytest by default
  267. if (resultCallback.m_flags & btTriangleRaycastCallback::kF_UseGjkConvexCastRaytest)
  268. convexCasterPtr = &gjkConvexCaster;
  269. else
  270. convexCasterPtr = &subSimplexConvexCaster;
  271. btConvexCast& convexCaster = *convexCasterPtr;
  272. if (convexCaster.calcTimeOfImpact(rayFromTrans, rayToTrans, colObjWorldTransform, colObjWorldTransform, castResult))
  273. {
  274. //add hit
  275. if (castResult.m_normal.length2() > btScalar(0.0001))
  276. {
  277. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  278. {
  279. //todo: figure out what this is about. When is rayFromTest.getBasis() not identity?
  280. #ifdef USE_SUBSIMPLEX_CONVEX_CAST
  281. //rotate normal into worldspace
  282. castResult.m_normal = rayFromTrans.getBasis() * castResult.m_normal;
  283. #endif //USE_SUBSIMPLEX_CONVEX_CAST
  284. castResult.m_normal.normalize();
  285. btCollisionWorld::LocalRayResult localRayResult(
  286. collisionObjectWrap->getCollisionObject(),
  287. 0,
  288. castResult.m_normal,
  289. castResult.m_fraction);
  290. bool normalInWorldSpace = true;
  291. resultCallback.addSingleResult(localRayResult, normalInWorldSpace);
  292. }
  293. }
  294. }
  295. }
  296. else
  297. {
  298. if (collisionShape->isConcave())
  299. {
  300. //ConvexCast::CastResult
  301. struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
  302. {
  303. btCollisionWorld::RayResultCallback* m_resultCallback;
  304. const btCollisionObject* m_collisionObject;
  305. const btConcaveShape* m_triangleMesh;
  306. btTransform m_colObjWorldTransform;
  307. BridgeTriangleRaycastCallback(const btVector3& from, const btVector3& to,
  308. btCollisionWorld::RayResultCallback* resultCallback, const btCollisionObject* collisionObject, const btConcaveShape* triangleMesh, const btTransform& colObjWorldTransform) : //@BP Mod
  309. btTriangleRaycastCallback(from, to, resultCallback->m_flags),
  310. m_resultCallback(resultCallback),
  311. m_collisionObject(collisionObject),
  312. m_triangleMesh(triangleMesh),
  313. m_colObjWorldTransform(colObjWorldTransform)
  314. {
  315. }
  316. virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex)
  317. {
  318. btCollisionWorld::LocalShapeInfo shapeInfo;
  319. shapeInfo.m_shapePart = partId;
  320. shapeInfo.m_triangleIndex = triangleIndex;
  321. btVector3 hitNormalWorld = m_colObjWorldTransform.getBasis() * hitNormalLocal;
  322. btCollisionWorld::LocalRayResult rayResult(m_collisionObject,
  323. &shapeInfo,
  324. hitNormalWorld,
  325. hitFraction);
  326. bool normalInWorldSpace = true;
  327. return m_resultCallback->addSingleResult(rayResult, normalInWorldSpace);
  328. }
  329. };
  330. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  331. btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
  332. btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
  333. // BT_PROFILE("rayTestConcave");
  334. if (collisionShape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
  335. {
  336. ///optimized version for btBvhTriangleMeshShape
  337. btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
  338. BridgeTriangleRaycastCallback rcb(rayFromLocal, rayToLocal, &resultCallback, collisionObjectWrap->getCollisionObject(), triangleMesh, colObjWorldTransform);
  339. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  340. triangleMesh->performRaycast(&rcb, rayFromLocal, rayToLocal);
  341. }
  342. else if (collisionShape->getShapeType() == SCALED_TRIANGLE_MESH_SHAPE_PROXYTYPE)
  343. {
  344. ///optimized version for btScaledBvhTriangleMeshShape
  345. btScaledBvhTriangleMeshShape* scaledTriangleMesh = (btScaledBvhTriangleMeshShape*)collisionShape;
  346. btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)scaledTriangleMesh->getChildShape();
  347. //scale the ray positions
  348. btVector3 scale = scaledTriangleMesh->getLocalScaling();
  349. btVector3 rayFromLocalScaled = rayFromLocal / scale;
  350. btVector3 rayToLocalScaled = rayToLocal / scale;
  351. //perform raycast in the underlying btBvhTriangleMeshShape
  352. BridgeTriangleRaycastCallback rcb(rayFromLocalScaled, rayToLocalScaled, &resultCallback, collisionObjectWrap->getCollisionObject(), triangleMesh, colObjWorldTransform);
  353. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  354. triangleMesh->performRaycast(&rcb, rayFromLocalScaled, rayToLocalScaled);
  355. }
  356. else if (((resultCallback.m_flags&btTriangleRaycastCallback::kF_DisableHeightfieldAccelerator)==0)
  357. && collisionShape->getShapeType() == TERRAIN_SHAPE_PROXYTYPE
  358. )
  359. {
  360. ///optimized version for btHeightfieldTerrainShape
  361. btHeightfieldTerrainShape* heightField = (btHeightfieldTerrainShape*)collisionShape;
  362. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  363. btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
  364. btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
  365. BridgeTriangleRaycastCallback rcb(rayFromLocal, rayToLocal, &resultCallback, collisionObjectWrap->getCollisionObject(), heightField, colObjWorldTransform);
  366. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  367. heightField->performRaycast(&rcb, rayFromLocal, rayToLocal);
  368. }
  369. else
  370. {
  371. //generic (slower) case
  372. btConcaveShape* concaveShape = (btConcaveShape*)collisionShape;
  373. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  374. btVector3 rayFromLocal = worldTocollisionObject * rayFromTrans.getOrigin();
  375. btVector3 rayToLocal = worldTocollisionObject * rayToTrans.getOrigin();
  376. //ConvexCast::CastResult
  377. struct BridgeTriangleRaycastCallback : public btTriangleRaycastCallback
  378. {
  379. btCollisionWorld::RayResultCallback* m_resultCallback;
  380. const btCollisionObject* m_collisionObject;
  381. btConcaveShape* m_triangleMesh;
  382. btTransform m_colObjWorldTransform;
  383. BridgeTriangleRaycastCallback(const btVector3& from, const btVector3& to,
  384. btCollisionWorld::RayResultCallback* resultCallback, const btCollisionObject* collisionObject, btConcaveShape* triangleMesh, const btTransform& colObjWorldTransform) : //@BP Mod
  385. btTriangleRaycastCallback(from, to, resultCallback->m_flags),
  386. m_resultCallback(resultCallback),
  387. m_collisionObject(collisionObject),
  388. m_triangleMesh(triangleMesh),
  389. m_colObjWorldTransform(colObjWorldTransform)
  390. {
  391. }
  392. virtual btScalar reportHit(const btVector3& hitNormalLocal, btScalar hitFraction, int partId, int triangleIndex)
  393. {
  394. btCollisionWorld::LocalShapeInfo shapeInfo;
  395. shapeInfo.m_shapePart = partId;
  396. shapeInfo.m_triangleIndex = triangleIndex;
  397. btVector3 hitNormalWorld = m_colObjWorldTransform.getBasis() * hitNormalLocal;
  398. btCollisionWorld::LocalRayResult rayResult(m_collisionObject,
  399. &shapeInfo,
  400. hitNormalWorld,
  401. hitFraction);
  402. bool normalInWorldSpace = true;
  403. return m_resultCallback->addSingleResult(rayResult, normalInWorldSpace);
  404. }
  405. };
  406. BridgeTriangleRaycastCallback rcb(rayFromLocal, rayToLocal, &resultCallback, collisionObjectWrap->getCollisionObject(), concaveShape, colObjWorldTransform);
  407. rcb.m_hitFraction = resultCallback.m_closestHitFraction;
  408. btVector3 rayAabbMinLocal = rayFromLocal;
  409. rayAabbMinLocal.setMin(rayToLocal);
  410. btVector3 rayAabbMaxLocal = rayFromLocal;
  411. rayAabbMaxLocal.setMax(rayToLocal);
  412. concaveShape->processAllTriangles(&rcb, rayAabbMinLocal, rayAabbMaxLocal);
  413. }
  414. }
  415. else
  416. {
  417. // BT_PROFILE("rayTestCompound");
  418. if (collisionShape->isCompound())
  419. {
  420. struct LocalInfoAdder2 : public RayResultCallback
  421. {
  422. RayResultCallback* m_userCallback;
  423. int m_i;
  424. LocalInfoAdder2(int i, RayResultCallback* user)
  425. : m_userCallback(user), m_i(i)
  426. {
  427. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  428. m_flags = m_userCallback->m_flags;
  429. }
  430. virtual bool needsCollision(btBroadphaseProxy* p) const
  431. {
  432. return m_userCallback->needsCollision(p);
  433. }
  434. virtual btScalar addSingleResult(btCollisionWorld::LocalRayResult& r, bool b)
  435. {
  436. btCollisionWorld::LocalShapeInfo shapeInfo;
  437. shapeInfo.m_shapePart = -1;
  438. shapeInfo.m_triangleIndex = m_i;
  439. if (r.m_localShapeInfo == NULL)
  440. r.m_localShapeInfo = &shapeInfo;
  441. const btScalar result = m_userCallback->addSingleResult(r, b);
  442. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  443. return result;
  444. }
  445. };
  446. struct RayTester : btDbvt::ICollide
  447. {
  448. const btCollisionObject* m_collisionObject;
  449. const btCompoundShape* m_compoundShape;
  450. const btTransform& m_colObjWorldTransform;
  451. const btTransform& m_rayFromTrans;
  452. const btTransform& m_rayToTrans;
  453. RayResultCallback& m_resultCallback;
  454. RayTester(const btCollisionObject* collisionObject,
  455. const btCompoundShape* compoundShape,
  456. const btTransform& colObjWorldTransform,
  457. const btTransform& rayFromTrans,
  458. const btTransform& rayToTrans,
  459. RayResultCallback& resultCallback) : m_collisionObject(collisionObject),
  460. m_compoundShape(compoundShape),
  461. m_colObjWorldTransform(colObjWorldTransform),
  462. m_rayFromTrans(rayFromTrans),
  463. m_rayToTrans(rayToTrans),
  464. m_resultCallback(resultCallback)
  465. {
  466. }
  467. void ProcessLeaf(int i)
  468. {
  469. const btCollisionShape* childCollisionShape = m_compoundShape->getChildShape(i);
  470. const btTransform& childTrans = m_compoundShape->getChildTransform(i);
  471. btTransform childWorldTrans = m_colObjWorldTransform * childTrans;
  472. btCollisionObjectWrapper tmpOb(0, childCollisionShape, m_collisionObject, childWorldTrans, -1, i);
  473. // replace collision shape so that callback can determine the triangle
  474. LocalInfoAdder2 my_cb(i, &m_resultCallback);
  475. rayTestSingleInternal(
  476. m_rayFromTrans,
  477. m_rayToTrans,
  478. &tmpOb,
  479. my_cb);
  480. }
  481. void Process(const btDbvtNode* leaf)
  482. {
  483. ProcessLeaf(leaf->dataAsInt);
  484. }
  485. };
  486. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
  487. const btDbvt* dbvt = compoundShape->getDynamicAabbTree();
  488. RayTester rayCB(
  489. collisionObjectWrap->getCollisionObject(),
  490. compoundShape,
  491. colObjWorldTransform,
  492. rayFromTrans,
  493. rayToTrans,
  494. resultCallback);
  495. #ifndef DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  496. if (dbvt)
  497. {
  498. btVector3 localRayFrom = colObjWorldTransform.inverseTimes(rayFromTrans).getOrigin();
  499. btVector3 localRayTo = colObjWorldTransform.inverseTimes(rayToTrans).getOrigin();
  500. btDbvt::rayTest(dbvt->m_root, localRayFrom, localRayTo, rayCB);
  501. }
  502. else
  503. #endif //DISABLE_DBVT_COMPOUNDSHAPE_RAYCAST_ACCELERATION
  504. {
  505. for (int i = 0, n = compoundShape->getNumChildShapes(); i < n; ++i)
  506. {
  507. rayCB.ProcessLeaf(i);
  508. }
  509. }
  510. }
  511. }
  512. }
  513. }
  514. void btCollisionWorld::objectQuerySingle(const btConvexShape* castShape, const btTransform& convexFromTrans, const btTransform& convexToTrans,
  515. btCollisionObject* collisionObject,
  516. const btCollisionShape* collisionShape,
  517. const btTransform& colObjWorldTransform,
  518. ConvexResultCallback& resultCallback, btScalar allowedPenetration)
  519. {
  520. btCollisionObjectWrapper tmpOb(0, collisionShape, collisionObject, colObjWorldTransform, -1, -1);
  521. btCollisionWorld::objectQuerySingleInternal(castShape, convexFromTrans, convexToTrans, &tmpOb, resultCallback, allowedPenetration);
  522. }
  523. void btCollisionWorld::objectQuerySingleInternal(const btConvexShape* castShape, const btTransform& convexFromTrans, const btTransform& convexToTrans,
  524. const btCollisionObjectWrapper* colObjWrap,
  525. ConvexResultCallback& resultCallback, btScalar allowedPenetration)
  526. {
  527. const btCollisionShape* collisionShape = colObjWrap->getCollisionShape();
  528. const btTransform& colObjWorldTransform = colObjWrap->getWorldTransform();
  529. if (collisionShape->isConvex())
  530. {
  531. //BT_PROFILE("convexSweepConvex");
  532. btConvexCast::CastResult castResult;
  533. castResult.m_allowedPenetration = allowedPenetration;
  534. castResult.m_fraction = resultCallback.m_closestHitFraction; //btScalar(1.);//??
  535. btConvexShape* convexShape = (btConvexShape*)collisionShape;
  536. btVoronoiSimplexSolver simplexSolver;
  537. btGjkEpaPenetrationDepthSolver gjkEpaPenetrationSolver;
  538. btContinuousConvexCollision convexCaster1(castShape, convexShape, &simplexSolver, &gjkEpaPenetrationSolver);
  539. //btGjkConvexCast convexCaster2(castShape,convexShape,&simplexSolver);
  540. //btSubsimplexConvexCast convexCaster3(castShape,convexShape,&simplexSolver);
  541. btConvexCast* castPtr = &convexCaster1;
  542. if (castPtr->calcTimeOfImpact(convexFromTrans, convexToTrans, colObjWorldTransform, colObjWorldTransform, castResult))
  543. {
  544. //add hit
  545. if (castResult.m_normal.length2() > btScalar(0.0001))
  546. {
  547. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  548. {
  549. castResult.m_normal.normalize();
  550. btCollisionWorld::LocalConvexResult localConvexResult(
  551. colObjWrap->getCollisionObject(),
  552. 0,
  553. castResult.m_normal,
  554. castResult.m_hitPoint,
  555. castResult.m_fraction);
  556. bool normalInWorldSpace = true;
  557. resultCallback.addSingleResult(localConvexResult, normalInWorldSpace);
  558. }
  559. }
  560. }
  561. }
  562. else
  563. {
  564. if (collisionShape->isConcave())
  565. {
  566. if (collisionShape->getShapeType() == TRIANGLE_MESH_SHAPE_PROXYTYPE)
  567. {
  568. //BT_PROFILE("convexSweepbtBvhTriangleMesh");
  569. btBvhTriangleMeshShape* triangleMesh = (btBvhTriangleMeshShape*)collisionShape;
  570. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  571. btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
  572. btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
  573. // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
  574. btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());
  575. //ConvexCast::CastResult
  576. struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
  577. {
  578. btCollisionWorld::ConvexResultCallback* m_resultCallback;
  579. const btCollisionObject* m_collisionObject;
  580. btTriangleMeshShape* m_triangleMesh;
  581. BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from, const btTransform& to,
  582. btCollisionWorld::ConvexResultCallback* resultCallback, const btCollisionObject* collisionObject, btTriangleMeshShape* triangleMesh, const btTransform& triangleToWorld) : btTriangleConvexcastCallback(castShape, from, to, triangleToWorld, triangleMesh->getMargin()),
  583. m_resultCallback(resultCallback),
  584. m_collisionObject(collisionObject),
  585. m_triangleMesh(triangleMesh)
  586. {
  587. }
  588. virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex)
  589. {
  590. btCollisionWorld::LocalShapeInfo shapeInfo;
  591. shapeInfo.m_shapePart = partId;
  592. shapeInfo.m_triangleIndex = triangleIndex;
  593. if (hitFraction <= m_resultCallback->m_closestHitFraction)
  594. {
  595. btCollisionWorld::LocalConvexResult convexResult(m_collisionObject,
  596. &shapeInfo,
  597. hitNormalLocal,
  598. hitPointLocal,
  599. hitFraction);
  600. bool normalInWorldSpace = true;
  601. return m_resultCallback->addSingleResult(convexResult, normalInWorldSpace);
  602. }
  603. return hitFraction;
  604. }
  605. };
  606. BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans, convexToTrans, &resultCallback, colObjWrap->getCollisionObject(), triangleMesh, colObjWorldTransform);
  607. tccb.m_hitFraction = resultCallback.m_closestHitFraction;
  608. tccb.m_allowedPenetration = allowedPenetration;
  609. btVector3 boxMinLocal, boxMaxLocal;
  610. castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
  611. triangleMesh->performConvexcast(&tccb, convexFromLocal, convexToLocal, boxMinLocal, boxMaxLocal);
  612. }
  613. else
  614. {
  615. if (collisionShape->getShapeType() == STATIC_PLANE_PROXYTYPE)
  616. {
  617. btConvexCast::CastResult castResult;
  618. castResult.m_allowedPenetration = allowedPenetration;
  619. castResult.m_fraction = resultCallback.m_closestHitFraction;
  620. btStaticPlaneShape* planeShape = (btStaticPlaneShape*)collisionShape;
  621. btContinuousConvexCollision convexCaster1(castShape, planeShape);
  622. btConvexCast* castPtr = &convexCaster1;
  623. if (castPtr->calcTimeOfImpact(convexFromTrans, convexToTrans, colObjWorldTransform, colObjWorldTransform, castResult))
  624. {
  625. //add hit
  626. if (castResult.m_normal.length2() > btScalar(0.0001))
  627. {
  628. if (castResult.m_fraction < resultCallback.m_closestHitFraction)
  629. {
  630. castResult.m_normal.normalize();
  631. btCollisionWorld::LocalConvexResult localConvexResult(
  632. colObjWrap->getCollisionObject(),
  633. 0,
  634. castResult.m_normal,
  635. castResult.m_hitPoint,
  636. castResult.m_fraction);
  637. bool normalInWorldSpace = true;
  638. resultCallback.addSingleResult(localConvexResult, normalInWorldSpace);
  639. }
  640. }
  641. }
  642. }
  643. else
  644. {
  645. //BT_PROFILE("convexSweepConcave");
  646. btConcaveShape* concaveShape = (btConcaveShape*)collisionShape;
  647. btTransform worldTocollisionObject = colObjWorldTransform.inverse();
  648. btVector3 convexFromLocal = worldTocollisionObject * convexFromTrans.getOrigin();
  649. btVector3 convexToLocal = worldTocollisionObject * convexToTrans.getOrigin();
  650. // rotation of box in local mesh space = MeshRotation^-1 * ConvexToRotation
  651. btTransform rotationXform = btTransform(worldTocollisionObject.getBasis() * convexToTrans.getBasis());
  652. //ConvexCast::CastResult
  653. struct BridgeTriangleConvexcastCallback : public btTriangleConvexcastCallback
  654. {
  655. btCollisionWorld::ConvexResultCallback* m_resultCallback;
  656. const btCollisionObject* m_collisionObject;
  657. btConcaveShape* m_triangleMesh;
  658. BridgeTriangleConvexcastCallback(const btConvexShape* castShape, const btTransform& from, const btTransform& to,
  659. btCollisionWorld::ConvexResultCallback* resultCallback, const btCollisionObject* collisionObject, btConcaveShape* triangleMesh, const btTransform& triangleToWorld) : btTriangleConvexcastCallback(castShape, from, to, triangleToWorld, triangleMesh->getMargin()),
  660. m_resultCallback(resultCallback),
  661. m_collisionObject(collisionObject),
  662. m_triangleMesh(triangleMesh)
  663. {
  664. }
  665. virtual btScalar reportHit(const btVector3& hitNormalLocal, const btVector3& hitPointLocal, btScalar hitFraction, int partId, int triangleIndex)
  666. {
  667. btCollisionWorld::LocalShapeInfo shapeInfo;
  668. shapeInfo.m_shapePart = partId;
  669. shapeInfo.m_triangleIndex = triangleIndex;
  670. if (hitFraction <= m_resultCallback->m_closestHitFraction)
  671. {
  672. btCollisionWorld::LocalConvexResult convexResult(m_collisionObject,
  673. &shapeInfo,
  674. hitNormalLocal,
  675. hitPointLocal,
  676. hitFraction);
  677. bool normalInWorldSpace = true;
  678. return m_resultCallback->addSingleResult(convexResult, normalInWorldSpace);
  679. }
  680. return hitFraction;
  681. }
  682. };
  683. BridgeTriangleConvexcastCallback tccb(castShape, convexFromTrans, convexToTrans, &resultCallback, colObjWrap->getCollisionObject(), concaveShape, colObjWorldTransform);
  684. tccb.m_hitFraction = resultCallback.m_closestHitFraction;
  685. tccb.m_allowedPenetration = allowedPenetration;
  686. btVector3 boxMinLocal, boxMaxLocal;
  687. castShape->getAabb(rotationXform, boxMinLocal, boxMaxLocal);
  688. btVector3 rayAabbMinLocal = convexFromLocal;
  689. rayAabbMinLocal.setMin(convexToLocal);
  690. btVector3 rayAabbMaxLocal = convexFromLocal;
  691. rayAabbMaxLocal.setMax(convexToLocal);
  692. rayAabbMinLocal += boxMinLocal;
  693. rayAabbMaxLocal += boxMaxLocal;
  694. concaveShape->processAllTriangles(&tccb, rayAabbMinLocal, rayAabbMaxLocal);
  695. }
  696. }
  697. }
  698. else
  699. {
  700. if (collisionShape->isCompound())
  701. {
  702. struct btCompoundLeafCallback : btDbvt::ICollide
  703. {
  704. btCompoundLeafCallback(
  705. const btCollisionObjectWrapper* colObjWrap,
  706. const btConvexShape* castShape,
  707. const btTransform& convexFromTrans,
  708. const btTransform& convexToTrans,
  709. btScalar allowedPenetration,
  710. const btCompoundShape* compoundShape,
  711. const btTransform& colObjWorldTransform,
  712. ConvexResultCallback& resultCallback)
  713. : m_colObjWrap(colObjWrap),
  714. m_castShape(castShape),
  715. m_convexFromTrans(convexFromTrans),
  716. m_convexToTrans(convexToTrans),
  717. m_allowedPenetration(allowedPenetration),
  718. m_compoundShape(compoundShape),
  719. m_colObjWorldTransform(colObjWorldTransform),
  720. m_resultCallback(resultCallback)
  721. {
  722. }
  723. const btCollisionObjectWrapper* m_colObjWrap;
  724. const btConvexShape* m_castShape;
  725. const btTransform& m_convexFromTrans;
  726. const btTransform& m_convexToTrans;
  727. btScalar m_allowedPenetration;
  728. const btCompoundShape* m_compoundShape;
  729. const btTransform& m_colObjWorldTransform;
  730. ConvexResultCallback& m_resultCallback;
  731. public:
  732. void ProcessChild(int index, const btTransform& childTrans, const btCollisionShape* childCollisionShape)
  733. {
  734. btTransform childWorldTrans = m_colObjWorldTransform * childTrans;
  735. struct LocalInfoAdder : public ConvexResultCallback
  736. {
  737. ConvexResultCallback* m_userCallback;
  738. int m_i;
  739. LocalInfoAdder(int i, ConvexResultCallback* user)
  740. : m_userCallback(user), m_i(i)
  741. {
  742. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  743. }
  744. virtual bool needsCollision(btBroadphaseProxy* p) const
  745. {
  746. return m_userCallback->needsCollision(p);
  747. }
  748. virtual btScalar addSingleResult(btCollisionWorld::LocalConvexResult& r, bool b)
  749. {
  750. btCollisionWorld::LocalShapeInfo shapeInfo;
  751. shapeInfo.m_shapePart = -1;
  752. shapeInfo.m_triangleIndex = m_i;
  753. if (r.m_localShapeInfo == NULL)
  754. r.m_localShapeInfo = &shapeInfo;
  755. const btScalar result = m_userCallback->addSingleResult(r, b);
  756. m_closestHitFraction = m_userCallback->m_closestHitFraction;
  757. return result;
  758. }
  759. };
  760. LocalInfoAdder my_cb(index, &m_resultCallback);
  761. btCollisionObjectWrapper tmpObj(m_colObjWrap, childCollisionShape, m_colObjWrap->getCollisionObject(), childWorldTrans, -1, index);
  762. objectQuerySingleInternal(m_castShape, m_convexFromTrans, m_convexToTrans, &tmpObj, my_cb, m_allowedPenetration);
  763. }
  764. void Process(const btDbvtNode* leaf)
  765. {
  766. // Processing leaf node
  767. int index = leaf->dataAsInt;
  768. btTransform childTrans = m_compoundShape->getChildTransform(index);
  769. const btCollisionShape* childCollisionShape = m_compoundShape->getChildShape(index);
  770. ProcessChild(index, childTrans, childCollisionShape);
  771. }
  772. };
  773. BT_PROFILE("convexSweepCompound");
  774. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(collisionShape);
  775. btVector3 fromLocalAabbMin, fromLocalAabbMax;
  776. btVector3 toLocalAabbMin, toLocalAabbMax;
  777. castShape->getAabb(colObjWorldTransform.inverse() * convexFromTrans, fromLocalAabbMin, fromLocalAabbMax);
  778. castShape->getAabb(colObjWorldTransform.inverse() * convexToTrans, toLocalAabbMin, toLocalAabbMax);
  779. fromLocalAabbMin.setMin(toLocalAabbMin);
  780. fromLocalAabbMax.setMax(toLocalAabbMax);
  781. btCompoundLeafCallback callback(colObjWrap, castShape, convexFromTrans, convexToTrans,
  782. allowedPenetration, compoundShape, colObjWorldTransform, resultCallback);
  783. const btDbvt* tree = compoundShape->getDynamicAabbTree();
  784. if (tree)
  785. {
  786. const ATTRIBUTE_ALIGNED16(btDbvtVolume) bounds = btDbvtVolume::FromMM(fromLocalAabbMin, fromLocalAabbMax);
  787. tree->collideTV(tree->m_root, bounds, callback);
  788. }
  789. else
  790. {
  791. int i;
  792. for (i = 0; i < compoundShape->getNumChildShapes(); i++)
  793. {
  794. const btCollisionShape* childCollisionShape = compoundShape->getChildShape(i);
  795. btTransform childTrans = compoundShape->getChildTransform(i);
  796. callback.ProcessChild(i, childTrans, childCollisionShape);
  797. }
  798. }
  799. }
  800. }
  801. }
  802. }
  803. struct btSingleRayCallback : public btBroadphaseRayCallback
  804. {
  805. btVector3 m_rayFromWorld;
  806. btVector3 m_rayToWorld;
  807. btTransform m_rayFromTrans;
  808. btTransform m_rayToTrans;
  809. btVector3 m_hitNormal;
  810. const btCollisionWorld* m_world;
  811. btCollisionWorld::RayResultCallback& m_resultCallback;
  812. btSingleRayCallback(const btVector3& rayFromWorld, const btVector3& rayToWorld, const btCollisionWorld* world, btCollisionWorld::RayResultCallback& resultCallback)
  813. : m_rayFromWorld(rayFromWorld),
  814. m_rayToWorld(rayToWorld),
  815. m_world(world),
  816. m_resultCallback(resultCallback)
  817. {
  818. m_rayFromTrans.setIdentity();
  819. m_rayFromTrans.setOrigin(m_rayFromWorld);
  820. m_rayToTrans.setIdentity();
  821. m_rayToTrans.setOrigin(m_rayToWorld);
  822. btVector3 rayDir = (rayToWorld - rayFromWorld);
  823. rayDir.normalize();
  824. ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT
  825. m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
  826. m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
  827. m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
  828. m_signs[0] = m_rayDirectionInverse[0] < 0.0;
  829. m_signs[1] = m_rayDirectionInverse[1] < 0.0;
  830. m_signs[2] = m_rayDirectionInverse[2] < 0.0;
  831. m_lambda_max = rayDir.dot(m_rayToWorld - m_rayFromWorld);
  832. }
  833. virtual bool process(const btBroadphaseProxy* proxy)
  834. {
  835. ///terminate further ray tests, once the closestHitFraction reached zero
  836. if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
  837. return false;
  838. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  839. //only perform raycast if filterMask matches
  840. if (m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  841. {
  842. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  843. //btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
  844. #if 0
  845. #ifdef RECALCULATE_AABB
  846. btVector3 collisionObjectAabbMin,collisionObjectAabbMax;
  847. collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(),collisionObjectAabbMin,collisionObjectAabbMax);
  848. #else
  849. //getBroadphase()->getAabb(collisionObject->getBroadphaseHandle(),collisionObjectAabbMin,collisionObjectAabbMax);
  850. const btVector3& collisionObjectAabbMin = collisionObject->getBroadphaseHandle()->m_aabbMin;
  851. const btVector3& collisionObjectAabbMax = collisionObject->getBroadphaseHandle()->m_aabbMax;
  852. #endif
  853. #endif
  854. //btScalar hitLambda = m_resultCallback.m_closestHitFraction;
  855. //culling already done by broadphase
  856. //if (btRayAabb(m_rayFromWorld,m_rayToWorld,collisionObjectAabbMin,collisionObjectAabbMax,hitLambda,m_hitNormal))
  857. {
  858. m_world->rayTestSingle(m_rayFromTrans, m_rayToTrans,
  859. collisionObject,
  860. collisionObject->getCollisionShape(),
  861. collisionObject->getWorldTransform(),
  862. m_resultCallback);
  863. }
  864. }
  865. return true;
  866. }
  867. };
  868. void btCollisionWorld::rayTest(const btVector3& rayFromWorld, const btVector3& rayToWorld, RayResultCallback& resultCallback) const
  869. {
  870. //BT_PROFILE("rayTest");
  871. /// use the broadphase to accelerate the search for objects, based on their aabb
  872. /// and for each object with ray-aabb overlap, perform an exact ray test
  873. btSingleRayCallback rayCB(rayFromWorld, rayToWorld, this, resultCallback);
  874. #ifndef USE_BRUTEFORCE_RAYBROADPHASE
  875. m_broadphasePairCache->rayTest(rayFromWorld, rayToWorld, rayCB);
  876. #else
  877. for (int i = 0; i < this->getNumCollisionObjects(); i++)
  878. {
  879. rayCB.process(m_collisionObjects[i]->getBroadphaseHandle());
  880. }
  881. #endif //USE_BRUTEFORCE_RAYBROADPHASE
  882. }
  883. struct btSingleSweepCallback : public btBroadphaseRayCallback
  884. {
  885. btTransform m_convexFromTrans;
  886. btTransform m_convexToTrans;
  887. btVector3 m_hitNormal;
  888. const btCollisionWorld* m_world;
  889. btCollisionWorld::ConvexResultCallback& m_resultCallback;
  890. btScalar m_allowedCcdPenetration;
  891. const btConvexShape* m_castShape;
  892. btSingleSweepCallback(const btConvexShape* castShape, const btTransform& convexFromTrans, const btTransform& convexToTrans, const btCollisionWorld* world, btCollisionWorld::ConvexResultCallback& resultCallback, btScalar allowedPenetration)
  893. : m_convexFromTrans(convexFromTrans),
  894. m_convexToTrans(convexToTrans),
  895. m_world(world),
  896. m_resultCallback(resultCallback),
  897. m_allowedCcdPenetration(allowedPenetration),
  898. m_castShape(castShape)
  899. {
  900. btVector3 unnormalizedRayDir = (m_convexToTrans.getOrigin() - m_convexFromTrans.getOrigin());
  901. btVector3 rayDir = unnormalizedRayDir.fuzzyZero() ? btVector3(btScalar(0.0), btScalar(0.0), btScalar(0.0)) : unnormalizedRayDir.normalized();
  902. ///what about division by zero? --> just set rayDirection[i] to INF/BT_LARGE_FLOAT
  903. m_rayDirectionInverse[0] = rayDir[0] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[0];
  904. m_rayDirectionInverse[1] = rayDir[1] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[1];
  905. m_rayDirectionInverse[2] = rayDir[2] == btScalar(0.0) ? btScalar(BT_LARGE_FLOAT) : btScalar(1.0) / rayDir[2];
  906. m_signs[0] = m_rayDirectionInverse[0] < 0.0;
  907. m_signs[1] = m_rayDirectionInverse[1] < 0.0;
  908. m_signs[2] = m_rayDirectionInverse[2] < 0.0;
  909. m_lambda_max = rayDir.dot(unnormalizedRayDir);
  910. }
  911. virtual bool process(const btBroadphaseProxy* proxy)
  912. {
  913. ///terminate further convex sweep tests, once the closestHitFraction reached zero
  914. if (m_resultCallback.m_closestHitFraction == btScalar(0.f))
  915. return false;
  916. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  917. //only perform raycast if filterMask matches
  918. if (m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  919. {
  920. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  921. m_world->objectQuerySingle(m_castShape, m_convexFromTrans, m_convexToTrans,
  922. collisionObject,
  923. collisionObject->getCollisionShape(),
  924. collisionObject->getWorldTransform(),
  925. m_resultCallback,
  926. m_allowedCcdPenetration);
  927. }
  928. return true;
  929. }
  930. };
  931. void btCollisionWorld::convexSweepTest(const btConvexShape* castShape, const btTransform& convexFromWorld, const btTransform& convexToWorld, ConvexResultCallback& resultCallback, btScalar allowedCcdPenetration) const
  932. {
  933. BT_PROFILE("convexSweepTest");
  934. /// use the broadphase to accelerate the search for objects, based on their aabb
  935. /// and for each object with ray-aabb overlap, perform an exact ray test
  936. /// unfortunately the implementation for rayTest and convexSweepTest duplicated, albeit practically identical
  937. btTransform convexFromTrans, convexToTrans;
  938. convexFromTrans = convexFromWorld;
  939. convexToTrans = convexToWorld;
  940. btVector3 castShapeAabbMin, castShapeAabbMax;
  941. /* Compute AABB that encompasses angular movement */
  942. {
  943. btVector3 linVel, angVel;
  944. btTransformUtil::calculateVelocity(convexFromTrans, convexToTrans, 1.0f, linVel, angVel);
  945. btVector3 zeroLinVel;
  946. zeroLinVel.setValue(0, 0, 0);
  947. btTransform R;
  948. R.setIdentity();
  949. R.setRotation(convexFromTrans.getRotation());
  950. castShape->calculateTemporalAabb(R, zeroLinVel, angVel, 1.0f, castShapeAabbMin, castShapeAabbMax);
  951. }
  952. #ifndef USE_BRUTEFORCE_RAYBROADPHASE
  953. btSingleSweepCallback convexCB(castShape, convexFromWorld, convexToWorld, this, resultCallback, allowedCcdPenetration);
  954. m_broadphasePairCache->rayTest(convexFromTrans.getOrigin(), convexToTrans.getOrigin(), convexCB, castShapeAabbMin, castShapeAabbMax);
  955. #else
  956. /// go over all objects, and if the ray intersects their aabb + cast shape aabb,
  957. // do a ray-shape query using convexCaster (CCD)
  958. int i;
  959. for (i = 0; i < m_collisionObjects.size(); i++)
  960. {
  961. btCollisionObject* collisionObject = m_collisionObjects[i];
  962. //only perform raycast if filterMask matches
  963. if (resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  964. {
  965. //RigidcollisionObject* collisionObject = ctrl->GetRigidcollisionObject();
  966. btVector3 collisionObjectAabbMin, collisionObjectAabbMax;
  967. collisionObject->getCollisionShape()->getAabb(collisionObject->getWorldTransform(), collisionObjectAabbMin, collisionObjectAabbMax);
  968. AabbExpand(collisionObjectAabbMin, collisionObjectAabbMax, castShapeAabbMin, castShapeAabbMax);
  969. btScalar hitLambda = btScalar(1.); //could use resultCallback.m_closestHitFraction, but needs testing
  970. btVector3 hitNormal;
  971. if (btRayAabb(convexFromWorld.getOrigin(), convexToWorld.getOrigin(), collisionObjectAabbMin, collisionObjectAabbMax, hitLambda, hitNormal))
  972. {
  973. objectQuerySingle(castShape, convexFromTrans, convexToTrans,
  974. collisionObject,
  975. collisionObject->getCollisionShape(),
  976. collisionObject->getWorldTransform(),
  977. resultCallback,
  978. allowedCcdPenetration);
  979. }
  980. }
  981. }
  982. #endif //USE_BRUTEFORCE_RAYBROADPHASE
  983. }
  984. struct btBridgedManifoldResult : public btManifoldResult
  985. {
  986. btCollisionWorld::ContactResultCallback& m_resultCallback;
  987. btBridgedManifoldResult(const btCollisionObjectWrapper* obj0Wrap, const btCollisionObjectWrapper* obj1Wrap, btCollisionWorld::ContactResultCallback& resultCallback)
  988. : btManifoldResult(obj0Wrap, obj1Wrap),
  989. m_resultCallback(resultCallback)
  990. {
  991. }
  992. virtual void addContactPoint(const btVector3& normalOnBInWorld, const btVector3& pointInWorld, btScalar depth)
  993. {
  994. bool isSwapped = m_manifoldPtr->getBody0() != m_body0Wrap->getCollisionObject();
  995. btVector3 pointA = pointInWorld + normalOnBInWorld * depth;
  996. btVector3 localA;
  997. btVector3 localB;
  998. if (isSwapped)
  999. {
  1000. localA = m_body1Wrap->getCollisionObject()->getWorldTransform().invXform(pointA);
  1001. localB = m_body0Wrap->getCollisionObject()->getWorldTransform().invXform(pointInWorld);
  1002. }
  1003. else
  1004. {
  1005. localA = m_body0Wrap->getCollisionObject()->getWorldTransform().invXform(pointA);
  1006. localB = m_body1Wrap->getCollisionObject()->getWorldTransform().invXform(pointInWorld);
  1007. }
  1008. btManifoldPoint newPt(localA, localB, normalOnBInWorld, depth);
  1009. newPt.m_positionWorldOnA = pointA;
  1010. newPt.m_positionWorldOnB = pointInWorld;
  1011. //BP mod, store contact triangles.
  1012. if (isSwapped)
  1013. {
  1014. newPt.m_partId0 = m_partId1;
  1015. newPt.m_partId1 = m_partId0;
  1016. newPt.m_index0 = m_index1;
  1017. newPt.m_index1 = m_index0;
  1018. }
  1019. else
  1020. {
  1021. newPt.m_partId0 = m_partId0;
  1022. newPt.m_partId1 = m_partId1;
  1023. newPt.m_index0 = m_index0;
  1024. newPt.m_index1 = m_index1;
  1025. }
  1026. //experimental feature info, for per-triangle material etc.
  1027. const btCollisionObjectWrapper* obj0Wrap = isSwapped ? m_body1Wrap : m_body0Wrap;
  1028. const btCollisionObjectWrapper* obj1Wrap = isSwapped ? m_body0Wrap : m_body1Wrap;
  1029. m_resultCallback.addSingleResult(newPt, obj0Wrap, newPt.m_partId0, newPt.m_index0, obj1Wrap, newPt.m_partId1, newPt.m_index1);
  1030. }
  1031. };
  1032. struct btSingleContactCallback : public btBroadphaseAabbCallback
  1033. {
  1034. btCollisionObject* m_collisionObject;
  1035. btCollisionWorld* m_world;
  1036. btCollisionWorld::ContactResultCallback& m_resultCallback;
  1037. btSingleContactCallback(btCollisionObject* collisionObject, btCollisionWorld* world, btCollisionWorld::ContactResultCallback& resultCallback)
  1038. : m_collisionObject(collisionObject),
  1039. m_world(world),
  1040. m_resultCallback(resultCallback)
  1041. {
  1042. }
  1043. virtual bool process(const btBroadphaseProxy* proxy)
  1044. {
  1045. btCollisionObject* collisionObject = (btCollisionObject*)proxy->m_clientObject;
  1046. if (collisionObject == m_collisionObject)
  1047. return true;
  1048. //only perform raycast if filterMask matches
  1049. if (m_resultCallback.needsCollision(collisionObject->getBroadphaseHandle()))
  1050. {
  1051. btCollisionObjectWrapper ob0(0, m_collisionObject->getCollisionShape(), m_collisionObject, m_collisionObject->getWorldTransform(), -1, -1);
  1052. btCollisionObjectWrapper ob1(0, collisionObject->getCollisionShape(), collisionObject, collisionObject->getWorldTransform(), -1, -1);
  1053. btCollisionAlgorithm* algorithm = m_world->getDispatcher()->findAlgorithm(&ob0, &ob1, 0, BT_CLOSEST_POINT_ALGORITHMS);
  1054. if (algorithm)
  1055. {
  1056. btBridgedManifoldResult contactPointResult(&ob0, &ob1, m_resultCallback);
  1057. //discrete collision detection query
  1058. algorithm->processCollision(&ob0, &ob1, m_world->getDispatchInfo(), &contactPointResult);
  1059. algorithm->~btCollisionAlgorithm();
  1060. m_world->getDispatcher()->freeCollisionAlgorithm(algorithm);
  1061. }
  1062. }
  1063. return true;
  1064. }
  1065. };
  1066. ///contactTest performs a discrete collision test against all objects in the btCollisionWorld, and calls the resultCallback.
  1067. ///it reports one or more contact points for every overlapping object (including the one with deepest penetration)
  1068. void btCollisionWorld::contactTest(btCollisionObject* colObj, ContactResultCallback& resultCallback)
  1069. {
  1070. btVector3 aabbMin, aabbMax;
  1071. colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), aabbMin, aabbMax);
  1072. btSingleContactCallback contactCB(colObj, this, resultCallback);
  1073. m_broadphasePairCache->aabbTest(aabbMin, aabbMax, contactCB);
  1074. }
  1075. ///contactTest performs a discrete collision test between two collision objects and calls the resultCallback if overlap if detected.
  1076. ///it reports one or more contact points (including the one with deepest penetration)
  1077. void btCollisionWorld::contactPairTest(btCollisionObject* colObjA, btCollisionObject* colObjB, ContactResultCallback& resultCallback)
  1078. {
  1079. btCollisionObjectWrapper obA(0, colObjA->getCollisionShape(), colObjA, colObjA->getWorldTransform(), -1, -1);
  1080. btCollisionObjectWrapper obB(0, colObjB->getCollisionShape(), colObjB, colObjB->getWorldTransform(), -1, -1);
  1081. btCollisionAlgorithm* algorithm = getDispatcher()->findAlgorithm(&obA, &obB, 0, BT_CLOSEST_POINT_ALGORITHMS);
  1082. if (algorithm)
  1083. {
  1084. btBridgedManifoldResult contactPointResult(&obA, &obB, resultCallback);
  1085. contactPointResult.m_closestPointDistanceThreshold = resultCallback.m_closestDistanceThreshold;
  1086. //discrete collision detection query
  1087. algorithm->processCollision(&obA, &obB, getDispatchInfo(), &contactPointResult);
  1088. algorithm->~btCollisionAlgorithm();
  1089. getDispatcher()->freeCollisionAlgorithm(algorithm);
  1090. }
  1091. }
  1092. class DebugDrawcallback : public btTriangleCallback, public btInternalTriangleIndexCallback
  1093. {
  1094. btIDebugDraw* m_debugDrawer;
  1095. btVector3 m_color;
  1096. btTransform m_worldTrans;
  1097. public:
  1098. DebugDrawcallback(btIDebugDraw* debugDrawer, const btTransform& worldTrans, const btVector3& color) : m_debugDrawer(debugDrawer),
  1099. m_color(color),
  1100. m_worldTrans(worldTrans)
  1101. {
  1102. }
  1103. virtual void internalProcessTriangleIndex(btVector3* triangle, int partId, int triangleIndex)
  1104. {
  1105. processTriangle(triangle, partId, triangleIndex);
  1106. }
  1107. virtual void processTriangle(btVector3* triangle, int partId, int triangleIndex)
  1108. {
  1109. (void)partId;
  1110. (void)triangleIndex;
  1111. btVector3 wv0, wv1, wv2;
  1112. wv0 = m_worldTrans * triangle[0];
  1113. wv1 = m_worldTrans * triangle[1];
  1114. wv2 = m_worldTrans * triangle[2];
  1115. btVector3 center = (wv0 + wv1 + wv2) * btScalar(1. / 3.);
  1116. if (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawNormals)
  1117. {
  1118. btVector3 normal = (wv1 - wv0).cross(wv2 - wv0);
  1119. normal.normalize();
  1120. btVector3 normalColor(1, 1, 0);
  1121. m_debugDrawer->drawLine(center, center + normal, normalColor);
  1122. }
  1123. m_debugDrawer->drawTriangle(wv0, wv1, wv2, m_color, 1.0);
  1124. }
  1125. };
  1126. void btCollisionWorld::debugDrawObject(const btTransform& worldTransform, const btCollisionShape* shape, const btVector3& color)
  1127. {
  1128. // Draw a small simplex at the center of the object
  1129. if (getDebugDrawer() && getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawFrames)
  1130. {
  1131. getDebugDrawer()->drawTransform(worldTransform, .1);
  1132. }
  1133. if (shape->getShapeType() == COMPOUND_SHAPE_PROXYTYPE)
  1134. {
  1135. const btCompoundShape* compoundShape = static_cast<const btCompoundShape*>(shape);
  1136. for (int i = compoundShape->getNumChildShapes() - 1; i >= 0; i--)
  1137. {
  1138. btTransform childTrans = compoundShape->getChildTransform(i);
  1139. const btCollisionShape* colShape = compoundShape->getChildShape(i);
  1140. debugDrawObject(worldTransform * childTrans, colShape, color);
  1141. }
  1142. }
  1143. else
  1144. {
  1145. switch (shape->getShapeType())
  1146. {
  1147. case BOX_SHAPE_PROXYTYPE:
  1148. {
  1149. const btBoxShape* boxShape = static_cast<const btBoxShape*>(shape);
  1150. btVector3 halfExtents = boxShape->getHalfExtentsWithMargin();
  1151. getDebugDrawer()->drawBox(-halfExtents, halfExtents, worldTransform, color);
  1152. break;
  1153. }
  1154. case SPHERE_SHAPE_PROXYTYPE:
  1155. {
  1156. const btSphereShape* sphereShape = static_cast<const btSphereShape*>(shape);
  1157. btScalar radius = sphereShape->getMargin(); //radius doesn't include the margin, so draw with margin
  1158. getDebugDrawer()->drawSphere(radius, worldTransform, color);
  1159. break;
  1160. }
  1161. case MULTI_SPHERE_SHAPE_PROXYTYPE:
  1162. {
  1163. const btMultiSphereShape* multiSphereShape = static_cast<const btMultiSphereShape*>(shape);
  1164. btTransform childTransform;
  1165. childTransform.setIdentity();
  1166. for (int i = multiSphereShape->getSphereCount() - 1; i >= 0; i--)
  1167. {
  1168. childTransform.setOrigin(multiSphereShape->getSpherePosition(i));
  1169. getDebugDrawer()->drawSphere(multiSphereShape->getSphereRadius(i), worldTransform * childTransform, color);
  1170. }
  1171. break;
  1172. }
  1173. case CAPSULE_SHAPE_PROXYTYPE:
  1174. {
  1175. const btCapsuleShape* capsuleShape = static_cast<const btCapsuleShape*>(shape);
  1176. btScalar radius = capsuleShape->getRadius();
  1177. btScalar halfHeight = capsuleShape->getHalfHeight();
  1178. int upAxis = capsuleShape->getUpAxis();
  1179. getDebugDrawer()->drawCapsule(radius, halfHeight, upAxis, worldTransform, color);
  1180. break;
  1181. }
  1182. case CONE_SHAPE_PROXYTYPE:
  1183. {
  1184. const btConeShape* coneShape = static_cast<const btConeShape*>(shape);
  1185. btScalar radius = coneShape->getRadius(); //+coneShape->getMargin();
  1186. btScalar height = coneShape->getHeight(); //+coneShape->getMargin();
  1187. int upAxis = coneShape->getConeUpIndex();
  1188. getDebugDrawer()->drawCone(radius, height, upAxis, worldTransform, color);
  1189. break;
  1190. }
  1191. case CYLINDER_SHAPE_PROXYTYPE:
  1192. {
  1193. const btCylinderShape* cylinder = static_cast<const btCylinderShape*>(shape);
  1194. int upAxis = cylinder->getUpAxis();
  1195. btScalar radius = cylinder->getRadius();
  1196. btScalar halfHeight = cylinder->getHalfExtentsWithMargin()[upAxis];
  1197. getDebugDrawer()->drawCylinder(radius, halfHeight, upAxis, worldTransform, color);
  1198. break;
  1199. }
  1200. case STATIC_PLANE_PROXYTYPE:
  1201. {
  1202. const btStaticPlaneShape* staticPlaneShape = static_cast<const btStaticPlaneShape*>(shape);
  1203. btScalar planeConst = staticPlaneShape->getPlaneConstant();
  1204. const btVector3& planeNormal = staticPlaneShape->getPlaneNormal();
  1205. getDebugDrawer()->drawPlane(planeNormal, planeConst, worldTransform, color);
  1206. break;
  1207. }
  1208. default:
  1209. {
  1210. /// for polyhedral shapes
  1211. if (shape->isPolyhedral())
  1212. {
  1213. btPolyhedralConvexShape* polyshape = (btPolyhedralConvexShape*)shape;
  1214. int i;
  1215. if (polyshape->getConvexPolyhedron())
  1216. {
  1217. const btConvexPolyhedron* poly = polyshape->getConvexPolyhedron();
  1218. for (i = 0; i < poly->m_faces.size(); i++)
  1219. {
  1220. btVector3 centroid(0, 0, 0);
  1221. int numVerts = poly->m_faces[i].m_indices.size();
  1222. if (numVerts)
  1223. {
  1224. int lastV = poly->m_faces[i].m_indices[numVerts - 1];
  1225. for (int v = 0; v < poly->m_faces[i].m_indices.size(); v++)
  1226. {
  1227. int curVert = poly->m_faces[i].m_indices[v];
  1228. centroid += poly->m_vertices[curVert];
  1229. getDebugDrawer()->drawLine(worldTransform * poly->m_vertices[lastV], worldTransform * poly->m_vertices[curVert], color);
  1230. lastV = curVert;
  1231. }
  1232. }
  1233. centroid *= btScalar(1.f) / btScalar(numVerts);
  1234. if (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawNormals)
  1235. {
  1236. btVector3 normalColor(1, 1, 0);
  1237. btVector3 faceNormal(poly->m_faces[i].m_plane[0], poly->m_faces[i].m_plane[1], poly->m_faces[i].m_plane[2]);
  1238. getDebugDrawer()->drawLine(worldTransform * centroid, worldTransform * (centroid + faceNormal), normalColor);
  1239. }
  1240. }
  1241. }
  1242. else
  1243. {
  1244. for (i = 0; i < polyshape->getNumEdges(); i++)
  1245. {
  1246. btVector3 a, b;
  1247. polyshape->getEdge(i, a, b);
  1248. btVector3 wa = worldTransform * a;
  1249. btVector3 wb = worldTransform * b;
  1250. getDebugDrawer()->drawLine(wa, wb, color);
  1251. }
  1252. }
  1253. }
  1254. if (shape->isConcave())
  1255. {
  1256. btConcaveShape* concaveMesh = (btConcaveShape*)shape;
  1257. ///@todo pass camera, for some culling? no -> we are not a graphics lib
  1258. btVector3 aabbMax(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
  1259. btVector3 aabbMin(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
  1260. DebugDrawcallback drawCallback(getDebugDrawer(), worldTransform, color);
  1261. concaveMesh->processAllTriangles(&drawCallback, aabbMin, aabbMax);
  1262. }
  1263. if (shape->getShapeType() == CONVEX_TRIANGLEMESH_SHAPE_PROXYTYPE)
  1264. {
  1265. btConvexTriangleMeshShape* convexMesh = (btConvexTriangleMeshShape*)shape;
  1266. //todo: pass camera for some culling
  1267. btVector3 aabbMax(btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT), btScalar(BT_LARGE_FLOAT));
  1268. btVector3 aabbMin(btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT), btScalar(-BT_LARGE_FLOAT));
  1269. //DebugDrawcallback drawCallback;
  1270. DebugDrawcallback drawCallback(getDebugDrawer(), worldTransform, color);
  1271. convexMesh->getMeshInterface()->InternalProcessAllTriangles(&drawCallback, aabbMin, aabbMax);
  1272. }
  1273. }
  1274. }
  1275. }
  1276. }
  1277. void btCollisionWorld::debugDrawWorld()
  1278. {
  1279. if (getDebugDrawer())
  1280. {
  1281. getDebugDrawer()->clearLines();
  1282. btIDebugDraw::DefaultColors defaultColors = getDebugDrawer()->getDefaultColors();
  1283. if (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawContactPoints)
  1284. {
  1285. if (getDispatcher())
  1286. {
  1287. int numManifolds = getDispatcher()->getNumManifolds();
  1288. for (int i = 0; i < numManifolds; i++)
  1289. {
  1290. btPersistentManifold* contactManifold = getDispatcher()->getManifoldByIndexInternal(i);
  1291. //btCollisionObject* obA = static_cast<btCollisionObject*>(contactManifold->getBody0());
  1292. //btCollisionObject* obB = static_cast<btCollisionObject*>(contactManifold->getBody1());
  1293. int numContacts = contactManifold->getNumContacts();
  1294. for (int j = 0; j < numContacts; j++)
  1295. {
  1296. btManifoldPoint& cp = contactManifold->getContactPoint(j);
  1297. getDebugDrawer()->drawContactPoint(cp.m_positionWorldOnB, cp.m_normalWorldOnB, cp.getDistance(), cp.getLifeTime(), defaultColors.m_contactPoint);
  1298. }
  1299. }
  1300. }
  1301. }
  1302. if ((getDebugDrawer()->getDebugMode() & (btIDebugDraw::DBG_DrawWireframe | btIDebugDraw::DBG_DrawAabb)))
  1303. {
  1304. int i;
  1305. for (i = 0; i < m_collisionObjects.size(); i++)
  1306. {
  1307. btCollisionObject* colObj = m_collisionObjects[i];
  1308. if ((colObj->getCollisionFlags() & btCollisionObject::CF_DISABLE_VISUALIZE_OBJECT) == 0)
  1309. {
  1310. if (getDebugDrawer() && (getDebugDrawer()->getDebugMode() & btIDebugDraw::DBG_DrawWireframe))
  1311. {
  1312. btVector3 color(btScalar(0.4), btScalar(0.4), btScalar(0.4));
  1313. switch (colObj->getActivationState())
  1314. {
  1315. case ACTIVE_TAG:
  1316. color = defaultColors.m_activeObject;
  1317. break;
  1318. case ISLAND_SLEEPING:
  1319. color = defaultColors.m_deactivatedObject;
  1320. break;
  1321. case WANTS_DEACTIVATION:
  1322. color = defaultColors.m_wantsDeactivationObject;
  1323. break;
  1324. case DISABLE_DEACTIVATION:
  1325. color = defaultColors.m_disabledDeactivationObject;
  1326. break;
  1327. case DISABLE_SIMULATION:
  1328. color = defaultColors.m_disabledSimulationObject;
  1329. break;
  1330. default:
  1331. {
  1332. color = btVector3(btScalar(.3), btScalar(0.3), btScalar(0.3));
  1333. }
  1334. };
  1335. colObj->getCustomDebugColor(color);
  1336. debugDrawObject(colObj->getWorldTransform(), colObj->getCollisionShape(), color);
  1337. }
  1338. if (m_debugDrawer && (m_debugDrawer->getDebugMode() & btIDebugDraw::DBG_DrawAabb))
  1339. {
  1340. btVector3 minAabb, maxAabb;
  1341. btVector3 colorvec = defaultColors.m_aabb;
  1342. colObj->getCollisionShape()->getAabb(colObj->getWorldTransform(), minAabb, maxAabb);
  1343. btVector3 contactThreshold(gContactBreakingThreshold, gContactBreakingThreshold, gContactBreakingThreshold);
  1344. minAabb -= contactThreshold;
  1345. maxAabb += contactThreshold;
  1346. btVector3 minAabb2, maxAabb2;
  1347. if (getDispatchInfo().m_useContinuous && colObj->getInternalType() == btCollisionObject::CO_RIGID_BODY && !colObj->isStaticOrKinematicObject())
  1348. {
  1349. colObj->getCollisionShape()->getAabb(colObj->getInterpolationWorldTransform(), minAabb2, maxAabb2);
  1350. minAabb2 -= contactThreshold;
  1351. maxAabb2 += contactThreshold;
  1352. minAabb.setMin(minAabb2);
  1353. maxAabb.setMax(maxAabb2);
  1354. }
  1355. m_debugDrawer->drawAabb(minAabb, maxAabb, colorvec);
  1356. }
  1357. }
  1358. }
  1359. }
  1360. }
  1361. }
  1362. void btCollisionWorld::serializeCollisionObjects(btSerializer* serializer)
  1363. {
  1364. int i;
  1365. ///keep track of shapes already serialized
  1366. btHashMap<btHashPtr, btCollisionShape*> serializedShapes;
  1367. for (i = 0; i < m_collisionObjects.size(); i++)
  1368. {
  1369. btCollisionObject* colObj = m_collisionObjects[i];
  1370. btCollisionShape* shape = colObj->getCollisionShape();
  1371. if (!serializedShapes.find(shape))
  1372. {
  1373. serializedShapes.insert(shape, shape);
  1374. shape->serializeSingleShape(serializer);
  1375. }
  1376. }
  1377. //serialize all collision objects
  1378. for (i = 0; i < m_collisionObjects.size(); i++)
  1379. {
  1380. btCollisionObject* colObj = m_collisionObjects[i];
  1381. if (colObj->getInternalType() == btCollisionObject::CO_COLLISION_OBJECT)
  1382. {
  1383. colObj->serializeSingleObject(serializer);
  1384. }
  1385. }
  1386. }
  1387. void btCollisionWorld::serializeContactManifolds(btSerializer* serializer)
  1388. {
  1389. if (serializer->getSerializationFlags() & BT_SERIALIZE_CONTACT_MANIFOLDS)
  1390. {
  1391. int numManifolds = getDispatcher()->getNumManifolds();
  1392. for (int i = 0; i < numManifolds; i++)
  1393. {
  1394. const btPersistentManifold* manifold = getDispatcher()->getInternalManifoldPointer()[i];
  1395. //don't serialize empty manifolds, they just take space
  1396. //(may have to do it anyway if it destroys determinism)
  1397. if (manifold->getNumContacts() == 0)
  1398. continue;
  1399. btChunk* chunk = serializer->allocate(manifold->calculateSerializeBufferSize(), 1);
  1400. const char* structType = manifold->serialize(manifold, chunk->m_oldPtr, serializer);
  1401. serializer->finalizeChunk(chunk, structType, BT_CONTACTMANIFOLD_CODE, (void*)manifold);
  1402. }
  1403. }
  1404. }
  1405. void btCollisionWorld::serialize(btSerializer* serializer)
  1406. {
  1407. serializer->startSerialization();
  1408. serializeCollisionObjects(serializer);
  1409. serializeContactManifolds(serializer);
  1410. serializer->finishSerialization();
  1411. }