nav_mesh_generator_2d.cpp 42 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067
  1. /**************************************************************************/
  2. /* nav_mesh_generator_2d.cpp */
  3. /**************************************************************************/
  4. /* This file is part of: */
  5. /* GODOT ENGINE */
  6. /* https://godotengine.org */
  7. /**************************************************************************/
  8. /* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
  9. /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
  10. /* */
  11. /* Permission is hereby granted, free of charge, to any person obtaining */
  12. /* a copy of this software and associated documentation files (the */
  13. /* "Software"), to deal in the Software without restriction, including */
  14. /* without limitation the rights to use, copy, modify, merge, publish, */
  15. /* distribute, sublicense, and/or sell copies of the Software, and to */
  16. /* permit persons to whom the Software is furnished to do so, subject to */
  17. /* the following conditions: */
  18. /* */
  19. /* The above copyright notice and this permission notice shall be */
  20. /* included in all copies or substantial portions of the Software. */
  21. /* */
  22. /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
  23. /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
  24. /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
  25. /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
  26. /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
  27. /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
  28. /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
  29. /**************************************************************************/
  30. #ifdef CLIPPER2_ENABLED
  31. #include "nav_mesh_generator_2d.h"
  32. #include "core/config/project_settings.h"
  33. #include "scene/2d/mesh_instance_2d.h"
  34. #include "scene/2d/multimesh_instance_2d.h"
  35. #include "scene/2d/navigation_obstacle_2d.h"
  36. #include "scene/2d/physics/static_body_2d.h"
  37. #include "scene/2d/polygon_2d.h"
  38. #include "scene/2d/tile_map.h"
  39. #include "scene/resources/2d/capsule_shape_2d.h"
  40. #include "scene/resources/2d/circle_shape_2d.h"
  41. #include "scene/resources/2d/concave_polygon_shape_2d.h"
  42. #include "scene/resources/2d/convex_polygon_shape_2d.h"
  43. #include "scene/resources/2d/navigation_mesh_source_geometry_data_2d.h"
  44. #include "scene/resources/2d/navigation_polygon.h"
  45. #include "scene/resources/2d/rectangle_shape_2d.h"
  46. #include "thirdparty/clipper2/include/clipper2/clipper.h"
  47. #include "thirdparty/misc/polypartition.h"
  48. NavMeshGenerator2D *NavMeshGenerator2D::singleton = nullptr;
  49. Mutex NavMeshGenerator2D::baking_navmesh_mutex;
  50. Mutex NavMeshGenerator2D::generator_task_mutex;
  51. RWLock NavMeshGenerator2D::generator_rid_rwlock;
  52. bool NavMeshGenerator2D::use_threads = true;
  53. bool NavMeshGenerator2D::baking_use_multiple_threads = true;
  54. bool NavMeshGenerator2D::baking_use_high_priority_threads = true;
  55. HashSet<Ref<NavigationPolygon>> NavMeshGenerator2D::baking_navmeshes;
  56. HashMap<WorkerThreadPool::TaskID, NavMeshGenerator2D::NavMeshGeneratorTask2D *> NavMeshGenerator2D::generator_tasks;
  57. RID_Owner<NavMeshGenerator2D::NavMeshGeometryParser2D> NavMeshGenerator2D::generator_parser_owner;
  58. LocalVector<NavMeshGenerator2D::NavMeshGeometryParser2D *> NavMeshGenerator2D::generator_parsers;
  59. NavMeshGenerator2D *NavMeshGenerator2D::get_singleton() {
  60. return singleton;
  61. }
  62. NavMeshGenerator2D::NavMeshGenerator2D() {
  63. ERR_FAIL_COND(singleton != nullptr);
  64. singleton = this;
  65. baking_use_multiple_threads = GLOBAL_GET("navigation/baking/thread_model/baking_use_multiple_threads");
  66. baking_use_high_priority_threads = GLOBAL_GET("navigation/baking/thread_model/baking_use_high_priority_threads");
  67. // Using threads might cause problems on certain exports or with the Editor on certain devices.
  68. // This is the main switch to turn threaded navmesh baking off should the need arise.
  69. use_threads = baking_use_multiple_threads;
  70. }
  71. NavMeshGenerator2D::~NavMeshGenerator2D() {
  72. cleanup();
  73. }
  74. void NavMeshGenerator2D::sync() {
  75. if (generator_tasks.size() == 0) {
  76. return;
  77. }
  78. MutexLock baking_navmesh_lock(baking_navmesh_mutex);
  79. {
  80. MutexLock generator_task_lock(generator_task_mutex);
  81. LocalVector<WorkerThreadPool::TaskID> finished_task_ids;
  82. for (KeyValue<WorkerThreadPool::TaskID, NavMeshGeneratorTask2D *> &E : generator_tasks) {
  83. if (WorkerThreadPool::get_singleton()->is_task_completed(E.key)) {
  84. WorkerThreadPool::get_singleton()->wait_for_task_completion(E.key);
  85. finished_task_ids.push_back(E.key);
  86. NavMeshGeneratorTask2D *generator_task = E.value;
  87. DEV_ASSERT(generator_task->status == NavMeshGeneratorTask2D::TaskStatus::BAKING_FINISHED);
  88. baking_navmeshes.erase(generator_task->navigation_mesh);
  89. if (generator_task->callback.is_valid()) {
  90. generator_emit_callback(generator_task->callback);
  91. }
  92. memdelete(generator_task);
  93. }
  94. }
  95. for (WorkerThreadPool::TaskID finished_task_id : finished_task_ids) {
  96. generator_tasks.erase(finished_task_id);
  97. }
  98. }
  99. }
  100. void NavMeshGenerator2D::cleanup() {
  101. MutexLock baking_navmesh_lock(baking_navmesh_mutex);
  102. {
  103. MutexLock generator_task_lock(generator_task_mutex);
  104. baking_navmeshes.clear();
  105. for (KeyValue<WorkerThreadPool::TaskID, NavMeshGeneratorTask2D *> &E : generator_tasks) {
  106. WorkerThreadPool::get_singleton()->wait_for_task_completion(E.key);
  107. NavMeshGeneratorTask2D *generator_task = E.value;
  108. memdelete(generator_task);
  109. }
  110. generator_tasks.clear();
  111. generator_rid_rwlock.write_lock();
  112. for (NavMeshGeometryParser2D *parser : generator_parsers) {
  113. generator_parser_owner.free(parser->self);
  114. }
  115. generator_parsers.clear();
  116. generator_rid_rwlock.write_unlock();
  117. }
  118. }
  119. void NavMeshGenerator2D::finish() {
  120. cleanup();
  121. }
  122. void NavMeshGenerator2D::parse_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_root_node, const Callable &p_callback) {
  123. ERR_FAIL_COND(!Thread::is_main_thread());
  124. ERR_FAIL_COND(!p_navigation_mesh.is_valid());
  125. ERR_FAIL_NULL(p_root_node);
  126. ERR_FAIL_COND(!p_root_node->is_inside_tree());
  127. ERR_FAIL_COND(!p_source_geometry_data.is_valid());
  128. generator_parse_source_geometry_data(p_navigation_mesh, p_source_geometry_data, p_root_node);
  129. if (p_callback.is_valid()) {
  130. generator_emit_callback(p_callback);
  131. }
  132. }
  133. void NavMeshGenerator2D::bake_from_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, const Callable &p_callback) {
  134. ERR_FAIL_COND(!p_navigation_mesh.is_valid());
  135. ERR_FAIL_COND(!p_source_geometry_data.is_valid());
  136. if (p_navigation_mesh->get_outline_count() == 0 && !p_source_geometry_data->has_data()) {
  137. p_navigation_mesh->clear();
  138. if (p_callback.is_valid()) {
  139. generator_emit_callback(p_callback);
  140. }
  141. return;
  142. }
  143. if (is_baking(p_navigation_mesh)) {
  144. ERR_FAIL_MSG("NavigationPolygon is already baking. Wait for current bake to finish.");
  145. }
  146. baking_navmesh_mutex.lock();
  147. baking_navmeshes.insert(p_navigation_mesh);
  148. baking_navmesh_mutex.unlock();
  149. generator_bake_from_source_geometry_data(p_navigation_mesh, p_source_geometry_data);
  150. baking_navmesh_mutex.lock();
  151. baking_navmeshes.erase(p_navigation_mesh);
  152. baking_navmesh_mutex.unlock();
  153. if (p_callback.is_valid()) {
  154. generator_emit_callback(p_callback);
  155. }
  156. }
  157. void NavMeshGenerator2D::bake_from_source_geometry_data_async(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, const Callable &p_callback) {
  158. ERR_FAIL_COND(!p_navigation_mesh.is_valid());
  159. ERR_FAIL_COND(!p_source_geometry_data.is_valid());
  160. if (p_navigation_mesh->get_outline_count() == 0 && !p_source_geometry_data->has_data()) {
  161. p_navigation_mesh->clear();
  162. if (p_callback.is_valid()) {
  163. generator_emit_callback(p_callback);
  164. }
  165. return;
  166. }
  167. if (!use_threads) {
  168. bake_from_source_geometry_data(p_navigation_mesh, p_source_geometry_data, p_callback);
  169. return;
  170. }
  171. if (is_baking(p_navigation_mesh)) {
  172. ERR_FAIL_MSG("NavigationPolygon is already baking. Wait for current bake to finish.");
  173. }
  174. baking_navmesh_mutex.lock();
  175. baking_navmeshes.insert(p_navigation_mesh);
  176. baking_navmesh_mutex.unlock();
  177. MutexLock generator_task_lock(generator_task_mutex);
  178. NavMeshGeneratorTask2D *generator_task = memnew(NavMeshGeneratorTask2D);
  179. generator_task->navigation_mesh = p_navigation_mesh;
  180. generator_task->source_geometry_data = p_source_geometry_data;
  181. generator_task->callback = p_callback;
  182. generator_task->status = NavMeshGeneratorTask2D::TaskStatus::BAKING_STARTED;
  183. generator_task->thread_task_id = WorkerThreadPool::get_singleton()->add_native_task(&NavMeshGenerator2D::generator_thread_bake, generator_task, NavMeshGenerator2D::baking_use_high_priority_threads, "NavMeshGeneratorBake2D");
  184. generator_tasks.insert(generator_task->thread_task_id, generator_task);
  185. }
  186. bool NavMeshGenerator2D::is_baking(Ref<NavigationPolygon> p_navigation_polygon) {
  187. MutexLock baking_navmesh_lock(baking_navmesh_mutex);
  188. return baking_navmeshes.has(p_navigation_polygon);
  189. }
  190. void NavMeshGenerator2D::generator_thread_bake(void *p_arg) {
  191. NavMeshGeneratorTask2D *generator_task = static_cast<NavMeshGeneratorTask2D *>(p_arg);
  192. generator_bake_from_source_geometry_data(generator_task->navigation_mesh, generator_task->source_geometry_data);
  193. generator_task->status = NavMeshGeneratorTask2D::TaskStatus::BAKING_FINISHED;
  194. }
  195. void NavMeshGenerator2D::generator_parse_geometry_node(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node, bool p_recurse_children) {
  196. generator_parse_meshinstance2d_node(p_navigation_mesh, p_source_geometry_data, p_node);
  197. generator_parse_multimeshinstance2d_node(p_navigation_mesh, p_source_geometry_data, p_node);
  198. generator_parse_polygon2d_node(p_navigation_mesh, p_source_geometry_data, p_node);
  199. generator_parse_staticbody2d_node(p_navigation_mesh, p_source_geometry_data, p_node);
  200. generator_parse_tile_map_layer_node(p_navigation_mesh, p_source_geometry_data, p_node);
  201. generator_parse_navigationobstacle_node(p_navigation_mesh, p_source_geometry_data, p_node);
  202. generator_rid_rwlock.read_lock();
  203. for (const NavMeshGeometryParser2D *parser : generator_parsers) {
  204. if (!parser->callback.is_valid()) {
  205. continue;
  206. }
  207. parser->callback.call(p_navigation_mesh, p_source_geometry_data, p_node);
  208. }
  209. generator_rid_rwlock.read_unlock();
  210. if (p_recurse_children) {
  211. for (int i = 0; i < p_node->get_child_count(); i++) {
  212. generator_parse_geometry_node(p_navigation_mesh, p_source_geometry_data, p_node->get_child(i), p_recurse_children);
  213. }
  214. } else if (Object::cast_to<TileMap>(p_node)) {
  215. // Special case for TileMap, so that internal layer get parsed even if p_recurse_children is false.
  216. for (int i = 0; i < p_node->get_child_count(); i++) {
  217. TileMapLayer *tile_map_layer = Object::cast_to<TileMapLayer>(p_node->get_child(i));
  218. if (tile_map_layer && tile_map_layer->get_index_in_tile_map() >= 0) {
  219. generator_parse_tile_map_layer_node(p_navigation_mesh, p_source_geometry_data, tile_map_layer);
  220. }
  221. }
  222. }
  223. }
  224. void NavMeshGenerator2D::generator_parse_meshinstance2d_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
  225. MeshInstance2D *mesh_instance = Object::cast_to<MeshInstance2D>(p_node);
  226. if (mesh_instance == nullptr) {
  227. return;
  228. }
  229. NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
  230. if (!(parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH)) {
  231. return;
  232. }
  233. Ref<Mesh> mesh = mesh_instance->get_mesh();
  234. if (!mesh.is_valid()) {
  235. return;
  236. }
  237. const Transform2D mesh_instance_xform = p_source_geometry_data->root_node_transform * mesh_instance->get_global_transform();
  238. using namespace Clipper2Lib;
  239. PathsD subject_paths, dummy_clip_paths;
  240. for (int i = 0; i < mesh->get_surface_count(); i++) {
  241. if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
  242. continue;
  243. }
  244. if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FLAG_USE_2D_VERTICES)) {
  245. continue;
  246. }
  247. PathD subject_path;
  248. int index_count = 0;
  249. if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
  250. index_count = mesh->surface_get_array_index_len(i);
  251. } else {
  252. index_count = mesh->surface_get_array_len(i);
  253. }
  254. ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0));
  255. Array a = mesh->surface_get_arrays(i);
  256. Vector<Vector2> mesh_vertices = a[Mesh::ARRAY_VERTEX];
  257. if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
  258. Vector<int> mesh_indices = a[Mesh::ARRAY_INDEX];
  259. for (int vertex_index : mesh_indices) {
  260. const Vector2 &vertex = mesh_vertices[vertex_index];
  261. const PointD &point = PointD(vertex.x, vertex.y);
  262. subject_path.push_back(point);
  263. }
  264. } else {
  265. for (const Vector2 &vertex : mesh_vertices) {
  266. const PointD &point = PointD(vertex.x, vertex.y);
  267. subject_path.push_back(point);
  268. }
  269. }
  270. subject_paths.push_back(subject_path);
  271. }
  272. PathsD path_solution;
  273. path_solution = Union(subject_paths, dummy_clip_paths, FillRule::NonZero);
  274. //path_solution = RamerDouglasPeucker(path_solution, 0.025);
  275. Vector<Vector<Vector2>> polypaths;
  276. for (const PathD &scaled_path : path_solution) {
  277. Vector<Vector2> shape_outline;
  278. for (const PointD &scaled_point : scaled_path) {
  279. shape_outline.push_back(Point2(static_cast<real_t>(scaled_point.x), static_cast<real_t>(scaled_point.y)));
  280. }
  281. for (int i = 0; i < shape_outline.size(); i++) {
  282. shape_outline.write[i] = mesh_instance_xform.xform(shape_outline[i]);
  283. }
  284. p_source_geometry_data->add_obstruction_outline(shape_outline);
  285. }
  286. }
  287. void NavMeshGenerator2D::generator_parse_multimeshinstance2d_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
  288. MultiMeshInstance2D *multimesh_instance = Object::cast_to<MultiMeshInstance2D>(p_node);
  289. if (multimesh_instance == nullptr) {
  290. return;
  291. }
  292. NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
  293. if (!(parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH)) {
  294. return;
  295. }
  296. Ref<MultiMesh> multimesh = multimesh_instance->get_multimesh();
  297. if (!(multimesh.is_valid() && multimesh->get_transform_format() == MultiMesh::TRANSFORM_2D)) {
  298. return;
  299. }
  300. Ref<Mesh> mesh = multimesh->get_mesh();
  301. if (!mesh.is_valid()) {
  302. return;
  303. }
  304. using namespace Clipper2Lib;
  305. PathsD mesh_subject_paths, dummy_clip_paths;
  306. for (int i = 0; i < mesh->get_surface_count(); i++) {
  307. if (mesh->surface_get_primitive_type(i) != Mesh::PRIMITIVE_TRIANGLES) {
  308. continue;
  309. }
  310. if (!(mesh->surface_get_format(i) & Mesh::ARRAY_FLAG_USE_2D_VERTICES)) {
  311. continue;
  312. }
  313. PathD subject_path;
  314. int index_count = 0;
  315. if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
  316. index_count = mesh->surface_get_array_index_len(i);
  317. } else {
  318. index_count = mesh->surface_get_array_len(i);
  319. }
  320. ERR_CONTINUE((index_count == 0 || (index_count % 3) != 0));
  321. Array a = mesh->surface_get_arrays(i);
  322. Vector<Vector2> mesh_vertices = a[Mesh::ARRAY_VERTEX];
  323. if (mesh->surface_get_format(i) & Mesh::ARRAY_FORMAT_INDEX) {
  324. Vector<int> mesh_indices = a[Mesh::ARRAY_INDEX];
  325. for (int vertex_index : mesh_indices) {
  326. const Vector2 &vertex = mesh_vertices[vertex_index];
  327. const PointD &point = PointD(vertex.x, vertex.y);
  328. subject_path.push_back(point);
  329. }
  330. } else {
  331. for (const Vector2 &vertex : mesh_vertices) {
  332. const PointD &point = PointD(vertex.x, vertex.y);
  333. subject_path.push_back(point);
  334. }
  335. }
  336. mesh_subject_paths.push_back(subject_path);
  337. }
  338. PathsD mesh_path_solution = Union(mesh_subject_paths, dummy_clip_paths, FillRule::NonZero);
  339. //path_solution = RamerDouglasPeucker(path_solution, 0.025);
  340. int multimesh_instance_count = multimesh->get_visible_instance_count();
  341. if (multimesh_instance_count == -1) {
  342. multimesh_instance_count = multimesh->get_instance_count();
  343. }
  344. const Transform2D multimesh_instance_xform = p_source_geometry_data->root_node_transform * multimesh_instance->get_global_transform();
  345. for (int i = 0; i < multimesh_instance_count; i++) {
  346. const Transform2D multimesh_instance_mesh_instance_xform = multimesh_instance_xform * multimesh->get_instance_transform_2d(i);
  347. for (const PathD &mesh_path : mesh_path_solution) {
  348. Vector<Vector2> shape_outline;
  349. for (const PointD &mesh_path_point : mesh_path) {
  350. shape_outline.push_back(Point2(static_cast<real_t>(mesh_path_point.x), static_cast<real_t>(mesh_path_point.y)));
  351. }
  352. for (int j = 0; j < shape_outline.size(); j++) {
  353. shape_outline.write[j] = multimesh_instance_mesh_instance_xform.xform(shape_outline[j]);
  354. }
  355. p_source_geometry_data->add_obstruction_outline(shape_outline);
  356. }
  357. }
  358. }
  359. void NavMeshGenerator2D::generator_parse_polygon2d_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
  360. Polygon2D *polygon_2d = Object::cast_to<Polygon2D>(p_node);
  361. if (polygon_2d == nullptr) {
  362. return;
  363. }
  364. NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
  365. if (parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_MESH_INSTANCES || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH) {
  366. const Transform2D polygon_2d_xform = p_source_geometry_data->root_node_transform * polygon_2d->get_global_transform();
  367. Vector<Vector2> shape_outline = polygon_2d->get_polygon();
  368. for (int i = 0; i < shape_outline.size(); i++) {
  369. shape_outline.write[i] = polygon_2d_xform.xform(shape_outline[i]);
  370. }
  371. p_source_geometry_data->add_obstruction_outline(shape_outline);
  372. }
  373. }
  374. void NavMeshGenerator2D::generator_parse_staticbody2d_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
  375. StaticBody2D *static_body = Object::cast_to<StaticBody2D>(p_node);
  376. if (static_body == nullptr) {
  377. return;
  378. }
  379. NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
  380. if (!(parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_STATIC_COLLIDERS || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH)) {
  381. return;
  382. }
  383. uint32_t parsed_collision_mask = p_navigation_mesh->get_parsed_collision_mask();
  384. if (!(static_body->get_collision_layer() & parsed_collision_mask)) {
  385. return;
  386. }
  387. List<uint32_t> shape_owners;
  388. static_body->get_shape_owners(&shape_owners);
  389. for (uint32_t shape_owner : shape_owners) {
  390. if (static_body->is_shape_owner_disabled(shape_owner)) {
  391. continue;
  392. }
  393. const int shape_count = static_body->shape_owner_get_shape_count(shape_owner);
  394. for (int shape_index = 0; shape_index < shape_count; shape_index++) {
  395. Ref<Shape2D> s = static_body->shape_owner_get_shape(shape_owner, shape_index);
  396. if (s.is_null()) {
  397. continue;
  398. }
  399. const Transform2D static_body_xform = p_source_geometry_data->root_node_transform * static_body->get_global_transform() * static_body->shape_owner_get_transform(shape_owner);
  400. RectangleShape2D *rectangle_shape = Object::cast_to<RectangleShape2D>(*s);
  401. if (rectangle_shape) {
  402. Vector<Vector2> shape_outline;
  403. const Vector2 &rectangle_size = rectangle_shape->get_size();
  404. shape_outline.resize(5);
  405. shape_outline.write[0] = static_body_xform.xform(-rectangle_size * 0.5);
  406. shape_outline.write[1] = static_body_xform.xform(Vector2(rectangle_size.x, -rectangle_size.y) * 0.5);
  407. shape_outline.write[2] = static_body_xform.xform(rectangle_size * 0.5);
  408. shape_outline.write[3] = static_body_xform.xform(Vector2(-rectangle_size.x, rectangle_size.y) * 0.5);
  409. shape_outline.write[4] = static_body_xform.xform(-rectangle_size * 0.5);
  410. p_source_geometry_data->add_obstruction_outline(shape_outline);
  411. }
  412. CapsuleShape2D *capsule_shape = Object::cast_to<CapsuleShape2D>(*s);
  413. if (capsule_shape) {
  414. const real_t capsule_height = capsule_shape->get_height();
  415. const real_t capsule_radius = capsule_shape->get_radius();
  416. Vector<Vector2> shape_outline;
  417. const real_t turn_step = Math_TAU / 12.0;
  418. shape_outline.resize(14);
  419. int shape_outline_inx = 0;
  420. for (int i = 0; i < 12; i++) {
  421. Vector2 ofs = Vector2(0, (i > 3 && i <= 9) ? -capsule_height * 0.5 + capsule_radius : capsule_height * 0.5 - capsule_radius);
  422. shape_outline.write[shape_outline_inx] = static_body_xform.xform(Vector2(Math::sin(i * turn_step), Math::cos(i * turn_step)) * capsule_radius + ofs);
  423. shape_outline_inx += 1;
  424. if (i == 3 || i == 9) {
  425. shape_outline.write[shape_outline_inx] = static_body_xform.xform(Vector2(Math::sin(i * turn_step), Math::cos(i * turn_step)) * capsule_radius - ofs);
  426. shape_outline_inx += 1;
  427. }
  428. }
  429. p_source_geometry_data->add_obstruction_outline(shape_outline);
  430. }
  431. CircleShape2D *circle_shape = Object::cast_to<CircleShape2D>(*s);
  432. if (circle_shape) {
  433. const real_t circle_radius = circle_shape->get_radius();
  434. Vector<Vector2> shape_outline;
  435. int circle_edge_count = 12;
  436. shape_outline.resize(circle_edge_count);
  437. const real_t turn_step = Math_TAU / real_t(circle_edge_count);
  438. for (int i = 0; i < circle_edge_count; i++) {
  439. shape_outline.write[i] = static_body_xform.xform(Vector2(Math::cos(i * turn_step), Math::sin(i * turn_step)) * circle_radius);
  440. }
  441. p_source_geometry_data->add_obstruction_outline(shape_outline);
  442. }
  443. ConcavePolygonShape2D *concave_polygon_shape = Object::cast_to<ConcavePolygonShape2D>(*s);
  444. if (concave_polygon_shape) {
  445. Vector<Vector2> shape_outline = concave_polygon_shape->get_segments();
  446. for (int i = 0; i < shape_outline.size(); i++) {
  447. shape_outline.write[i] = static_body_xform.xform(shape_outline[i]);
  448. }
  449. p_source_geometry_data->add_obstruction_outline(shape_outline);
  450. }
  451. ConvexPolygonShape2D *convex_polygon_shape = Object::cast_to<ConvexPolygonShape2D>(*s);
  452. if (convex_polygon_shape) {
  453. Vector<Vector2> shape_outline = convex_polygon_shape->get_points();
  454. for (int i = 0; i < shape_outline.size(); i++) {
  455. shape_outline.write[i] = static_body_xform.xform(shape_outline[i]);
  456. }
  457. p_source_geometry_data->add_obstruction_outline(shape_outline);
  458. }
  459. }
  460. }
  461. }
  462. void NavMeshGenerator2D::generator_parse_tile_map_layer_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
  463. TileMapLayer *tile_map_layer = Object::cast_to<TileMapLayer>(p_node);
  464. if (tile_map_layer == nullptr) {
  465. return;
  466. }
  467. Ref<TileSet> tile_set = tile_map_layer->get_tile_set();
  468. if (!tile_set.is_valid()) {
  469. return;
  470. }
  471. int physics_layers_count = tile_set->get_physics_layers_count();
  472. int navigation_layers_count = tile_set->get_navigation_layers_count();
  473. if (physics_layers_count <= 0 && navigation_layers_count <= 0) {
  474. return;
  475. }
  476. NavigationPolygon::ParsedGeometryType parsed_geometry_type = p_navigation_mesh->get_parsed_geometry_type();
  477. uint32_t parsed_collision_mask = p_navigation_mesh->get_parsed_collision_mask();
  478. const Transform2D tilemap_xform = p_source_geometry_data->root_node_transform * tile_map_layer->get_global_transform();
  479. TypedArray<Vector2i> used_cells = tile_map_layer->get_used_cells();
  480. for (int used_cell_index = 0; used_cell_index < used_cells.size(); used_cell_index++) {
  481. const Vector2i &cell = used_cells[used_cell_index];
  482. const TileData *tile_data = tile_map_layer->get_cell_tile_data(cell);
  483. if (tile_data == nullptr) {
  484. continue;
  485. }
  486. // Transform flags.
  487. const int alternative_id = tile_map_layer->get_cell_alternative_tile(cell);
  488. bool flip_h = (alternative_id & TileSetAtlasSource::TRANSFORM_FLIP_H);
  489. bool flip_v = (alternative_id & TileSetAtlasSource::TRANSFORM_FLIP_V);
  490. bool transpose = (alternative_id & TileSetAtlasSource::TRANSFORM_TRANSPOSE);
  491. Transform2D tile_transform;
  492. tile_transform.set_origin(tile_map_layer->map_to_local(cell));
  493. const Transform2D tile_transform_offset = tilemap_xform * tile_transform;
  494. // Parse traversable polygons.
  495. for (int navigation_layer = 0; navigation_layer < navigation_layers_count; navigation_layer++) {
  496. Ref<NavigationPolygon> navigation_polygon = tile_data->get_navigation_polygon(navigation_layer, flip_h, flip_v, transpose);
  497. if (navigation_polygon.is_valid()) {
  498. for (int outline_index = 0; outline_index < navigation_polygon->get_outline_count(); outline_index++) {
  499. const Vector<Vector2> &navigation_polygon_outline = navigation_polygon->get_outline(outline_index);
  500. if (navigation_polygon_outline.is_empty()) {
  501. continue;
  502. }
  503. Vector<Vector2> traversable_outline;
  504. traversable_outline.resize(navigation_polygon_outline.size());
  505. const Vector2 *navigation_polygon_outline_ptr = navigation_polygon_outline.ptr();
  506. Vector2 *traversable_outline_ptrw = traversable_outline.ptrw();
  507. for (int traversable_outline_index = 0; traversable_outline_index < traversable_outline.size(); traversable_outline_index++) {
  508. traversable_outline_ptrw[traversable_outline_index] = tile_transform_offset.xform(navigation_polygon_outline_ptr[traversable_outline_index]);
  509. }
  510. p_source_geometry_data->_add_traversable_outline(traversable_outline);
  511. }
  512. }
  513. }
  514. // Parse obstacles.
  515. for (int physics_layer = 0; physics_layer < physics_layers_count; physics_layer++) {
  516. if ((parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_STATIC_COLLIDERS || parsed_geometry_type == NavigationPolygon::PARSED_GEOMETRY_BOTH) &&
  517. (tile_set->get_physics_layer_collision_layer(physics_layer) & parsed_collision_mask)) {
  518. for (int collision_polygon_index = 0; collision_polygon_index < tile_data->get_collision_polygons_count(physics_layer); collision_polygon_index++) {
  519. PackedVector2Array collision_polygon_points = tile_data->get_collision_polygon_points(physics_layer, collision_polygon_index);
  520. if (collision_polygon_points.is_empty()) {
  521. continue;
  522. }
  523. if (flip_h || flip_v || transpose) {
  524. collision_polygon_points = TileData::get_transformed_vertices(collision_polygon_points, flip_h, flip_v, transpose);
  525. }
  526. Vector<Vector2> obstruction_outline;
  527. obstruction_outline.resize(collision_polygon_points.size());
  528. const Vector2 *collision_polygon_points_ptr = collision_polygon_points.ptr();
  529. Vector2 *obstruction_outline_ptrw = obstruction_outline.ptrw();
  530. for (int obstruction_outline_index = 0; obstruction_outline_index < obstruction_outline.size(); obstruction_outline_index++) {
  531. obstruction_outline_ptrw[obstruction_outline_index] = tile_transform_offset.xform(collision_polygon_points_ptr[obstruction_outline_index]);
  532. }
  533. p_source_geometry_data->_add_obstruction_outline(obstruction_outline);
  534. }
  535. }
  536. }
  537. }
  538. }
  539. void NavMeshGenerator2D::generator_parse_navigationobstacle_node(const Ref<NavigationPolygon> &p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_node) {
  540. NavigationObstacle2D *obstacle = Object::cast_to<NavigationObstacle2D>(p_node);
  541. if (obstacle == nullptr) {
  542. return;
  543. }
  544. if (!obstacle->get_affect_navigation_mesh()) {
  545. return;
  546. }
  547. const Vector2 safe_scale = obstacle->get_global_scale().abs().maxf(0.001);
  548. const float obstacle_radius = obstacle->get_radius();
  549. if (obstacle_radius > 0.0) {
  550. // Radius defined obstacle should be uniformly scaled from obstacle basis max scale axis.
  551. const float scaling_max_value = safe_scale[safe_scale.max_axis_index()];
  552. const Vector2 uniform_max_scale = Vector2(scaling_max_value, scaling_max_value);
  553. const Transform2D obstacle_circle_transform = p_source_geometry_data->root_node_transform * Transform2D(obstacle->get_global_rotation(), uniform_max_scale, 0.0, obstacle->get_global_position());
  554. Vector<Vector2> obstruction_circle_vertices;
  555. // The point of this is that the moving obstacle can make a simple hole in the navigation mesh and affect the pathfinding.
  556. // Without, navigation paths can go directly through the middle of the obstacle and conflict with the avoidance to get agents stuck.
  557. // No place for excessive "round" detail here. Every additional edge adds a high cost for something that needs to be quick, not pretty.
  558. static const int circle_points = 12;
  559. obstruction_circle_vertices.resize(circle_points);
  560. Vector2 *circle_vertices_ptrw = obstruction_circle_vertices.ptrw();
  561. const real_t circle_point_step = Math_TAU / circle_points;
  562. for (int i = 0; i < circle_points; i++) {
  563. const float angle = i * circle_point_step;
  564. circle_vertices_ptrw[i] = obstacle_circle_transform.xform(Vector2(Math::cos(angle) * obstacle_radius, Math::sin(angle) * obstacle_radius));
  565. }
  566. p_source_geometry_data->add_projected_obstruction(obstruction_circle_vertices, obstacle->get_carve_navigation_mesh());
  567. }
  568. // Obstacles are projected to the xz-plane, so only rotation around the y-axis can be taken into account.
  569. const Transform2D node_xform = p_source_geometry_data->root_node_transform * obstacle->get_global_transform();
  570. const Vector<Vector2> &obstacle_vertices = obstacle->get_vertices();
  571. if (obstacle_vertices.is_empty()) {
  572. return;
  573. }
  574. Vector<Vector2> obstruction_shape_vertices;
  575. obstruction_shape_vertices.resize(obstacle_vertices.size());
  576. const Vector2 *obstacle_vertices_ptr = obstacle_vertices.ptr();
  577. Vector2 *obstruction_shape_vertices_ptrw = obstruction_shape_vertices.ptrw();
  578. for (int i = 0; i < obstacle_vertices.size(); i++) {
  579. obstruction_shape_vertices_ptrw[i] = node_xform.xform(obstacle_vertices_ptr[i]);
  580. }
  581. p_source_geometry_data->add_projected_obstruction(obstruction_shape_vertices, obstacle->get_carve_navigation_mesh());
  582. }
  583. void NavMeshGenerator2D::generator_parse_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data, Node *p_root_node) {
  584. List<Node *> parse_nodes;
  585. if (p_navigation_mesh->get_source_geometry_mode() == NavigationPolygon::SOURCE_GEOMETRY_ROOT_NODE_CHILDREN) {
  586. parse_nodes.push_back(p_root_node);
  587. } else {
  588. p_root_node->get_tree()->get_nodes_in_group(p_navigation_mesh->get_source_geometry_group_name(), &parse_nodes);
  589. }
  590. Transform2D root_node_transform = Transform2D();
  591. if (Object::cast_to<Node2D>(p_root_node)) {
  592. root_node_transform = Object::cast_to<Node2D>(p_root_node)->get_global_transform().affine_inverse();
  593. }
  594. p_source_geometry_data->clear();
  595. p_source_geometry_data->root_node_transform = root_node_transform;
  596. bool recurse_children = p_navigation_mesh->get_source_geometry_mode() != NavigationPolygon::SOURCE_GEOMETRY_GROUPS_EXPLICIT;
  597. for (Node *E : parse_nodes) {
  598. generator_parse_geometry_node(p_navigation_mesh, p_source_geometry_data, E, recurse_children);
  599. }
  600. }
  601. static void generator_recursive_process_polytree_items(List<TPPLPoly> &p_tppl_in_polygon, const Clipper2Lib::PolyPathD *p_polypath_item) {
  602. using namespace Clipper2Lib;
  603. TPPLPoly tp;
  604. int size = p_polypath_item->Polygon().size();
  605. tp.Init(size);
  606. int j = 0;
  607. for (const PointD &polypath_point : p_polypath_item->Polygon()) {
  608. tp[j] = Vector2(static_cast<real_t>(polypath_point.x), static_cast<real_t>(polypath_point.y));
  609. ++j;
  610. }
  611. if (p_polypath_item->IsHole()) {
  612. tp.SetOrientation(TPPL_ORIENTATION_CW);
  613. tp.SetHole(true);
  614. } else {
  615. tp.SetOrientation(TPPL_ORIENTATION_CCW);
  616. }
  617. p_tppl_in_polygon.push_back(tp);
  618. for (size_t i = 0; i < p_polypath_item->Count(); i++) {
  619. const PolyPathD *polypath_item = p_polypath_item->Child(i);
  620. generator_recursive_process_polytree_items(p_tppl_in_polygon, polypath_item);
  621. }
  622. }
  623. bool NavMeshGenerator2D::generator_emit_callback(const Callable &p_callback) {
  624. ERR_FAIL_COND_V(!p_callback.is_valid(), false);
  625. Callable::CallError ce;
  626. Variant result;
  627. p_callback.callp(nullptr, 0, result, ce);
  628. return ce.error == Callable::CallError::CALL_OK;
  629. }
  630. RID NavMeshGenerator2D::source_geometry_parser_create() {
  631. RWLockWrite write_lock(generator_rid_rwlock);
  632. RID rid = generator_parser_owner.make_rid();
  633. NavMeshGeometryParser2D *parser = generator_parser_owner.get_or_null(rid);
  634. parser->self = rid;
  635. generator_parsers.push_back(parser);
  636. return rid;
  637. }
  638. void NavMeshGenerator2D::source_geometry_parser_set_callback(RID p_parser, const Callable &p_callback) {
  639. RWLockWrite write_lock(generator_rid_rwlock);
  640. NavMeshGeometryParser2D *parser = generator_parser_owner.get_or_null(p_parser);
  641. ERR_FAIL_NULL(parser);
  642. parser->callback = p_callback;
  643. }
  644. bool NavMeshGenerator2D::owns(RID p_object) {
  645. RWLockRead read_lock(generator_rid_rwlock);
  646. return generator_parser_owner.owns(p_object);
  647. }
  648. void NavMeshGenerator2D::free(RID p_object) {
  649. RWLockWrite write_lock(generator_rid_rwlock);
  650. if (generator_parser_owner.owns(p_object)) {
  651. NavMeshGeometryParser2D *parser = generator_parser_owner.get_or_null(p_object);
  652. generator_parsers.erase(parser);
  653. generator_parser_owner.free(p_object);
  654. } else {
  655. ERR_PRINT("Attempted to free a NavMeshGenerator2D RID that did not exist (or was already freed).");
  656. }
  657. }
  658. void NavMeshGenerator2D::generator_bake_from_source_geometry_data(Ref<NavigationPolygon> p_navigation_mesh, Ref<NavigationMeshSourceGeometryData2D> p_source_geometry_data) {
  659. if (p_navigation_mesh.is_null() || p_source_geometry_data.is_null()) {
  660. return;
  661. }
  662. using namespace Clipper2Lib;
  663. PathsD traversable_polygon_paths;
  664. PathsD obstruction_polygon_paths;
  665. bool empty_projected_obstructions = true;
  666. {
  667. RWLockRead read_lock(p_source_geometry_data->geometry_rwlock);
  668. const Vector<Vector<Vector2>> &traversable_outlines = p_source_geometry_data->traversable_outlines;
  669. int outline_count = p_navigation_mesh->get_outline_count();
  670. if (outline_count == 0 && (!p_source_geometry_data->has_data() || (traversable_outlines.is_empty()))) {
  671. return;
  672. }
  673. const Vector<Vector<Vector2>> &obstruction_outlines = p_source_geometry_data->obstruction_outlines;
  674. const Vector<NavigationMeshSourceGeometryData2D::ProjectedObstruction> &projected_obstructions = p_source_geometry_data->_projected_obstructions;
  675. traversable_polygon_paths.reserve(outline_count + traversable_outlines.size());
  676. obstruction_polygon_paths.reserve(obstruction_outlines.size());
  677. for (int i = 0; i < outline_count; i++) {
  678. const Vector<Vector2> &traversable_outline = p_navigation_mesh->get_outline(i);
  679. PathD subject_path;
  680. subject_path.reserve(traversable_outline.size());
  681. for (const Vector2 &traversable_point : traversable_outline) {
  682. subject_path.emplace_back(traversable_point.x, traversable_point.y);
  683. }
  684. traversable_polygon_paths.push_back(std::move(subject_path));
  685. }
  686. for (const Vector<Vector2> &traversable_outline : traversable_outlines) {
  687. PathD subject_path;
  688. subject_path.reserve(traversable_outline.size());
  689. for (const Vector2 &traversable_point : traversable_outline) {
  690. subject_path.emplace_back(traversable_point.x, traversable_point.y);
  691. }
  692. traversable_polygon_paths.push_back(std::move(subject_path));
  693. }
  694. empty_projected_obstructions = projected_obstructions.is_empty();
  695. if (!empty_projected_obstructions) {
  696. for (const NavigationMeshSourceGeometryData2D::ProjectedObstruction &projected_obstruction : projected_obstructions) {
  697. if (projected_obstruction.carve) {
  698. continue;
  699. }
  700. if (projected_obstruction.vertices.is_empty() || projected_obstruction.vertices.size() % 2 != 0) {
  701. continue;
  702. }
  703. PathD clip_path;
  704. clip_path.reserve(projected_obstruction.vertices.size() / 2);
  705. for (int i = 0; i < projected_obstruction.vertices.size() / 2; i++) {
  706. clip_path.emplace_back(projected_obstruction.vertices[i * 2], projected_obstruction.vertices[i * 2 + 1]);
  707. }
  708. if (!IsPositive(clip_path)) {
  709. std::reverse(clip_path.begin(), clip_path.end());
  710. }
  711. obstruction_polygon_paths.push_back(std::move(clip_path));
  712. }
  713. }
  714. for (const Vector<Vector2> &obstruction_outline : obstruction_outlines) {
  715. PathD clip_path;
  716. clip_path.reserve(obstruction_outline.size());
  717. for (const Vector2 &obstruction_point : obstruction_outline) {
  718. clip_path.emplace_back(obstruction_point.x, obstruction_point.y);
  719. }
  720. obstruction_polygon_paths.push_back(std::move(clip_path));
  721. }
  722. }
  723. Rect2 baking_rect = p_navigation_mesh->get_baking_rect();
  724. if (baking_rect.has_area()) {
  725. Vector2 baking_rect_offset = p_navigation_mesh->get_baking_rect_offset();
  726. const int rect_begin_x = baking_rect.position[0] + baking_rect_offset.x;
  727. const int rect_begin_y = baking_rect.position[1] + baking_rect_offset.y;
  728. const int rect_end_x = baking_rect.position[0] + baking_rect.size[0] + baking_rect_offset.x;
  729. const int rect_end_y = baking_rect.position[1] + baking_rect.size[1] + baking_rect_offset.y;
  730. RectD clipper_rect = RectD(rect_begin_x, rect_begin_y, rect_end_x, rect_end_y);
  731. traversable_polygon_paths = RectClip(clipper_rect, traversable_polygon_paths);
  732. obstruction_polygon_paths = RectClip(clipper_rect, obstruction_polygon_paths);
  733. }
  734. // first merge all traversable polygons according to user specified fill rule
  735. PathsD dummy_clip_path;
  736. traversable_polygon_paths = Union(traversable_polygon_paths, dummy_clip_path, FillRule::NonZero);
  737. // merge all obstruction polygons, don't allow holes for what is considered "solid" 2D geometry
  738. obstruction_polygon_paths = Union(obstruction_polygon_paths, dummy_clip_path, FillRule::NonZero);
  739. PathsD path_solution = Difference(traversable_polygon_paths, obstruction_polygon_paths, FillRule::NonZero);
  740. real_t agent_radius_offset = p_navigation_mesh->get_agent_radius();
  741. if (agent_radius_offset > 0.0) {
  742. path_solution = InflatePaths(path_solution, -agent_radius_offset, JoinType::Miter, EndType::Polygon);
  743. }
  744. // Apply obstructions that are not affected by agent radius, the ones with carve enabled.
  745. if (!empty_projected_obstructions) {
  746. RWLockRead read_lock(p_source_geometry_data->geometry_rwlock);
  747. const Vector<NavigationMeshSourceGeometryData2D::ProjectedObstruction> &projected_obstructions = p_source_geometry_data->_projected_obstructions;
  748. obstruction_polygon_paths.resize(0);
  749. for (const NavigationMeshSourceGeometryData2D::ProjectedObstruction &projected_obstruction : projected_obstructions) {
  750. if (!projected_obstruction.carve) {
  751. continue;
  752. }
  753. if (projected_obstruction.vertices.is_empty() || projected_obstruction.vertices.size() % 2 != 0) {
  754. continue;
  755. }
  756. PathD clip_path;
  757. clip_path.reserve(projected_obstruction.vertices.size() / 2);
  758. for (int i = 0; i < projected_obstruction.vertices.size() / 2; i++) {
  759. clip_path.emplace_back(projected_obstruction.vertices[i * 2], projected_obstruction.vertices[i * 2 + 1]);
  760. }
  761. if (!IsPositive(clip_path)) {
  762. std::reverse(clip_path.begin(), clip_path.end());
  763. }
  764. obstruction_polygon_paths.push_back(std::move(clip_path));
  765. }
  766. if (obstruction_polygon_paths.size() > 0) {
  767. path_solution = Difference(path_solution, obstruction_polygon_paths, FillRule::NonZero);
  768. }
  769. }
  770. //path_solution = RamerDouglasPeucker(path_solution, 0.025); //
  771. real_t border_size = p_navigation_mesh->get_border_size();
  772. if (baking_rect.has_area() && border_size > 0.0) {
  773. Vector2 baking_rect_offset = p_navigation_mesh->get_baking_rect_offset();
  774. const int rect_begin_x = baking_rect.position[0] + baking_rect_offset.x + border_size;
  775. const int rect_begin_y = baking_rect.position[1] + baking_rect_offset.y + border_size;
  776. const int rect_end_x = baking_rect.position[0] + baking_rect.size[0] + baking_rect_offset.x - border_size;
  777. const int rect_end_y = baking_rect.position[1] + baking_rect.size[1] + baking_rect_offset.y - border_size;
  778. RectD clipper_rect = RectD(rect_begin_x, rect_begin_y, rect_end_x, rect_end_y);
  779. path_solution = RectClip(clipper_rect, path_solution);
  780. }
  781. if (path_solution.size() == 0) {
  782. p_navigation_mesh->clear();
  783. return;
  784. }
  785. ClipType clipper_cliptype = ClipType::Union;
  786. List<TPPLPoly> tppl_in_polygon, tppl_out_polygon;
  787. PolyTreeD polytree;
  788. ClipperD clipper_D;
  789. clipper_D.AddSubject(path_solution);
  790. clipper_D.Execute(clipper_cliptype, FillRule::NonZero, polytree);
  791. for (size_t i = 0; i < polytree.Count(); i++) {
  792. const PolyPathD *polypath_item = polytree[i];
  793. generator_recursive_process_polytree_items(tppl_in_polygon, polypath_item);
  794. }
  795. TPPLPartition tpart;
  796. NavigationPolygon::SamplePartitionType sample_partition_type = p_navigation_mesh->get_sample_partition_type();
  797. switch (sample_partition_type) {
  798. case NavigationPolygon::SamplePartitionType::SAMPLE_PARTITION_CONVEX_PARTITION:
  799. if (tpart.ConvexPartition_HM(&tppl_in_polygon, &tppl_out_polygon) == 0) {
  800. ERR_PRINT("NavigationPolygon polygon convex partition failed. Unable to create a valid navigation mesh polygon layout from provided source geometry.");
  801. p_navigation_mesh->set_vertices(Vector<Vector2>());
  802. p_navigation_mesh->clear_polygons();
  803. return;
  804. }
  805. break;
  806. case NavigationPolygon::SamplePartitionType::SAMPLE_PARTITION_TRIANGULATE:
  807. if (tpart.Triangulate_EC(&tppl_in_polygon, &tppl_out_polygon) == 0) {
  808. ERR_PRINT("NavigationPolygon polygon triangulation failed. Unable to create a valid navigation mesh polygon layout from provided source geometry.");
  809. p_navigation_mesh->set_vertices(Vector<Vector2>());
  810. p_navigation_mesh->clear_polygons();
  811. return;
  812. }
  813. break;
  814. default: {
  815. ERR_PRINT("NavigationPolygon polygon partitioning failed. Unrecognized partition type.");
  816. p_navigation_mesh->set_vertices(Vector<Vector2>());
  817. p_navigation_mesh->clear_polygons();
  818. return;
  819. }
  820. }
  821. Vector<Vector2> new_vertices;
  822. Vector<Vector<int>> new_polygons;
  823. HashMap<Vector2, int> points;
  824. for (List<TPPLPoly>::Element *I = tppl_out_polygon.front(); I; I = I->next()) {
  825. TPPLPoly &tp = I->get();
  826. Vector<int> new_polygon;
  827. for (int64_t i = 0; i < tp.GetNumPoints(); i++) {
  828. HashMap<Vector2, int>::Iterator E = points.find(tp[i]);
  829. if (!E) {
  830. E = points.insert(tp[i], new_vertices.size());
  831. new_vertices.push_back(tp[i]);
  832. }
  833. new_polygon.push_back(E->value);
  834. }
  835. new_polygons.push_back(new_polygon);
  836. }
  837. p_navigation_mesh->set_data(new_vertices, new_polygons);
  838. }
  839. #endif // CLIPPER2_ENABLED