sampstat 6.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. #!/usr/bin/env python
  2. # Copyright (C) 2007, 2012 Apple Inc. All rights reserved.
  3. #
  4. # Redistribution and use in source and binary forms, with or without
  5. # modification, are permitted provided that the following conditions
  6. # are met:
  7. # 1. Redistributions of source code must retain the above copyright
  8. # notice, this list of conditions and the following disclaimer.
  9. # 2. Redistributions in binary form must reproduce the above copyright
  10. # notice, this list of conditions and the following disclaimer in the
  11. # documentation and/or other materials provided with the distribution.
  12. #
  13. # THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
  14. # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  15. # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  16. # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
  17. # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  18. # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  19. # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  20. # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
  21. # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  22. # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  23. # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  24. import math
  25. import sys
  26. import re
  27. import fileinput
  28. from optparse import OptionParser
  29. usage = "usage: %prog [options] [FILES]\n Compute the mean and 95% confidence interval of a sample set.\n Standard input or files must contain two or more decimal numbers, one per line."
  30. parser = OptionParser(usage=usage)
  31. parser.add_option("-u", "--unit", dest="unit", default="",
  32. help="assume values are in units of UNIT", metavar="UNIT")
  33. parser.add_option("-v", "--verbose",
  34. action="store_true", dest="verbose", default=False,
  35. help="print all values (with units)")
  36. (options, files) = parser.parse_args()
  37. def sum(items):
  38. return reduce(lambda x,y: x+y, items)
  39. def arithmeticMean(items):
  40. return sum(items) / len(items)
  41. def standardDeviation(mean, items):
  42. deltaSquares = [(item - mean) ** 2 for item in items]
  43. return math.sqrt(sum(deltaSquares) / (len(items) - 1))
  44. def standardError(stdDev, items):
  45. return stdDev / math.sqrt(len(items))
  46. # t-distribution for 2-sided 95% confidence intervals
  47. tDistribution = [float('NaN'), float('NaN'), 12.71, 4.30, 3.18, 2.78, 2.57, 2.45, 2.36, 2.31, 2.26, 2.23, 2.20, 2.18, 2.16, 2.14, 2.13, 2.12, 2.11, 2.10, 2.09, 2.09, 2.08, 2.07, 2.07, 2.06, 2.06, 2.06, 2.05, 2.05, 2.05, 2.04, 2.04, 2.04, 2.03, 2.03, 2.03, 2.03, 2.03, 2.02, 2.02, 2.02, 2.02, 2.02, 2.02, 2.02, 2.01, 2.01, 2.01, 2.01, 2.01, 2.01, 2.01, 2.01, 2.01, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 2.00, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.99, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.98, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.97, 1.96]
  48. tMax = len(tDistribution)
  49. tLimit = 1.96
  50. def tDist(n):
  51. if n > tMax:
  52. return tLimit
  53. return tDistribution[n]
  54. def twoSidedConfidenceInterval(items):
  55. mean = arithmeticMean(items)
  56. stdDev = standardDeviation(mean, items)
  57. stdErr = standardError(stdDev, items)
  58. return tDist(len(items)) * stdErr
  59. results = []
  60. decimalNumberPattern = re.compile(r"\d+\.?\d*")
  61. for line in fileinput.input(files):
  62. match = re.search(decimalNumberPattern, line)
  63. if match:
  64. results.append(float(match.group(0)))
  65. if len(results) == 0:
  66. parser.print_help()
  67. quit()
  68. mean = arithmeticMean(results)
  69. confidenceInterval = twoSidedConfidenceInterval(results)
  70. confidencePercent = 100 * confidenceInterval / mean
  71. if options.verbose:
  72. length = 7
  73. for item in results:
  74. line = " %.2f %s" % (item, options.unit)
  75. print line
  76. length = len(line) if len(line) > length else length
  77. print "-" * length
  78. prefix = "Mean: " if options.verbose else ""
  79. print "%s%.2f %s +/- %.2f %s (%.1f%%)" % (prefix, mean, options.unit, confidenceInterval, options.unit, confidencePercent)