12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- module Fin where
- import Nat
- import Bool
- open Nat hiding (_==_; _<_)
- open Bool
- data FZero : Set where
- data FSuc (A : Set) : Set where
- fz : FSuc A
- fs : A -> FSuc A
- mutual
- Fin' : Nat -> Set
- Fin' zero = FZero
- Fin' (suc n) = FSuc (Fin n)
- data Fin (n : Nat) : Set where
- fin : Fin' n -> Fin n
- fzero : {n : Nat} -> Fin (suc n)
- fzero = fin fz
- fsuc : {n : Nat} -> Fin n -> Fin (suc n)
- fsuc n = fin (fs n)
- _==_ : {n : Nat} -> Fin n -> Fin n -> Bool
- _==_ {zero} (fin ()) (fin ())
- _==_ {suc n} (fin fz) (fin fz) = true
- _==_ {suc n} (fin (fs i)) (fin (fs j)) = i == j
- _==_ {suc n} (fin fz) (fin (fs j)) = false
- _==_ {suc n} (fin (fs i)) (fin fz) = false
- subst : {n : Nat}{i j : Fin n} -> (P : Fin n -> Set) -> IsTrue (i == j) -> P i -> P j
- subst {zero} {fin ()} {fin ()} P _ _
- subst {suc n} {fin fz} {fin fz} P eq pi = pi
- subst {suc n} {fin (fs i)} {fin (fs j)} P eq pi = subst (\z -> P (fsuc z)) eq pi
- subst {suc n} {fin fz} {fin (fs j)} P () _
- subst {suc n} {fin (fs i)} {fin fz} P () _
- _<_ : {n : Nat} -> Fin n -> Fin n -> Bool
- _<_ {zero} (fin ()) (fin ())
- _<_ {suc n} _ (fin fz) = false
- _<_ {suc n} (fin fz) (fin (fs j)) = true
- _<_ {suc n} (fin (fs i)) (fin (fs j)) = i < j
- fromNat : (n : Nat) -> Fin (suc n)
- fromNat zero = fzero
- fromNat (suc n) = fsuc (fromNat n)
- liftSuc : {n : Nat} -> Fin n -> Fin (suc n)
- liftSuc {zero} (fin ())
- liftSuc {suc n} (fin fz) = fin fz
- liftSuc {suc n} (fin (fs i)) = fsuc (liftSuc i)
- lift+ : {n : Nat}(m : Nat) -> Fin n -> Fin (m + n)
- lift+ zero i = i
- lift+ (suc m) i = liftSuc (lift+ m i)
|