1234567891011121314151617181920212223242526272829303132333435363738 |
- -- {-# OPTIONS -v 20 #-}
- -- {-# OPTIONS -v tc.polarity:30 #-}
- -- {-# OPTIONS -v tc.decl:30 #-}
- -- {-# OPTIONS -v tc.term:30 #-}
- -- {-# OPTIONS -v tc.conv.coerce:20 #-}
- -- {-# OPTIONS -v tc.signature:30 #-}
- -- {-# OPTIONS -v import.iface:100 #-}
- module PrettyInterface where
- open import Agda.Primitive
- open import Agda.Builtin.Nat
- open import Agda.Builtin.Equality
- id : ∀{a} {A : Set a} → A → A
- id {A = A} a = a
- id2 : ∀{A : id Set} → id A → A
- id2 x = x
- plus0 : ∀ x → x + 0 ≡ x
- plus0 zero = refl
- plus0 (suc x) rewrite plus0 x = refl
- Identity : ∀{a} {A : Set a} (f : A → A) → Set a
- Identity f = ∀ x → f x ≡ x
- plus-0 : Identity (_+ 0)
- plus-0 = plus0
- my-Fun : ∀{a b} (A : Set a) (F : A → Set b) → Set (a ⊔ b)
- my-Fun A F = (x : A) → F x
- syntax my-Fun A (λ x → B) = [ x ∷ A ]=> B
- my-id : [ A ∷ Set ]=> [ x ∷ A ]=> A
- my-id A x = x
|