123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100 |
- module SemiLattice where
- open import Prelude
- open import PartialOrder as PO
- import Chain
- private
- module IsSemiLat
- {A : Set}(po : PartialOrder A)(_⊓_ : A -> A -> A) where
- private open module PO = PartialOrder po
- record IsSemiLattice : Set where
- field
- ⊓-lbL : forall {x y} -> (x ⊓ y) ≤ x
- ⊓-lbR : forall {x y} -> (x ⊓ y) ≤ y
- ⊓-glb : forall {x y z} -> z ≤ x -> z ≤ y -> z ≤ (x ⊓ y)
- open IsSemiLat public
- record SemiLattice (A : Set) : Set1 where
- field
- po : PartialOrder A
- _⊓_ : A -> A -> A
- prf : IsSemiLattice po _⊓_
- module SemiLat {A : Set}(L : SemiLattice A) where
- private module SL = SemiLattice L
- private module SLPO = POrder SL.po
- private module IsSL = IsSemiLattice SL.po SL._⊓_ SL.prf
- open SLPO public
- open SL public hiding (prf)
- open IsSL public
- private open module C≤ = Chain _≤_ (\x -> ≤-refl) (\x y z -> ≤-trans)
- renaming (_===_ to _-≤-_; chain>_ to trans>_)
- ⊓-commute : forall {x y} -> (x ⊓ y) == (y ⊓ x)
- ⊓-commute = ≤-antisym lem lem
- where
- lem : forall {x y} -> (x ⊓ y) ≤ (y ⊓ x)
- lem = ⊓-glb ⊓-lbR ⊓-lbL
- ⊓-assoc : forall {x y z} -> (x ⊓ (y ⊓ z)) == ((x ⊓ y) ⊓ z)
- ⊓-assoc = ≤-antisym lem₁ lem₂
- where
- lem₁ : forall {x y z} -> (x ⊓ (y ⊓ z)) ≤ ((x ⊓ y) ⊓ z)
- lem₁ = ⊓-glb (⊓-glb ⊓-lbL (≤-trans ⊓-lbR ⊓-lbL))
- (≤-trans ⊓-lbR ⊓-lbR)
- lem₂ : forall {x y z} -> ((x ⊓ y) ⊓ z) ≤ (x ⊓ (y ⊓ z))
- lem₂ = ⊓-glb (≤-trans ⊓-lbL ⊓-lbL)
- (⊓-glb (≤-trans ⊓-lbL ⊓-lbR) ⊓-lbR)
- ⊓-idem : forall {x} -> (x ⊓ x) == x
- ⊓-idem = ≤-antisym ⊓-lbL (⊓-glb ≤-refl ≤-refl)
- ≤⊓-L : forall {x y} -> (x ≤ y) ⇐⇒ ((x ⊓ y) == x)
- ≤⊓-L = (fwd , bwd)
- where
- fwd = \x≤y -> ≤-antisym ⊓-lbL (⊓-glb ≤-refl x≤y)
- bwd = \x⊓y=x -> ≤-trans (==≤-R x⊓y=x) ⊓-lbR
- ≤⊓-R : forall {x y} -> (y ≤ x) ⇐⇒ ((x ⊓ y) == y)
- ≤⊓-R {x}{y} = (fwd , bwd)
- where
- lem : (y ≤ x) ⇐⇒ ((y ⊓ x) == y)
- lem = ≤⊓-L
- fwd = \y≤x -> ==-trans ⊓-commute (fst lem y≤x)
- bwd = \x⊓y=y -> snd lem (==-trans ⊓-commute x⊓y=y)
- ⊓-monotone-R : forall {a} -> Monotone (\x -> a ⊓ x)
- ⊓-monotone-R x≤y = ⊓-glb ⊓-lbL (≤-trans ⊓-lbR x≤y)
- ⊓-monotone-L : forall {a} -> Monotone (\x -> x ⊓ a)
- ⊓-monotone-L {a}{x}{y} x≤y =
- trans> x ⊓ a
- -≤- a ⊓ x by ==≤-L ⊓-commute
- -≤- a ⊓ y by ⊓-monotone-R x≤y
- -≤- y ⊓ a by ==≤-L ⊓-commute
- ≤⊓-compat : forall {w x y z} -> w ≤ y -> x ≤ z -> (w ⊓ x) ≤ (y ⊓ z)
- ≤⊓-compat {w}{x}{y}{z} w≤y x≤z =
- trans> w ⊓ x
- -≤- w ⊓ z by ⊓-monotone-R x≤z
- -≤- y ⊓ z by ⊓-monotone-L w≤y
- ⊓-cong : forall {w x y z} -> w == y -> x == z -> (w ⊓ x) == (y ⊓ z)
- ⊓-cong wy xz = ≤-antisym (≤⊓-compat (==≤-L wy) (==≤-L xz))
- (≤⊓-compat (==≤-R wy) (==≤-R xz))
- ⊓-cong-L : forall {x y z} -> x == y -> (x ⊓ z) == (y ⊓ z)
- ⊓-cong-L xy = ⊓-cong xy ==-refl
- ⊓-cong-R : forall {x y z} -> x == y -> (z ⊓ x) == (z ⊓ y)
- ⊓-cong-R xy = ⊓-cong ==-refl xy
|