123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169 |
- module examples.Vec where
- {- Computed datatypes -}
- data One : Set where
- unit : One
- data Nat : Set where
- zero : Nat
- suc : Nat -> Nat
- data _*_ (A B : Set) : Set where
- pair : A -> B -> A * B
- infixr 20 _=>_
- data _=>_ (A B : Set) : Set where
- lam : (A -> B) -> A => B
- lam2 : {A B C : Set} -> (A -> B -> C) -> (A => B => C)
- lam2 f = lam (\x -> lam (f x))
- app : {A B : Set} -> (A => B) -> A -> B
- app (lam f) x = f x
- Vec : Nat -> Set -> Set
- Vec zero X = One
- Vec (suc n) X = X * Vec n X
- {- ... construct the vectors of a given length -}
- vHead : {X : Set} -> (n : Nat)-> Vec (suc n) X -> X
- vHead n (pair a b) = a
- vTail : {X : Set} -> (n : Nat)-> Vec (suc n) X -> Vec n X
- vTail n (pair a b) = b
- {- safe destructors for nonempty vectors -}
- {- useful vector programming operators -}
- vec : {X : Set} -> (n : Nat) -> X -> Vec n X
- vec zero x = unit
- vec (suc n) x = pair x (vec n x)
- vapp : {S T : Set} -> (n : Nat) -> Vec n (S => T) -> Vec n S -> Vec n T
- vapp zero unit unit = unit
- vapp (suc n) (pair f fs) (pair s ss) = pair (app f s) (vapp n fs ss)
- {- mapping and zipping come from these -}
- vMap : {S T : Set} -> (n : Nat) -> (S -> T) -> Vec n S -> Vec n T
- vMap n f ss = vapp n (vec n (lam f)) ss
- {- transposition gets the type it deserves -}
- transpose : {X : Set} -> (m n : Nat)-> Vec m (Vec n X) -> Vec n (Vec m X)
- transpose zero n xss = vec n unit
- transpose (suc m) n (pair xs xss) =
- vapp n (vapp n (vec n (lam2 pair)) xs)
- (transpose m n xss)
- {- Sets of a given finite size may be computed as follows... -}
- {- Resist the temptation to mention idioms. -}
- data Zero : Set where
- data _+_ (A B : Set) : Set where
- inl : A -> A + B
- inr : B -> A + B
- Fin : Nat -> Set
- Fin zero = Zero
- Fin (suc n) = One + Fin n
- {- We can use these sets to index vectors safely. -}
- vProj : {X : Set} -> (n : Nat)-> Vec n X -> Fin n -> X
- -- vProj zero () we can pretend that there is an exhaustiveness check
- vProj (suc n) (pair x xs) (inl unit) = x
- vProj (suc n) (pair x xs) (inr i) = vProj n xs i
- {- We can also tabulate a function as a vector. Resist
- the temptation to mention logarithms. -}
- vTab : {X : Set} -> (n : Nat)-> (Fin n -> X) -> Vec n X
- vTab zero _ = unit
- vTab (suc n) f = pair (f (inl unit)) (vTab n (\x -> f (inr x)))
- {- Question to ponder in your own time:
- if we use functional vectors what are vec and vapp -}
- {- Answer: K and S -}
- {- Inductive datatypes of the unfocused variety -}
- {- Every constructor must target the whole family rather
- than focusing on specific indices. -}
- data Tm (n : Nat) : Set where
- evar : Fin n -> Tm n
- eapp : Tm n -> Tm n -> Tm n
- elam : Tm (suc n) -> Tm n
- {- Renamings -}
- Ren : Nat -> Nat -> Set
- Ren m n = Vec m (Fin n)
- _`Ren`_ = Ren
- {- identity and composition -}
- idR : (n : Nat) -> n `Ren` n
- idR n = vTab n (\i -> i)
- coR : (l m n : Nat) -> m `Ren` n -> l `Ren` m -> l `Ren` n
- coR l m n m2n l2m = vMap l (vProj m m2n) l2m
- {- what theorems should we prove -}
- {- the lifting functor for Ren -}
- liftR : (m n : Nat) -> m `Ren` n -> suc m `Ren` suc n
- liftR m n m2n = pair (inl unit) (vMap m inr m2n)
- {- what theorems should we prove -}
- {- the functor from Ren to Tm-arrows -}
- rename : {m n : Nat} -> (m `Ren` n) -> Tm m -> Tm n
- rename {m}{n} m2n (evar i) = evar (vProj m m2n i)
- rename {m}{n} m2n (eapp f s) = eapp (rename m2n f) (rename m2n s)
- rename {m}{n} m2n (elam t) = elam (rename (liftR m n m2n) t)
- {- Substitutions -}
- Sub : Nat -> Nat -> Set
- Sub m n = Vec m (Tm n)
- _`Sub`_ = Sub
- {- identity; composition must wait; why -}
- idS : (n : Nat) -> n `Sub` n
- idS n = vTab n (evar {n})
- {- functor from renamings to substitutions -}
- Ren2Sub : (m n : Nat) -> m `Ren` n -> m `Sub` n
- Ren2Sub m n m2n = vMap m evar m2n
- {- lifting functor for substitution -}
- liftS : (m n : Nat) -> m `Sub` n -> suc m `Sub` suc n
- liftS m n m2n = pair (evar (inl unit))
- (vMap m (rename (vMap n inr (idR n))) m2n)
- {- functor from Sub to Tm-arrows -}
- subst : {m n : Nat} -> m `Sub` n -> Tm m -> Tm n
- subst {m}{n} m2n (evar i) = vProj m m2n i
- subst {m}{n} m2n (eapp f s) = eapp (subst m2n f) (subst m2n s)
- subst {m}{n} m2n (elam t) = elam (subst (liftS m n m2n) t)
- {- and now we can define composition -}
- coS : (l m n : Nat) -> m `Sub` n -> l `Sub` m -> l `Sub` n
- coS l m n m2n l2m = vMap l (subst m2n) l2m
|