1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465 |
- module Functor where
- record IsEquivalence {A : Set} (_≈_ : A → A → Set) : Set where
- field
- refl : ∀ {x} → x ≈ x
- sym : ∀ {i j} → i ≈ j → j ≈ i
- trans : ∀ {i j k} → i ≈ j → j ≈ k → i ≈ k
- record Setoid : Set₁ where
- infix 4 _≈_
- field
- Carrier : Set
- _≈_ : Carrier → Carrier → Set
- isEquivalence : IsEquivalence _≈_
- open IsEquivalence isEquivalence public
- infixr 0 _⟶_
- record _⟶_ (From To : Setoid) : Set where
- infixl 5 _⟨$⟩_
- field
- _⟨$⟩_ : Setoid.Carrier From → Setoid.Carrier To
- cong : ∀ {x y} →
- Setoid._≈_ From x y → Setoid._≈_ To (_⟨$⟩_ x) (_⟨$⟩_ y)
- open _⟶_ public
- id : ∀ {A} → A ⟶ A
- id = record { _⟨$⟩_ = λ x → x; cong = λ x≈y → x≈y }
- infixr 9 _∘_
- _∘_ : ∀ {A B C} → B ⟶ C → A ⟶ B → A ⟶ C
- f ∘ g = record
- { _⟨$⟩_ = λ x → f ⟨$⟩ (g ⟨$⟩ x)
- ; cong = λ x≈y → cong f (cong g x≈y)
- }
- _⇨_ : (To From : Setoid) → Setoid
- From ⇨ To = record
- { Carrier = From ⟶ To
- ; _≈_ = λ f g → ∀ {x y} → x ≈₁ y → f ⟨$⟩ x ≈₂ g ⟨$⟩ y
- ; isEquivalence = record
- { refl = λ {f} → cong f
- ; sym = λ f∼g x∼y → To.sym (f∼g (From.sym x∼y))
- ; trans = λ f∼g g∼h x∼y → To.trans (f∼g From.refl) (g∼h x∼y)
- }
- }
- where
- open module From = Setoid From using () renaming (_≈_ to _≈₁_)
- open module To = Setoid To using () renaming (_≈_ to _≈₂_)
- record Functor (F : Setoid → Setoid) : Set₁ where
- field
- map : ∀ {A B} → (A ⇨ B) ⟶ (F A ⇨ F B)
- identity : ∀ {A} →
- let open Setoid (F A ⇨ F A) in
- map ⟨$⟩ id ≈ id
- composition : ∀ {A B C} (f : B ⟶ C) (g : A ⟶ B) →
- let open Setoid (F A ⇨ F C) in
- map ⟨$⟩ (f ∘ g) ≈ (map ⟨$⟩ f) ∘ (map ⟨$⟩ g)
|