123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- ------------------------------------------------------------------------
- -- The Agda standard library
- --
- -- Integer division
- ------------------------------------------------------------------------
- module Issue846.OldDivMod where
- open import Data.Nat as Nat
- open import Data.Nat.Properties
- open import Data.Nat.Solver
- open +-*-Solver
- open import Data.Fin as Fin using (Fin; zero; suc; toℕ; fromℕ)
- import Data.Fin.Properties as Fin
- open import Data.Nat.Induction
- open import Relation.Nullary.Decidable
- open import Relation.Binary.PropositionalEquality
- open ≡-Reasoning
- open import Function
- ------------------------------------------------------------------------
- -- Some boring lemmas
- private
- lem₁ : (m k : ℕ) →
- Nat.suc m ≡ suc (toℕ (Fin.inject+ k (fromℕ m)) + 0)
- lem₁ m k = cong suc $ begin
- m
- ≡⟨ sym $ Fin.toℕ-fromℕ m ⟩
- toℕ (fromℕ m)
- ≡⟨ Fin.toℕ-inject+ k (fromℕ m) ⟩
- toℕ (Fin.inject+ k (fromℕ m))
- ≡⟨ solve 1 (λ x → x := x :+ con 0) refl _ ⟩
- toℕ (Fin.inject+ k (fromℕ m)) + 0
- ∎
- lem₂ : ∀ n → _
- lem₂ = solve 1 (λ n → con 1 :+ n := con 1 :+ (n :+ con 0)) refl
- lem₃ : ∀ n k q (r : Fin n) eq → suc n + k ≡ toℕ r + suc q * n
- lem₃ n k q r eq = begin
- suc n + k
- ≡⟨ solve 2 (λ n k → con 1 :+ n :+ k := n :+ (con 1 :+ k))
- refl n k ⟩
- n + suc k
- ≡⟨ cong (_+_ n) eq ⟩
- n + (toℕ r + q * n)
- ≡⟨ solve 3 (λ n r q → n :+ (r :+ q :* n) :=
- r :+ (con 1 :+ q) :* n)
- refl n (toℕ r) q ⟩
- toℕ r + suc q * n
- ∎
- ------------------------------------------------------------------------
- -- Division
- infixl 7 _divMod_ _div_ _mod_
- -- A specification of integer division.
- record DivMod (dividend divisor : ℕ) : Set where
- constructor result
- field
- quotient : ℕ
- remainder : Fin divisor
- property : dividend ≡ toℕ remainder + quotient * divisor
- -- Integer division with remainder.
- -- Note that Induction.Nat.<-rec is used to establish termination of
- -- division. The run-time complexity of this implementation of integer
- -- division should be linear in the size of the dividend, assuming
- -- that well-founded recursion and the equality type are optimised
- -- properly (see "Inductive Families Need Not Store Their Indices"
- -- (Brady, McBride, McKinna, TYPES 2003)).
- _divMod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
- DivMod dividend divisor
- _divMod_ m n {≢0} = <′-rec Pred dm m n {≢0}
- where
- Pred : ℕ → Set
- Pred dividend = (divisor : ℕ) {≢0 : False (divisor ≟ 0)} →
- DivMod dividend divisor
- 1+_ : ∀ {k n} → DivMod (suc k) n → DivMod (suc n + k) n
- 1+_ {k} {n} (result q r eq) = result (1 + q) r (lem₃ n k q r eq)
- dm : (dividend : ℕ) → <′-Rec Pred dividend → Pred dividend
- dm m rec zero {≢0 = ()}
- dm zero rec (suc n) = result 0 zero refl
- dm (suc m) rec (suc n) with compare m n
- dm (suc m) rec (suc .(suc m + k)) | less .m k = result 0 r (lem₁ m k)
- where r = suc (Fin.inject+ k (fromℕ m))
- dm (suc m) rec (suc .m) | equal .m = result 1 zero (lem₂ m)
- dm (suc .(suc n + k)) rec (suc n) | greater .n k =
- 1+ rec (suc k) le (suc n)
- where le = s≤′s (s≤′s (n≤′m+n n k))
- -- Integer division.
- _div_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → ℕ
- _div_ m n {≢0} = DivMod.quotient $ _divMod_ m n {≢0}
- -- The remainder after integer division.
- _mod_ : (dividend divisor : ℕ) {≢0 : False (divisor ≟ 0)} → Fin divisor
- _mod_ m n {≢0} = DivMod.remainder $ _divMod_ m n {≢0}
|