1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162 |
- module Inst (Gnd : Set)(U : Set)(El : U -> Set) where
- open import Basics
- open import Pr
- open import Nom
- import Kind
- open Kind Gnd U El
- import Cxt
- open Cxt Kind
- import Loc
- open Loc Kind
- import Term
- open Term Gnd U El
- import Shift
- open Shift Gnd U El
- mutual
- winst : {G : Cxt}{C : Kind}{L : Loc}{I : Kind}
- (x : L ! I) -> G [ L bar x / Term C ]- I ->
- {T : Kind}(t : L [ Term C ]- T) -> [| Good G t |] ->
- G [ L bar x / Term C ]- T
- winst x i [ s ] sg = G[ winsts x i s sg ]
- winst x i (fn A f) fg = Gfn A \ a -> winst x i (f a) (fg a)
- winst x i (\\ b) bg = G\\ (winst (pop x) (shift popH i) b bg)
- winst x i (h $ s) pg = wing x i h (fst pg) (winsts x i s (snd pg))
- winsts : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd}{I : Kind}
- (x : L ! I) -> G [ L bar x / Term C ]- I ->
- {T : Kind}(s : L [ Args C Z ]- T) -> [| Good G s |] ->
- G [ L bar x / Args C Z ]- T
- winsts x i (a ^ s) sg = a G^ winsts x i s sg
- winsts x i (r & s) pg = winst x i r (fst pg) G& winsts x i s (snd pg)
- winsts x i nil _ = Gnil
- wing : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd}{I : Kind}
- (x : L ! I) -> G [ L bar x / Term C ]- I ->
- {T : Kind}(h : L [ Head ]- T) -> [| Good G h |] ->
- G [ L bar x / Args C Z ]- T ->
- G [ L bar x / Term C ]- Ty Z
- wing x i (` k) kg s = (` k -! kg) G$ s
- wing x i (# y) _ s with varQV x y
- wing x i (# .x) _ s | vSame = go i s
- wing x i (# .(x thin y)) _ s | vDiff y = (# y -! _) G$ s
- go : {G : Cxt}{C : Kind}{L : Loc}{Z : Gnd}{I : Kind} ->
- G [ L / Term C ]- I -> G [ L / Args C Z ]- I ->
- G [ L / Term C ]- Ty Z
- go (fn A f -! fg) ((a ^ s) -! sg) = go (f a -! fg a) (s -! sg)
- go (\\ b -! bg) ((r & s) -! pg) =
- go (winst top (r -! fst pg) b bg) (s -! snd pg)
- go t (nil -! _) = t
- inst : {G : Cxt}{C : Kind}{L : Loc}{I : Kind}
- (x : L ! I) -> G [ L bar x / Term C ]- I ->
- {T : Kind} -> G [ L / Term C ]- T -> G [ L bar x / Term C ]- T
- inst x i (t -! tg) = winst x i t tg
- _$$_ : {G : Cxt}{C S T : Kind}{L : Loc} ->
- G [! C !]- (S |> T) -> G [! C !]- S -> G [! C !]- T
- (\\ b -! bg) $$ sg = inst top sg (b -! bg)
|