123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126 |
- module proofs where
- open import univ
- open import cwf
- open import Base
- open import Nat
- open import help
- {-
- lem-id∘ : {Γ Δ : Con}(σ : Γ ─→ Δ) -> id ∘ σ == σ
- lem-id∘ (el < σ , pσ >) = eq \x -> ref
- lem-∘id : {Γ Δ : Con}(σ : Γ ─→ Δ) -> σ ∘ id == σ
- lem-∘id (el < σ , pσ >) = eq \x -> ref
- lem-∘assoc : {Γ Δ Θ Ξ : Con}(σ : Θ ─→ Ξ)(δ : Δ ─→ Θ)(θ : Γ ─→ Δ) ->
- (σ ∘ δ) ∘ θ == σ ∘ (δ ∘ θ)
- lem-∘assoc (el < σ , pσ >) (el < δ , pδ >) (el < θ , pθ >) = eq \x -> ref
- -}
- lem-/∘ : {Γ Δ Θ : Con}(A : Type Γ)(σ : Δ ─→ Γ)(δ : Θ ─→ Δ) ->
- A / σ ∘ δ =Ty A / σ / δ
- lem-/∘ A (el < _ , _ >) (el < _ , _ >) = eqTy \x -> refS
- {-
- lem-//id : {Γ : Con}{A : Type Γ}{u : Elem Γ A} -> u // id =El castElem lem-/id u
- lem-//id {Γ}{A}{elem (el < u , pu >)} = eqEl (eq prf)
- where
- prf : (x : El Γ) -> _
- prf x =
- chain> u x
- === _ << u (refS << x) by pu (sym (ref<< x))
- === _ << u (refS << x) by pfi _ _ _
- where open module C11 = Chain _==_ (ref {_}) (trans {_})
- lem-//∘ : {Γ Δ Θ : Con}{A : Type Γ}(u : Elem Γ A)(σ : Δ ─→ Γ)(δ : Θ ─→ Δ) ->
- u // σ ∘ δ =El castElem (lem-/∘ A σ δ) (u // σ // δ)
- lem-//∘ {Γ}{Δ}{Θ} (elem (el < u , pu >)) σ'@(el < σ , _ >) δ'@(el < δ , _ >) = eqEl (eq prf)
- where
- prf : (x : El Θ) -> _
- prf x =
- chain> u (σ (δ x))
- === _ << u (σ (δ (refS << x))) by pu (p─→ σ' (p─→ δ' (sym (ref<< x))))
- === _ << u (σ (δ (refS << x))) by pfi _ _ _
- where open module C12 = Chain _==_ (ref {_}) (trans {_})
- lem-wk∘σ,,u : {Γ Δ : Con}{A : Type Γ}(σ : Δ ─→ Γ)(u : Elem Δ (A / σ)) ->
- wk ∘ (σ ,, u) == σ
- lem-wk∘σ,,u (el < σ , pσ >) (elem (el < u , pu >)) = eq \x -> ref
- lem-/wk∘σ,,u : {Γ Δ : Con}(A : Type Γ)(σ : Δ ─→ Γ)(u : Elem Δ (A / σ)) ->
- A / wk / (σ ,, u) =Ty A / σ
- lem-/wk∘σ,,u A (el < σ , pσ >) (elem (el < u , pu >)) = eqTy \x -> refS
- lem-vz/σ,,u : {Γ Δ : Con}{A : Type Γ}(σ : Δ ─→ Γ)(u : Elem Δ (A / σ)) ->
- vz // (σ ,, u) =El castElem (lem-/wk∘σ,,u A σ u) u
- lem-vz/σ,,u (el < σ , pσ >) (elem (el < u , pu >)) = eqEl (eq \x -> prf x)
- where
- prf : (x : El _) -> u x == _ << u (refS << x)
- prf x =
- chain> u x
- === _ << u (refS << x) by pu (sym (ref<< x))
- === _ << u (refS << x) by pfi _ _ _
- where open module C15 = Chain _==_ (ref {_}) (trans {_})
- lem-σ,,u∘ : {Γ Δ Θ : Con}{A : Type Γ}
- (σ : Δ ─→ Γ)(u : Elem Δ (A / σ))(δ : Θ ─→ Δ) ->
- (σ ,, u) ∘ δ == (σ ∘ δ ,, castElem (lem-/∘ A σ δ) (u // δ))
- lem-σ,,u∘ (el < σ , _ >) (elem (el < u , pu >)) δ'@(el < δ , _ >) =
- eq \x -> eq < ref , prf x >
- where
- prf : (x : El _) -> u (δ x) == _ << _ << u (δ (refS << x))
- prf x =
- chain> u (δ x)
- === _ << u (δ (refS << x)) by pu (p─→ δ' (sym (ref<< x)))
- === _ << _ << u (δ (refS << x)) by sym (casttrans _ _ _ _)
- where open module C15 = Chain _==_ (ref {_}) (trans {_})
- lem-wk,,vz : {Γ : Con}{A : Type Γ} -> (wk ,, vz) == id {Γ , A}
- lem-wk,,vz {Γ}{A} = eq prf
- where
- prf : (x : El (Γ , A)) -> _
- prf (el < x , y >) = ref
- -}
- lem-Π/ : {Γ Δ : Con}{A : Type Γ}(B : Type (Γ , A))(σ : Δ ─→ Γ) ->
- Π A B / σ =Ty Π (A / σ) (B / (σ ∘ wk ,, castElem (lem-/∘ A σ wk) vz))
- lem-Π/ B (el < σ , pσ >) =
- eqTy \x -> eqS < refS , (\y -> pFam B (eq < ref , prf x y >)) >
- where
- postulate prf : (x : El _)(y : El _) -> y == _ << _ << _ << _ << y
- -- prf x y =
- -- chain> y
- -- === _ << _ << y by sym (castref2 _ _ y)
- -- === _ << _ << _ << y by trans<< _ _ _
- -- === _ << _ << _ << _ << y by trans<< _ _ _
- -- where open module C16 = Chain _==_ (ref {_}) (trans {_})
- {-
- lem-β : {Γ : Con}{A : Type Γ}{B : Type (Γ , A)}
- (v : Elem (Γ , A) B)(u : Elem Γ A) ->
- (ƛ v) ∙ u =El v // [ u ]
- lem-β {Γ}{A}{B} (elem (el < v , pv >)) (elem (el < u , pu >)) = eqEl (eq \x -> prf x _ _)
- where
- prf : (x : El Γ)(q : _ =S _)(p : _ =S _) ->
- p << v (el < x , u x >) == v (el < x , q << u (refS << x) >)
- prf x q p =
- chain> p << v (el < x , u x >)
- === p << q0 << v (el < x , q1 << u (refS << x) >)
- by p<< p (pv (eqSnd (pu (sym (ref<< x)))))
- === q2 << v (el < x , q1 << u (refS << x) >)
- by sym (trans<< p q0 _)
- === q2 << q3 << v (el < x , q << u (refS << x) >)
- by p<< q2 (pv (eqSnd (pfi q1 q _)))
- === v (el < x , q << u (refS << x) >)
- by castref2 q2 q3 _
- where
- open module C17 = Chain _==_ (ref {_}) (trans {_})
- q0 = _
- q1 = _
- q2 = _
- q3 = _
- -}
|