1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- module Identity where
- data _==_ {A : Set}(x : A) : A -> Set where
- refl : x == x
- elim== : {A : Set}(x : A)(C : (y : A) -> x == y -> Set) ->
- C x refl -> (y : A) -> (p : x == y) -> C y p
- elim== x C Cx .x refl = Cx
- elim==₁ : {A : Set}(x : A)(C : (y : A) -> x == y -> Set1) ->
- C x refl -> (y : A) -> (p : x == y) -> C y p
- elim==₁ x C Cx .x refl = Cx
- sym : {A : Set}{x y : A} -> x == y -> y == x
- sym {A}{x}{y} eq = elim== x (\z _ -> z == x) refl y eq
- cong : {A B : Set}(f : A -> B){x y : A} -> x == y -> f x == f y
- cong {A} f {x}{y} eq = elim== x (\z _ -> f x == f z) refl y eq
- subst : {A : Set}{x y : A}(P : A -> Set) -> x == y -> P x -> P y
- subst P xy px = elim== _ (\z _ -> P z) px _ xy
- subst₁ : {A : Set}{x y : A}(P : A -> Set1) -> x == y -> P x -> P y
- subst₁ P xy px = elim==₁ _ (\z _ -> P z) px _ xy
- symRef : (A : Set)(x : A) -> sym (refl{A}{x}) == refl
- symRef A x = refl
- symSym : {A : Set}{x y : A}(p : x == y) -> sym (sym p) == p
- symSym {A}{x}{y} p = elim== x (\y q -> sym (sym q) == q) refl y p
- -- Proving the symmetric elimination rule is not trivial.
- elimS : {A : Set}(x : A)(C : (y : A) -> y == x -> Set) ->
- C x refl -> (y : A) -> (p : y == x) -> C y p
- elimS x C r y p = subst (C y) (symSym p) h
- where
- h : C y (sym (sym p))
- h = elim== x (\y p -> C y (sym p)) r y (sym p)
- data _==¹_ {A : Set1}(x : A) : {B : Set1} -> B -> Set where
- refl¹ : x ==¹ x
- subst¹ : {A : Set1}{x y : A}(P : A -> Set) -> x ==¹ y -> P x -> P y
- subst¹ {A} P refl¹ px = px
|