12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364 |
- module IID-Proof-Test where
- open import LF
- open import Identity
- open import IID
- open import IIDr
- open import DefinitionalEquality
- open import IID-Proof-Setup
- η : {I : Set}(γ : OPg I)(U : I -> Set) -> Args γ U -> Args γ U
- η (ι i) U _ = ★
- η (σ A γ) U a = < a₀ | η (γ a₀) U a₁ >
- where
- a₀ = π₀ a
- a₁ = π₁ a
- η (δ A i γ) U a = < a₀ | η γ U a₁ >
- where
- a₀ = π₀ a
- a₁ = π₁ a
- r←→gArgs-equal :
- {I : Set}(γ : OPg I)(U : I -> Set)
- (i : I)(a : Args (ε γ i) U) ->
- _==_ {I × \i -> Args (ε γ i) U}
- < index γ U (r→gArgs γ U i a) |
- g→rArgs γ U (r→gArgs γ U i a)
- > < i | a >
- r←→gArgs-equal {I} (ι i) U j < p | ★ > = elim== i (\k q -> _==_ {I × \k -> Args (ε (ι i) k) U}
- < i | < refl | ★ > >
- < k | < q | ★ > >
- ) refl j p
- r←→gArgs-equal {I} (σ A γ) U j < a | b > = cong f ih
- where ih = r←→gArgs-equal (γ a) U j b
- f : (I × \i -> Args (ε (γ a) i) U) -> (I × \i -> Args (ε (σ A γ) i) U)
- f < k | q > = < k | < a | q > >
- r←→gArgs-equal {I} (δ H i γ) U j < g | b > = cong f ih
- where ih = r←→gArgs-equal γ U j b
- f : (I × \k -> Args (ε γ k) U) -> (I × \k -> Args (ε (δ H i γ) k) U)
- f < k | q > = < k | < g | q > >
- {-
- r←→gArgs-subst-identity' :
- {I : Set}(γ : OPg I) ->
- (\(U : I -> Set)(C : (i : I) -> rArgs (ε γ) U i -> Set)
- (a : Args γ U)(h : C (index γ U (r→gArgs γ U (index γ U (η γ U a)) (g→rArgs γ U (η γ U a))))
- (g→rArgs γ U (r→gArgs γ U (index γ U (η γ U a)) (g→rArgs γ U (η γ U a))))
- ) -> r←→gArgs-subst γ U C (index γ U (η γ U a)) (g→rArgs γ U (η γ U a)) h
- ) ==¹
- (\(U : I -> Set)(C : (i : I) -> rArgs (ε γ) U i -> Set)
- (a : Args γ U)(h : C (index γ U (r→gArgs γ U (index γ U (η γ U a)) (g→rArgs γ U (η γ U a))))
- (g→rArgs γ U (r→gArgs γ U (index γ U (η γ U a)) (g→rArgs γ U (η γ U a))))
- ) -> h
- )
- r←→gArgs-subst-identity' (ι i) = refl¹
- r←→gArgs-subst-identity' (σ A γ) = ?
- r←→gArgs-subst-identity' (δ A i γ) = subst¹ (\ ∙ -> f ∙ ==¹ f (\U C a h -> h))
- (r←→gArgs-subst-identity' γ) ?
- where
- ih = r←→gArgs-subst-identity' γ
- f = \g U C a h -> g U (\i c -> C i < π₀ a | c >) (π₁ a) h
- -}
|