123456789101112131415161718192021222324252627282930313233343536373839404142 |
- module Logic.Base where
- infix 60 ¬_
- infix 30 _/\_
- infix 20 _\/_
- data True : Set where
- tt : True
- data False : Set where
- elim-False : {A : Set} -> False -> A
- elim-False ()
- data _/\_ (P Q : Set) : Set where
- /\-I : P -> Q -> P /\ Q
- data _\/_ (P Q : Set) : Set where
- \/-IL : P -> P \/ Q
- \/-IR : Q -> P \/ Q
- elimD-\/ : {P Q : Set}(C : P \/ Q -> Set) ->
- ((p : P) -> C (\/-IL p)) ->
- ((q : Q) -> C (\/-IR q)) ->
- (pq : P \/ Q) -> C pq
- elimD-\/ C left right (\/-IL p) = left p
- elimD-\/ C left right (\/-IR q) = right q
- elim-\/ : {P Q R : Set} -> (P -> R) -> (Q -> R) -> P \/ Q -> R
- elim-\/ = elimD-\/ (\_ -> _)
- ¬_ : Set -> Set
- ¬ P = P -> False
- data ∃ {A : Set}(P : A -> Set) : Set where
- ∃-I : (w : A) -> P w -> ∃ P
- ∏ : {A : Set}(P : A -> Set) -> Set
- ∏ {A} P = (x : A) -> P x
|