sha512-armv8.pl 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787
  1. #! /usr/bin/env perl
  2. # SPDX-License-Identifier: GPL-2.0
  3. # This code is taken from the OpenSSL project but the author (Andy Polyakov)
  4. # has relicensed it under the GPLv2. Therefore this program is free software;
  5. # you can redistribute it and/or modify it under the terms of the GNU General
  6. # Public License version 2 as published by the Free Software Foundation.
  7. #
  8. # The original headers, including the original license headers, are
  9. # included below for completeness.
  10. # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
  11. #
  12. # Licensed under the OpenSSL license (the "License"). You may not use
  13. # this file except in compliance with the License. You can obtain a copy
  14. # in the file LICENSE in the source distribution or at
  15. # https://www.openssl.org/source/license.html
  16. # ====================================================================
  17. # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
  18. # project. The module is, however, dual licensed under OpenSSL and
  19. # CRYPTOGAMS licenses depending on where you obtain it. For further
  20. # details see http://www.openssl.org/~appro/cryptogams/.
  21. # ====================================================================
  22. #
  23. # SHA256/512 for ARMv8.
  24. #
  25. # Performance in cycles per processed byte and improvement coefficient
  26. # over code generated with "default" compiler:
  27. #
  28. # SHA256-hw SHA256(*) SHA512
  29. # Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
  30. # Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
  31. # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
  32. # Denver 2.01 10.5 (+26%) 6.70 (+8%)
  33. # X-Gene 20.0 (+100%) 12.8 (+300%(***))
  34. # Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
  35. #
  36. # (*) Software SHA256 results are of lesser relevance, presented
  37. # mostly for informational purposes.
  38. # (**) The result is a trade-off: it's possible to improve it by
  39. # 10% (or by 1 cycle per round), but at the cost of 20% loss
  40. # on Cortex-A53 (or by 4 cycles per round).
  41. # (***) Super-impressive coefficients over gcc-generated code are
  42. # indication of some compiler "pathology", most notably code
  43. # generated with -mgeneral-regs-only is significanty faster
  44. # and the gap is only 40-90%.
  45. #
  46. # October 2016.
  47. #
  48. # Originally it was reckoned that it makes no sense to implement NEON
  49. # version of SHA256 for 64-bit processors. This is because performance
  50. # improvement on most wide-spread Cortex-A5x processors was observed
  51. # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
  52. # observed that 32-bit NEON SHA256 performs significantly better than
  53. # 64-bit scalar version on *some* of the more recent processors. As
  54. # result 64-bit NEON version of SHA256 was added to provide best
  55. # all-round performance. For example it executes ~30% faster on X-Gene
  56. # and Mongoose. [For reference, NEON version of SHA512 is bound to
  57. # deliver much less improvement, likely *negative* on Cortex-A5x.
  58. # Which is why NEON support is limited to SHA256.]
  59. $output=pop;
  60. $flavour=pop;
  61. if ($flavour && $flavour ne "void") {
  62. $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
  63. ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
  64. ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
  65. die "can't locate arm-xlate.pl";
  66. open OUT,"| \"$^X\" $xlate $flavour $output";
  67. *STDOUT=*OUT;
  68. } else {
  69. open STDOUT,">$output";
  70. }
  71. if ($output =~ /512/) {
  72. $BITS=512;
  73. $SZ=8;
  74. @Sigma0=(28,34,39);
  75. @Sigma1=(14,18,41);
  76. @sigma0=(1, 8, 7);
  77. @sigma1=(19,61, 6);
  78. $rounds=80;
  79. $reg_t="x";
  80. } else {
  81. $BITS=256;
  82. $SZ=4;
  83. @Sigma0=( 2,13,22);
  84. @Sigma1=( 6,11,25);
  85. @sigma0=( 7,18, 3);
  86. @sigma1=(17,19,10);
  87. $rounds=64;
  88. $reg_t="w";
  89. }
  90. $func="sha${BITS}_block_data_order";
  91. ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
  92. @X=map("$reg_t$_",(3..15,0..2));
  93. @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
  94. ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
  95. sub BODY_00_xx {
  96. my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
  97. my $j=($i+1)&15;
  98. my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
  99. $T0=@X[$i+3] if ($i<11);
  100. $code.=<<___ if ($i<16);
  101. #ifndef __AARCH64EB__
  102. rev @X[$i],@X[$i] // $i
  103. #endif
  104. ___
  105. $code.=<<___ if ($i<13 && ($i&1));
  106. ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ
  107. ___
  108. $code.=<<___ if ($i==13);
  109. ldp @X[14],@X[15],[$inp]
  110. ___
  111. $code.=<<___ if ($i>=14);
  112. ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
  113. ___
  114. $code.=<<___ if ($i>0 && $i<16);
  115. add $a,$a,$t1 // h+=Sigma0(a)
  116. ___
  117. $code.=<<___ if ($i>=11);
  118. str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
  119. ___
  120. # While ARMv8 specifies merged rotate-n-logical operation such as
  121. # 'eor x,y,z,ror#n', it was found to negatively affect performance
  122. # on Apple A7. The reason seems to be that it requires even 'y' to
  123. # be available earlier. This means that such merged instruction is
  124. # not necessarily best choice on critical path... On the other hand
  125. # Cortex-A5x handles merged instructions much better than disjoint
  126. # rotate and logical... See (**) footnote above.
  127. $code.=<<___ if ($i<15);
  128. ror $t0,$e,#$Sigma1[0]
  129. add $h,$h,$t2 // h+=K[i]
  130. eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
  131. and $t1,$f,$e
  132. bic $t2,$g,$e
  133. add $h,$h,@X[$i&15] // h+=X[i]
  134. orr $t1,$t1,$t2 // Ch(e,f,g)
  135. eor $t2,$a,$b // a^b, b^c in next round
  136. eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e)
  137. ror $T0,$a,#$Sigma0[0]
  138. add $h,$h,$t1 // h+=Ch(e,f,g)
  139. eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
  140. add $h,$h,$t0 // h+=Sigma1(e)
  141. and $t3,$t3,$t2 // (b^c)&=(a^b)
  142. add $d,$d,$h // d+=h
  143. eor $t3,$t3,$b // Maj(a,b,c)
  144. eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a)
  145. add $h,$h,$t3 // h+=Maj(a,b,c)
  146. ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
  147. //add $h,$h,$t1 // h+=Sigma0(a)
  148. ___
  149. $code.=<<___ if ($i>=15);
  150. ror $t0,$e,#$Sigma1[0]
  151. add $h,$h,$t2 // h+=K[i]
  152. ror $T1,@X[($j+1)&15],#$sigma0[0]
  153. and $t1,$f,$e
  154. ror $T2,@X[($j+14)&15],#$sigma1[0]
  155. bic $t2,$g,$e
  156. ror $T0,$a,#$Sigma0[0]
  157. add $h,$h,@X[$i&15] // h+=X[i]
  158. eor $t0,$t0,$e,ror#$Sigma1[1]
  159. eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
  160. orr $t1,$t1,$t2 // Ch(e,f,g)
  161. eor $t2,$a,$b // a^b, b^c in next round
  162. eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e)
  163. eor $T0,$T0,$a,ror#$Sigma0[1]
  164. add $h,$h,$t1 // h+=Ch(e,f,g)
  165. and $t3,$t3,$t2 // (b^c)&=(a^b)
  166. eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
  167. eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1])
  168. add $h,$h,$t0 // h+=Sigma1(e)
  169. eor $t3,$t3,$b // Maj(a,b,c)
  170. eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a)
  171. eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14])
  172. add @X[$j],@X[$j],@X[($j+9)&15]
  173. add $d,$d,$h // d+=h
  174. add $h,$h,$t3 // h+=Maj(a,b,c)
  175. ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
  176. add @X[$j],@X[$j],$T1
  177. add $h,$h,$t1 // h+=Sigma0(a)
  178. add @X[$j],@X[$j],$T2
  179. ___
  180. ($t2,$t3)=($t3,$t2);
  181. }
  182. $code.=<<___;
  183. #ifndef __KERNEL__
  184. # include "arm_arch.h"
  185. #endif
  186. .text
  187. .extern OPENSSL_armcap_P
  188. .globl $func
  189. .type $func,%function
  190. .align 6
  191. $func:
  192. ___
  193. $code.=<<___ if ($SZ==4);
  194. #ifndef __KERNEL__
  195. # ifdef __ILP32__
  196. ldrsw x16,.LOPENSSL_armcap_P
  197. # else
  198. ldr x16,.LOPENSSL_armcap_P
  199. # endif
  200. adr x17,.LOPENSSL_armcap_P
  201. add x16,x16,x17
  202. ldr w16,[x16]
  203. tst w16,#ARMV8_SHA256
  204. b.ne .Lv8_entry
  205. tst w16,#ARMV7_NEON
  206. b.ne .Lneon_entry
  207. #endif
  208. ___
  209. $code.=<<___;
  210. stp x29,x30,[sp,#-128]!
  211. add x29,sp,#0
  212. stp x19,x20,[sp,#16]
  213. stp x21,x22,[sp,#32]
  214. stp x23,x24,[sp,#48]
  215. stp x25,x26,[sp,#64]
  216. stp x27,x28,[sp,#80]
  217. sub sp,sp,#4*$SZ
  218. ldp $A,$B,[$ctx] // load context
  219. ldp $C,$D,[$ctx,#2*$SZ]
  220. ldp $E,$F,[$ctx,#4*$SZ]
  221. add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
  222. ldp $G,$H,[$ctx,#6*$SZ]
  223. adr $Ktbl,.LK$BITS
  224. stp $ctx,$num,[x29,#96]
  225. .Loop:
  226. ldp @X[0],@X[1],[$inp],#2*$SZ
  227. ldr $t2,[$Ktbl],#$SZ // *K++
  228. eor $t3,$B,$C // magic seed
  229. str $inp,[x29,#112]
  230. ___
  231. for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
  232. $code.=".Loop_16_xx:\n";
  233. for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
  234. $code.=<<___;
  235. cbnz $t2,.Loop_16_xx
  236. ldp $ctx,$num,[x29,#96]
  237. ldr $inp,[x29,#112]
  238. sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
  239. ldp @X[0],@X[1],[$ctx]
  240. ldp @X[2],@X[3],[$ctx,#2*$SZ]
  241. add $inp,$inp,#14*$SZ // advance input pointer
  242. ldp @X[4],@X[5],[$ctx,#4*$SZ]
  243. add $A,$A,@X[0]
  244. ldp @X[6],@X[7],[$ctx,#6*$SZ]
  245. add $B,$B,@X[1]
  246. add $C,$C,@X[2]
  247. add $D,$D,@X[3]
  248. stp $A,$B,[$ctx]
  249. add $E,$E,@X[4]
  250. add $F,$F,@X[5]
  251. stp $C,$D,[$ctx,#2*$SZ]
  252. add $G,$G,@X[6]
  253. add $H,$H,@X[7]
  254. cmp $inp,$num
  255. stp $E,$F,[$ctx,#4*$SZ]
  256. stp $G,$H,[$ctx,#6*$SZ]
  257. b.ne .Loop
  258. ldp x19,x20,[x29,#16]
  259. add sp,sp,#4*$SZ
  260. ldp x21,x22,[x29,#32]
  261. ldp x23,x24,[x29,#48]
  262. ldp x25,x26,[x29,#64]
  263. ldp x27,x28,[x29,#80]
  264. ldp x29,x30,[sp],#128
  265. ret
  266. .size $func,.-$func
  267. .align 6
  268. .type .LK$BITS,%object
  269. .LK$BITS:
  270. ___
  271. $code.=<<___ if ($SZ==8);
  272. .quad 0x428a2f98d728ae22,0x7137449123ef65cd
  273. .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
  274. .quad 0x3956c25bf348b538,0x59f111f1b605d019
  275. .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
  276. .quad 0xd807aa98a3030242,0x12835b0145706fbe
  277. .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
  278. .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
  279. .quad 0x9bdc06a725c71235,0xc19bf174cf692694
  280. .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
  281. .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
  282. .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
  283. .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
  284. .quad 0x983e5152ee66dfab,0xa831c66d2db43210
  285. .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
  286. .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
  287. .quad 0x06ca6351e003826f,0x142929670a0e6e70
  288. .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
  289. .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
  290. .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
  291. .quad 0x81c2c92e47edaee6,0x92722c851482353b
  292. .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
  293. .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
  294. .quad 0xd192e819d6ef5218,0xd69906245565a910
  295. .quad 0xf40e35855771202a,0x106aa07032bbd1b8
  296. .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
  297. .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
  298. .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
  299. .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
  300. .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
  301. .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
  302. .quad 0x90befffa23631e28,0xa4506cebde82bde9
  303. .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
  304. .quad 0xca273eceea26619c,0xd186b8c721c0c207
  305. .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
  306. .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
  307. .quad 0x113f9804bef90dae,0x1b710b35131c471b
  308. .quad 0x28db77f523047d84,0x32caab7b40c72493
  309. .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
  310. .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
  311. .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
  312. .quad 0 // terminator
  313. ___
  314. $code.=<<___ if ($SZ==4);
  315. .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
  316. .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
  317. .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
  318. .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
  319. .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
  320. .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
  321. .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
  322. .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
  323. .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
  324. .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
  325. .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
  326. .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
  327. .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
  328. .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
  329. .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
  330. .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
  331. .long 0 //terminator
  332. ___
  333. $code.=<<___;
  334. .size .LK$BITS,.-.LK$BITS
  335. #ifndef __KERNEL__
  336. .align 3
  337. .LOPENSSL_armcap_P:
  338. # ifdef __ILP32__
  339. .long OPENSSL_armcap_P-.
  340. # else
  341. .quad OPENSSL_armcap_P-.
  342. # endif
  343. #endif
  344. .asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
  345. .align 2
  346. ___
  347. if ($SZ==4) {
  348. my $Ktbl="x3";
  349. my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
  350. my @MSG=map("v$_.16b",(4..7));
  351. my ($W0,$W1)=("v16.4s","v17.4s");
  352. my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
  353. $code.=<<___;
  354. #ifndef __KERNEL__
  355. .type sha256_block_armv8,%function
  356. .align 6
  357. sha256_block_armv8:
  358. .Lv8_entry:
  359. stp x29,x30,[sp,#-16]!
  360. add x29,sp,#0
  361. ld1.32 {$ABCD,$EFGH},[$ctx]
  362. adr $Ktbl,.LK256
  363. .Loop_hw:
  364. ld1 {@MSG[0]-@MSG[3]},[$inp],#64
  365. sub $num,$num,#1
  366. ld1.32 {$W0},[$Ktbl],#16
  367. rev32 @MSG[0],@MSG[0]
  368. rev32 @MSG[1],@MSG[1]
  369. rev32 @MSG[2],@MSG[2]
  370. rev32 @MSG[3],@MSG[3]
  371. orr $ABCD_SAVE,$ABCD,$ABCD // offload
  372. orr $EFGH_SAVE,$EFGH,$EFGH
  373. ___
  374. for($i=0;$i<12;$i++) {
  375. $code.=<<___;
  376. ld1.32 {$W1},[$Ktbl],#16
  377. add.i32 $W0,$W0,@MSG[0]
  378. sha256su0 @MSG[0],@MSG[1]
  379. orr $abcd,$ABCD,$ABCD
  380. sha256h $ABCD,$EFGH,$W0
  381. sha256h2 $EFGH,$abcd,$W0
  382. sha256su1 @MSG[0],@MSG[2],@MSG[3]
  383. ___
  384. ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
  385. }
  386. $code.=<<___;
  387. ld1.32 {$W1},[$Ktbl],#16
  388. add.i32 $W0,$W0,@MSG[0]
  389. orr $abcd,$ABCD,$ABCD
  390. sha256h $ABCD,$EFGH,$W0
  391. sha256h2 $EFGH,$abcd,$W0
  392. ld1.32 {$W0},[$Ktbl],#16
  393. add.i32 $W1,$W1,@MSG[1]
  394. orr $abcd,$ABCD,$ABCD
  395. sha256h $ABCD,$EFGH,$W1
  396. sha256h2 $EFGH,$abcd,$W1
  397. ld1.32 {$W1},[$Ktbl]
  398. add.i32 $W0,$W0,@MSG[2]
  399. sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
  400. orr $abcd,$ABCD,$ABCD
  401. sha256h $ABCD,$EFGH,$W0
  402. sha256h2 $EFGH,$abcd,$W0
  403. add.i32 $W1,$W1,@MSG[3]
  404. orr $abcd,$ABCD,$ABCD
  405. sha256h $ABCD,$EFGH,$W1
  406. sha256h2 $EFGH,$abcd,$W1
  407. add.i32 $ABCD,$ABCD,$ABCD_SAVE
  408. add.i32 $EFGH,$EFGH,$EFGH_SAVE
  409. cbnz $num,.Loop_hw
  410. st1.32 {$ABCD,$EFGH},[$ctx]
  411. ldr x29,[sp],#16
  412. ret
  413. .size sha256_block_armv8,.-sha256_block_armv8
  414. #endif
  415. ___
  416. }
  417. if ($SZ==4) { ######################################### NEON stuff #
  418. # You'll surely note a lot of similarities with sha256-armv4 module,
  419. # and of course it's not a coincidence. sha256-armv4 was used as
  420. # initial template, but was adapted for ARMv8 instruction set and
  421. # extensively re-tuned for all-round performance.
  422. my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
  423. my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
  424. my $Ktbl="x16";
  425. my $Xfer="x17";
  426. my @X = map("q$_",(0..3));
  427. my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
  428. my $j=0;
  429. sub AUTOLOAD() # thunk [simplified] x86-style perlasm
  430. { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
  431. my $arg = pop;
  432. $arg = "#$arg" if ($arg*1 eq $arg);
  433. $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
  434. }
  435. sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
  436. sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
  437. sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
  438. sub Xupdate()
  439. { use integer;
  440. my $body = shift;
  441. my @insns = (&$body,&$body,&$body,&$body);
  442. my ($a,$b,$c,$d,$e,$f,$g,$h);
  443. &ext_8 ($T0,@X[0],@X[1],4); # X[1..4]
  444. eval(shift(@insns));
  445. eval(shift(@insns));
  446. eval(shift(@insns));
  447. &ext_8 ($T3,@X[2],@X[3],4); # X[9..12]
  448. eval(shift(@insns));
  449. eval(shift(@insns));
  450. &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15]
  451. eval(shift(@insns));
  452. eval(shift(@insns));
  453. &ushr_32 ($T2,$T0,$sigma0[0]);
  454. eval(shift(@insns));
  455. &ushr_32 ($T1,$T0,$sigma0[2]);
  456. eval(shift(@insns));
  457. &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12]
  458. eval(shift(@insns));
  459. &sli_32 ($T2,$T0,32-$sigma0[0]);
  460. eval(shift(@insns));
  461. eval(shift(@insns));
  462. &ushr_32 ($T3,$T0,$sigma0[1]);
  463. eval(shift(@insns));
  464. eval(shift(@insns));
  465. &eor_8 ($T1,$T1,$T2);
  466. eval(shift(@insns));
  467. eval(shift(@insns));
  468. &sli_32 ($T3,$T0,32-$sigma0[1]);
  469. eval(shift(@insns));
  470. eval(shift(@insns));
  471. &ushr_32 ($T4,$T7,$sigma1[0]);
  472. eval(shift(@insns));
  473. eval(shift(@insns));
  474. &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4])
  475. eval(shift(@insns));
  476. eval(shift(@insns));
  477. &sli_32 ($T4,$T7,32-$sigma1[0]);
  478. eval(shift(@insns));
  479. eval(shift(@insns));
  480. &ushr_32 ($T5,$T7,$sigma1[2]);
  481. eval(shift(@insns));
  482. eval(shift(@insns));
  483. &ushr_32 ($T3,$T7,$sigma1[1]);
  484. eval(shift(@insns));
  485. eval(shift(@insns));
  486. &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
  487. eval(shift(@insns));
  488. eval(shift(@insns));
  489. &sli_u32 ($T3,$T7,32-$sigma1[1]);
  490. eval(shift(@insns));
  491. eval(shift(@insns));
  492. &eor_8 ($T5,$T5,$T4);
  493. eval(shift(@insns));
  494. eval(shift(@insns));
  495. eval(shift(@insns));
  496. &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15])
  497. eval(shift(@insns));
  498. eval(shift(@insns));
  499. eval(shift(@insns));
  500. &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
  501. eval(shift(@insns));
  502. eval(shift(@insns));
  503. eval(shift(@insns));
  504. &ushr_32 ($T6,@X[0],$sigma1[0]);
  505. eval(shift(@insns));
  506. &ushr_32 ($T7,@X[0],$sigma1[2]);
  507. eval(shift(@insns));
  508. eval(shift(@insns));
  509. &sli_32 ($T6,@X[0],32-$sigma1[0]);
  510. eval(shift(@insns));
  511. &ushr_32 ($T5,@X[0],$sigma1[1]);
  512. eval(shift(@insns));
  513. eval(shift(@insns));
  514. &eor_8 ($T7,$T7,$T6);
  515. eval(shift(@insns));
  516. eval(shift(@insns));
  517. &sli_32 ($T5,@X[0],32-$sigma1[1]);
  518. eval(shift(@insns));
  519. eval(shift(@insns));
  520. &ld1_32 ("{$T0}","[$Ktbl], #16");
  521. eval(shift(@insns));
  522. &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17])
  523. eval(shift(@insns));
  524. eval(shift(@insns));
  525. &eor_8 ($T5,$T5,$T5);
  526. eval(shift(@insns));
  527. eval(shift(@insns));
  528. &mov (&Dhi($T5), &Dlo($T7));
  529. eval(shift(@insns));
  530. eval(shift(@insns));
  531. eval(shift(@insns));
  532. &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
  533. eval(shift(@insns));
  534. eval(shift(@insns));
  535. eval(shift(@insns));
  536. &add_32 ($T0,$T0,@X[0]);
  537. while($#insns>=1) { eval(shift(@insns)); }
  538. &st1_32 ("{$T0}","[$Xfer], #16");
  539. eval(shift(@insns));
  540. push(@X,shift(@X)); # "rotate" X[]
  541. }
  542. sub Xpreload()
  543. { use integer;
  544. my $body = shift;
  545. my @insns = (&$body,&$body,&$body,&$body);
  546. my ($a,$b,$c,$d,$e,$f,$g,$h);
  547. eval(shift(@insns));
  548. eval(shift(@insns));
  549. &ld1_8 ("{@X[0]}","[$inp],#16");
  550. eval(shift(@insns));
  551. eval(shift(@insns));
  552. &ld1_32 ("{$T0}","[$Ktbl],#16");
  553. eval(shift(@insns));
  554. eval(shift(@insns));
  555. eval(shift(@insns));
  556. eval(shift(@insns));
  557. &rev32 (@X[0],@X[0]);
  558. eval(shift(@insns));
  559. eval(shift(@insns));
  560. eval(shift(@insns));
  561. eval(shift(@insns));
  562. &add_32 ($T0,$T0,@X[0]);
  563. foreach (@insns) { eval; } # remaining instructions
  564. &st1_32 ("{$T0}","[$Xfer], #16");
  565. push(@X,shift(@X)); # "rotate" X[]
  566. }
  567. sub body_00_15 () {
  568. (
  569. '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
  570. '&add ($h,$h,$t1)', # h+=X[i]+K[i]
  571. '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
  572. '&and ($t1,$f,$e)',
  573. '&bic ($t4,$g,$e)',
  574. '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
  575. '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
  576. '&orr ($t1,$t1,$t4)', # Ch(e,f,g)
  577. '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
  578. '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
  579. '&add ($h,$h,$t1)', # h+=Ch(e,f,g)
  580. '&ror ($t0,$t0,"#$Sigma1[0]")',
  581. '&eor ($t2,$a,$b)', # a^b, b^c in next round
  582. '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
  583. '&add ($h,$h,$t0)', # h+=Sigma1(e)
  584. '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
  585. '&ldr ($t1,"[$Ktbl]") if ($j==15);'.
  586. '&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
  587. '&ror ($t4,$t4,"#$Sigma0[0]")',
  588. '&add ($d,$d,$h)', # d+=h
  589. '&eor ($t3,$t3,$b)', # Maj(a,b,c)
  590. '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
  591. )
  592. }
  593. $code.=<<___;
  594. #ifdef __KERNEL__
  595. .globl sha256_block_neon
  596. #endif
  597. .type sha256_block_neon,%function
  598. .align 4
  599. sha256_block_neon:
  600. .Lneon_entry:
  601. stp x29, x30, [sp, #-16]!
  602. mov x29, sp
  603. sub sp,sp,#16*4
  604. adr $Ktbl,.LK256
  605. add $num,$inp,$num,lsl#6 // len to point at the end of inp
  606. ld1.8 {@X[0]},[$inp], #16
  607. ld1.8 {@X[1]},[$inp], #16
  608. ld1.8 {@X[2]},[$inp], #16
  609. ld1.8 {@X[3]},[$inp], #16
  610. ld1.32 {$T0},[$Ktbl], #16
  611. ld1.32 {$T1},[$Ktbl], #16
  612. ld1.32 {$T2},[$Ktbl], #16
  613. ld1.32 {$T3},[$Ktbl], #16
  614. rev32 @X[0],@X[0] // yes, even on
  615. rev32 @X[1],@X[1] // big-endian
  616. rev32 @X[2],@X[2]
  617. rev32 @X[3],@X[3]
  618. mov $Xfer,sp
  619. add.32 $T0,$T0,@X[0]
  620. add.32 $T1,$T1,@X[1]
  621. add.32 $T2,$T2,@X[2]
  622. st1.32 {$T0-$T1},[$Xfer], #32
  623. add.32 $T3,$T3,@X[3]
  624. st1.32 {$T2-$T3},[$Xfer]
  625. sub $Xfer,$Xfer,#32
  626. ldp $A,$B,[$ctx]
  627. ldp $C,$D,[$ctx,#8]
  628. ldp $E,$F,[$ctx,#16]
  629. ldp $G,$H,[$ctx,#24]
  630. ldr $t1,[sp,#0]
  631. mov $t2,wzr
  632. eor $t3,$B,$C
  633. mov $t4,wzr
  634. b .L_00_48
  635. .align 4
  636. .L_00_48:
  637. ___
  638. &Xupdate(\&body_00_15);
  639. &Xupdate(\&body_00_15);
  640. &Xupdate(\&body_00_15);
  641. &Xupdate(\&body_00_15);
  642. $code.=<<___;
  643. cmp $t1,#0 // check for K256 terminator
  644. ldr $t1,[sp,#0]
  645. sub $Xfer,$Xfer,#64
  646. bne .L_00_48
  647. sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
  648. cmp $inp,$num
  649. mov $Xfer, #64
  650. csel $Xfer, $Xfer, xzr, eq
  651. sub $inp,$inp,$Xfer // avoid SEGV
  652. mov $Xfer,sp
  653. ___
  654. &Xpreload(\&body_00_15);
  655. &Xpreload(\&body_00_15);
  656. &Xpreload(\&body_00_15);
  657. &Xpreload(\&body_00_15);
  658. $code.=<<___;
  659. add $A,$A,$t4 // h+=Sigma0(a) from the past
  660. ldp $t0,$t1,[$ctx,#0]
  661. add $A,$A,$t2 // h+=Maj(a,b,c) from the past
  662. ldp $t2,$t3,[$ctx,#8]
  663. add $A,$A,$t0 // accumulate
  664. add $B,$B,$t1
  665. ldp $t0,$t1,[$ctx,#16]
  666. add $C,$C,$t2
  667. add $D,$D,$t3
  668. ldp $t2,$t3,[$ctx,#24]
  669. add $E,$E,$t0
  670. add $F,$F,$t1
  671. ldr $t1,[sp,#0]
  672. stp $A,$B,[$ctx,#0]
  673. add $G,$G,$t2
  674. mov $t2,wzr
  675. stp $C,$D,[$ctx,#8]
  676. add $H,$H,$t3
  677. stp $E,$F,[$ctx,#16]
  678. eor $t3,$B,$C
  679. stp $G,$H,[$ctx,#24]
  680. mov $t4,wzr
  681. mov $Xfer,sp
  682. b.ne .L_00_48
  683. ldr x29,[x29]
  684. add sp,sp,#16*4+16
  685. ret
  686. .size sha256_block_neon,.-sha256_block_neon
  687. ___
  688. }
  689. $code.=<<___;
  690. #ifndef __KERNEL__
  691. .comm OPENSSL_armcap_P,4,4
  692. #endif
  693. ___
  694. { my %opcode = (
  695. "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
  696. "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
  697. sub unsha256 {
  698. my ($mnemonic,$arg)=@_;
  699. $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
  700. &&
  701. sprintf ".inst\t0x%08x\t//%s %s",
  702. $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
  703. $mnemonic,$arg;
  704. }
  705. }
  706. open SELF,$0;
  707. while(<SELF>) {
  708. next if (/^#!/);
  709. last if (!s/^#/\/\// and !/^$/);
  710. print;
  711. }
  712. close SELF;
  713. foreach(split("\n",$code)) {
  714. s/\`([^\`]*)\`/eval($1)/ge;
  715. s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
  716. s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
  717. s/\.[ui]?8(\s)/$1/;
  718. s/\.\w?32\b// and s/\.16b/\.4s/g;
  719. m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;
  720. print $_,"\n";
  721. }
  722. close STDOUT;