123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787 |
- #! /usr/bin/env perl
- # SPDX-License-Identifier: GPL-2.0
- # This code is taken from the OpenSSL project but the author (Andy Polyakov)
- # has relicensed it under the GPLv2. Therefore this program is free software;
- # you can redistribute it and/or modify it under the terms of the GNU General
- # Public License version 2 as published by the Free Software Foundation.
- #
- # The original headers, including the original license headers, are
- # included below for completeness.
- # Copyright 2014-2016 The OpenSSL Project Authors. All Rights Reserved.
- #
- # Licensed under the OpenSSL license (the "License"). You may not use
- # this file except in compliance with the License. You can obtain a copy
- # in the file LICENSE in the source distribution or at
- # https://www.openssl.org/source/license.html
- # ====================================================================
- # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
- # project. The module is, however, dual licensed under OpenSSL and
- # CRYPTOGAMS licenses depending on where you obtain it. For further
- # details see http://www.openssl.org/~appro/cryptogams/.
- # ====================================================================
- #
- # SHA256/512 for ARMv8.
- #
- # Performance in cycles per processed byte and improvement coefficient
- # over code generated with "default" compiler:
- #
- # SHA256-hw SHA256(*) SHA512
- # Apple A7 1.97 10.5 (+33%) 6.73 (-1%(**))
- # Cortex-A53 2.38 15.5 (+115%) 10.0 (+150%(***))
- # Cortex-A57 2.31 11.6 (+86%) 7.51 (+260%(***))
- # Denver 2.01 10.5 (+26%) 6.70 (+8%)
- # X-Gene 20.0 (+100%) 12.8 (+300%(***))
- # Mongoose 2.36 13.0 (+50%) 8.36 (+33%)
- #
- # (*) Software SHA256 results are of lesser relevance, presented
- # mostly for informational purposes.
- # (**) The result is a trade-off: it's possible to improve it by
- # 10% (or by 1 cycle per round), but at the cost of 20% loss
- # on Cortex-A53 (or by 4 cycles per round).
- # (***) Super-impressive coefficients over gcc-generated code are
- # indication of some compiler "pathology", most notably code
- # generated with -mgeneral-regs-only is significanty faster
- # and the gap is only 40-90%.
- #
- # October 2016.
- #
- # Originally it was reckoned that it makes no sense to implement NEON
- # version of SHA256 for 64-bit processors. This is because performance
- # improvement on most wide-spread Cortex-A5x processors was observed
- # to be marginal, same on Cortex-A53 and ~10% on A57. But then it was
- # observed that 32-bit NEON SHA256 performs significantly better than
- # 64-bit scalar version on *some* of the more recent processors. As
- # result 64-bit NEON version of SHA256 was added to provide best
- # all-round performance. For example it executes ~30% faster on X-Gene
- # and Mongoose. [For reference, NEON version of SHA512 is bound to
- # deliver much less improvement, likely *negative* on Cortex-A5x.
- # Which is why NEON support is limited to SHA256.]
- $output=pop;
- $flavour=pop;
- if ($flavour && $flavour ne "void") {
- $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
- ( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
- ( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
- die "can't locate arm-xlate.pl";
- open OUT,"| \"$^X\" $xlate $flavour $output";
- *STDOUT=*OUT;
- } else {
- open STDOUT,">$output";
- }
- if ($output =~ /512/) {
- $BITS=512;
- $SZ=8;
- @Sigma0=(28,34,39);
- @Sigma1=(14,18,41);
- @sigma0=(1, 8, 7);
- @sigma1=(19,61, 6);
- $rounds=80;
- $reg_t="x";
- } else {
- $BITS=256;
- $SZ=4;
- @Sigma0=( 2,13,22);
- @Sigma1=( 6,11,25);
- @sigma0=( 7,18, 3);
- @sigma1=(17,19,10);
- $rounds=64;
- $reg_t="w";
- }
- $func="sha${BITS}_block_data_order";
- ($ctx,$inp,$num,$Ktbl)=map("x$_",(0..2,30));
- @X=map("$reg_t$_",(3..15,0..2));
- @V=($A,$B,$C,$D,$E,$F,$G,$H)=map("$reg_t$_",(20..27));
- ($t0,$t1,$t2,$t3)=map("$reg_t$_",(16,17,19,28));
- sub BODY_00_xx {
- my ($i,$a,$b,$c,$d,$e,$f,$g,$h)=@_;
- my $j=($i+1)&15;
- my ($T0,$T1,$T2)=(@X[($i-8)&15],@X[($i-9)&15],@X[($i-10)&15]);
- $T0=@X[$i+3] if ($i<11);
- $code.=<<___ if ($i<16);
- #ifndef __AARCH64EB__
- rev @X[$i],@X[$i] // $i
- #endif
- ___
- $code.=<<___ if ($i<13 && ($i&1));
- ldp @X[$i+1],@X[$i+2],[$inp],#2*$SZ
- ___
- $code.=<<___ if ($i==13);
- ldp @X[14],@X[15],[$inp]
- ___
- $code.=<<___ if ($i>=14);
- ldr @X[($i-11)&15],[sp,#`$SZ*(($i-11)%4)`]
- ___
- $code.=<<___ if ($i>0 && $i<16);
- add $a,$a,$t1 // h+=Sigma0(a)
- ___
- $code.=<<___ if ($i>=11);
- str @X[($i-8)&15],[sp,#`$SZ*(($i-8)%4)`]
- ___
- # While ARMv8 specifies merged rotate-n-logical operation such as
- # 'eor x,y,z,ror#n', it was found to negatively affect performance
- # on Apple A7. The reason seems to be that it requires even 'y' to
- # be available earlier. This means that such merged instruction is
- # not necessarily best choice on critical path... On the other hand
- # Cortex-A5x handles merged instructions much better than disjoint
- # rotate and logical... See (**) footnote above.
- $code.=<<___ if ($i<15);
- ror $t0,$e,#$Sigma1[0]
- add $h,$h,$t2 // h+=K[i]
- eor $T0,$e,$e,ror#`$Sigma1[2]-$Sigma1[1]`
- and $t1,$f,$e
- bic $t2,$g,$e
- add $h,$h,@X[$i&15] // h+=X[i]
- orr $t1,$t1,$t2 // Ch(e,f,g)
- eor $t2,$a,$b // a^b, b^c in next round
- eor $t0,$t0,$T0,ror#$Sigma1[1] // Sigma1(e)
- ror $T0,$a,#$Sigma0[0]
- add $h,$h,$t1 // h+=Ch(e,f,g)
- eor $t1,$a,$a,ror#`$Sigma0[2]-$Sigma0[1]`
- add $h,$h,$t0 // h+=Sigma1(e)
- and $t3,$t3,$t2 // (b^c)&=(a^b)
- add $d,$d,$h // d+=h
- eor $t3,$t3,$b // Maj(a,b,c)
- eor $t1,$T0,$t1,ror#$Sigma0[1] // Sigma0(a)
- add $h,$h,$t3 // h+=Maj(a,b,c)
- ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
- //add $h,$h,$t1 // h+=Sigma0(a)
- ___
- $code.=<<___ if ($i>=15);
- ror $t0,$e,#$Sigma1[0]
- add $h,$h,$t2 // h+=K[i]
- ror $T1,@X[($j+1)&15],#$sigma0[0]
- and $t1,$f,$e
- ror $T2,@X[($j+14)&15],#$sigma1[0]
- bic $t2,$g,$e
- ror $T0,$a,#$Sigma0[0]
- add $h,$h,@X[$i&15] // h+=X[i]
- eor $t0,$t0,$e,ror#$Sigma1[1]
- eor $T1,$T1,@X[($j+1)&15],ror#$sigma0[1]
- orr $t1,$t1,$t2 // Ch(e,f,g)
- eor $t2,$a,$b // a^b, b^c in next round
- eor $t0,$t0,$e,ror#$Sigma1[2] // Sigma1(e)
- eor $T0,$T0,$a,ror#$Sigma0[1]
- add $h,$h,$t1 // h+=Ch(e,f,g)
- and $t3,$t3,$t2 // (b^c)&=(a^b)
- eor $T2,$T2,@X[($j+14)&15],ror#$sigma1[1]
- eor $T1,$T1,@X[($j+1)&15],lsr#$sigma0[2] // sigma0(X[i+1])
- add $h,$h,$t0 // h+=Sigma1(e)
- eor $t3,$t3,$b // Maj(a,b,c)
- eor $t1,$T0,$a,ror#$Sigma0[2] // Sigma0(a)
- eor $T2,$T2,@X[($j+14)&15],lsr#$sigma1[2] // sigma1(X[i+14])
- add @X[$j],@X[$j],@X[($j+9)&15]
- add $d,$d,$h // d+=h
- add $h,$h,$t3 // h+=Maj(a,b,c)
- ldr $t3,[$Ktbl],#$SZ // *K++, $t2 in next round
- add @X[$j],@X[$j],$T1
- add $h,$h,$t1 // h+=Sigma0(a)
- add @X[$j],@X[$j],$T2
- ___
- ($t2,$t3)=($t3,$t2);
- }
- $code.=<<___;
- #ifndef __KERNEL__
- # include "arm_arch.h"
- #endif
- .text
- .extern OPENSSL_armcap_P
- .globl $func
- .type $func,%function
- .align 6
- $func:
- ___
- $code.=<<___ if ($SZ==4);
- #ifndef __KERNEL__
- # ifdef __ILP32__
- ldrsw x16,.LOPENSSL_armcap_P
- # else
- ldr x16,.LOPENSSL_armcap_P
- # endif
- adr x17,.LOPENSSL_armcap_P
- add x16,x16,x17
- ldr w16,[x16]
- tst w16,#ARMV8_SHA256
- b.ne .Lv8_entry
- tst w16,#ARMV7_NEON
- b.ne .Lneon_entry
- #endif
- ___
- $code.=<<___;
- stp x29,x30,[sp,#-128]!
- add x29,sp,#0
- stp x19,x20,[sp,#16]
- stp x21,x22,[sp,#32]
- stp x23,x24,[sp,#48]
- stp x25,x26,[sp,#64]
- stp x27,x28,[sp,#80]
- sub sp,sp,#4*$SZ
- ldp $A,$B,[$ctx] // load context
- ldp $C,$D,[$ctx,#2*$SZ]
- ldp $E,$F,[$ctx,#4*$SZ]
- add $num,$inp,$num,lsl#`log(16*$SZ)/log(2)` // end of input
- ldp $G,$H,[$ctx,#6*$SZ]
- adr $Ktbl,.LK$BITS
- stp $ctx,$num,[x29,#96]
- .Loop:
- ldp @X[0],@X[1],[$inp],#2*$SZ
- ldr $t2,[$Ktbl],#$SZ // *K++
- eor $t3,$B,$C // magic seed
- str $inp,[x29,#112]
- ___
- for ($i=0;$i<16;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
- $code.=".Loop_16_xx:\n";
- for (;$i<32;$i++) { &BODY_00_xx($i,@V); unshift(@V,pop(@V)); }
- $code.=<<___;
- cbnz $t2,.Loop_16_xx
- ldp $ctx,$num,[x29,#96]
- ldr $inp,[x29,#112]
- sub $Ktbl,$Ktbl,#`$SZ*($rounds+1)` // rewind
- ldp @X[0],@X[1],[$ctx]
- ldp @X[2],@X[3],[$ctx,#2*$SZ]
- add $inp,$inp,#14*$SZ // advance input pointer
- ldp @X[4],@X[5],[$ctx,#4*$SZ]
- add $A,$A,@X[0]
- ldp @X[6],@X[7],[$ctx,#6*$SZ]
- add $B,$B,@X[1]
- add $C,$C,@X[2]
- add $D,$D,@X[3]
- stp $A,$B,[$ctx]
- add $E,$E,@X[4]
- add $F,$F,@X[5]
- stp $C,$D,[$ctx,#2*$SZ]
- add $G,$G,@X[6]
- add $H,$H,@X[7]
- cmp $inp,$num
- stp $E,$F,[$ctx,#4*$SZ]
- stp $G,$H,[$ctx,#6*$SZ]
- b.ne .Loop
- ldp x19,x20,[x29,#16]
- add sp,sp,#4*$SZ
- ldp x21,x22,[x29,#32]
- ldp x23,x24,[x29,#48]
- ldp x25,x26,[x29,#64]
- ldp x27,x28,[x29,#80]
- ldp x29,x30,[sp],#128
- ret
- .size $func,.-$func
- .align 6
- .type .LK$BITS,%object
- .LK$BITS:
- ___
- $code.=<<___ if ($SZ==8);
- .quad 0x428a2f98d728ae22,0x7137449123ef65cd
- .quad 0xb5c0fbcfec4d3b2f,0xe9b5dba58189dbbc
- .quad 0x3956c25bf348b538,0x59f111f1b605d019
- .quad 0x923f82a4af194f9b,0xab1c5ed5da6d8118
- .quad 0xd807aa98a3030242,0x12835b0145706fbe
- .quad 0x243185be4ee4b28c,0x550c7dc3d5ffb4e2
- .quad 0x72be5d74f27b896f,0x80deb1fe3b1696b1
- .quad 0x9bdc06a725c71235,0xc19bf174cf692694
- .quad 0xe49b69c19ef14ad2,0xefbe4786384f25e3
- .quad 0x0fc19dc68b8cd5b5,0x240ca1cc77ac9c65
- .quad 0x2de92c6f592b0275,0x4a7484aa6ea6e483
- .quad 0x5cb0a9dcbd41fbd4,0x76f988da831153b5
- .quad 0x983e5152ee66dfab,0xa831c66d2db43210
- .quad 0xb00327c898fb213f,0xbf597fc7beef0ee4
- .quad 0xc6e00bf33da88fc2,0xd5a79147930aa725
- .quad 0x06ca6351e003826f,0x142929670a0e6e70
- .quad 0x27b70a8546d22ffc,0x2e1b21385c26c926
- .quad 0x4d2c6dfc5ac42aed,0x53380d139d95b3df
- .quad 0x650a73548baf63de,0x766a0abb3c77b2a8
- .quad 0x81c2c92e47edaee6,0x92722c851482353b
- .quad 0xa2bfe8a14cf10364,0xa81a664bbc423001
- .quad 0xc24b8b70d0f89791,0xc76c51a30654be30
- .quad 0xd192e819d6ef5218,0xd69906245565a910
- .quad 0xf40e35855771202a,0x106aa07032bbd1b8
- .quad 0x19a4c116b8d2d0c8,0x1e376c085141ab53
- .quad 0x2748774cdf8eeb99,0x34b0bcb5e19b48a8
- .quad 0x391c0cb3c5c95a63,0x4ed8aa4ae3418acb
- .quad 0x5b9cca4f7763e373,0x682e6ff3d6b2b8a3
- .quad 0x748f82ee5defb2fc,0x78a5636f43172f60
- .quad 0x84c87814a1f0ab72,0x8cc702081a6439ec
- .quad 0x90befffa23631e28,0xa4506cebde82bde9
- .quad 0xbef9a3f7b2c67915,0xc67178f2e372532b
- .quad 0xca273eceea26619c,0xd186b8c721c0c207
- .quad 0xeada7dd6cde0eb1e,0xf57d4f7fee6ed178
- .quad 0x06f067aa72176fba,0x0a637dc5a2c898a6
- .quad 0x113f9804bef90dae,0x1b710b35131c471b
- .quad 0x28db77f523047d84,0x32caab7b40c72493
- .quad 0x3c9ebe0a15c9bebc,0x431d67c49c100d4c
- .quad 0x4cc5d4becb3e42b6,0x597f299cfc657e2a
- .quad 0x5fcb6fab3ad6faec,0x6c44198c4a475817
- .quad 0 // terminator
- ___
- $code.=<<___ if ($SZ==4);
- .long 0x428a2f98,0x71374491,0xb5c0fbcf,0xe9b5dba5
- .long 0x3956c25b,0x59f111f1,0x923f82a4,0xab1c5ed5
- .long 0xd807aa98,0x12835b01,0x243185be,0x550c7dc3
- .long 0x72be5d74,0x80deb1fe,0x9bdc06a7,0xc19bf174
- .long 0xe49b69c1,0xefbe4786,0x0fc19dc6,0x240ca1cc
- .long 0x2de92c6f,0x4a7484aa,0x5cb0a9dc,0x76f988da
- .long 0x983e5152,0xa831c66d,0xb00327c8,0xbf597fc7
- .long 0xc6e00bf3,0xd5a79147,0x06ca6351,0x14292967
- .long 0x27b70a85,0x2e1b2138,0x4d2c6dfc,0x53380d13
- .long 0x650a7354,0x766a0abb,0x81c2c92e,0x92722c85
- .long 0xa2bfe8a1,0xa81a664b,0xc24b8b70,0xc76c51a3
- .long 0xd192e819,0xd6990624,0xf40e3585,0x106aa070
- .long 0x19a4c116,0x1e376c08,0x2748774c,0x34b0bcb5
- .long 0x391c0cb3,0x4ed8aa4a,0x5b9cca4f,0x682e6ff3
- .long 0x748f82ee,0x78a5636f,0x84c87814,0x8cc70208
- .long 0x90befffa,0xa4506ceb,0xbef9a3f7,0xc67178f2
- .long 0 //terminator
- ___
- $code.=<<___;
- .size .LK$BITS,.-.LK$BITS
- #ifndef __KERNEL__
- .align 3
- .LOPENSSL_armcap_P:
- # ifdef __ILP32__
- .long OPENSSL_armcap_P-.
- # else
- .quad OPENSSL_armcap_P-.
- # endif
- #endif
- .asciz "SHA$BITS block transform for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
- .align 2
- ___
- if ($SZ==4) {
- my $Ktbl="x3";
- my ($ABCD,$EFGH,$abcd)=map("v$_.16b",(0..2));
- my @MSG=map("v$_.16b",(4..7));
- my ($W0,$W1)=("v16.4s","v17.4s");
- my ($ABCD_SAVE,$EFGH_SAVE)=("v18.16b","v19.16b");
- $code.=<<___;
- #ifndef __KERNEL__
- .type sha256_block_armv8,%function
- .align 6
- sha256_block_armv8:
- .Lv8_entry:
- stp x29,x30,[sp,#-16]!
- add x29,sp,#0
- ld1.32 {$ABCD,$EFGH},[$ctx]
- adr $Ktbl,.LK256
- .Loop_hw:
- ld1 {@MSG[0]-@MSG[3]},[$inp],#64
- sub $num,$num,#1
- ld1.32 {$W0},[$Ktbl],#16
- rev32 @MSG[0],@MSG[0]
- rev32 @MSG[1],@MSG[1]
- rev32 @MSG[2],@MSG[2]
- rev32 @MSG[3],@MSG[3]
- orr $ABCD_SAVE,$ABCD,$ABCD // offload
- orr $EFGH_SAVE,$EFGH,$EFGH
- ___
- for($i=0;$i<12;$i++) {
- $code.=<<___;
- ld1.32 {$W1},[$Ktbl],#16
- add.i32 $W0,$W0,@MSG[0]
- sha256su0 @MSG[0],@MSG[1]
- orr $abcd,$ABCD,$ABCD
- sha256h $ABCD,$EFGH,$W0
- sha256h2 $EFGH,$abcd,$W0
- sha256su1 @MSG[0],@MSG[2],@MSG[3]
- ___
- ($W0,$W1)=($W1,$W0); push(@MSG,shift(@MSG));
- }
- $code.=<<___;
- ld1.32 {$W1},[$Ktbl],#16
- add.i32 $W0,$W0,@MSG[0]
- orr $abcd,$ABCD,$ABCD
- sha256h $ABCD,$EFGH,$W0
- sha256h2 $EFGH,$abcd,$W0
- ld1.32 {$W0},[$Ktbl],#16
- add.i32 $W1,$W1,@MSG[1]
- orr $abcd,$ABCD,$ABCD
- sha256h $ABCD,$EFGH,$W1
- sha256h2 $EFGH,$abcd,$W1
- ld1.32 {$W1},[$Ktbl]
- add.i32 $W0,$W0,@MSG[2]
- sub $Ktbl,$Ktbl,#$rounds*$SZ-16 // rewind
- orr $abcd,$ABCD,$ABCD
- sha256h $ABCD,$EFGH,$W0
- sha256h2 $EFGH,$abcd,$W0
- add.i32 $W1,$W1,@MSG[3]
- orr $abcd,$ABCD,$ABCD
- sha256h $ABCD,$EFGH,$W1
- sha256h2 $EFGH,$abcd,$W1
- add.i32 $ABCD,$ABCD,$ABCD_SAVE
- add.i32 $EFGH,$EFGH,$EFGH_SAVE
- cbnz $num,.Loop_hw
- st1.32 {$ABCD,$EFGH},[$ctx]
- ldr x29,[sp],#16
- ret
- .size sha256_block_armv8,.-sha256_block_armv8
- #endif
- ___
- }
- if ($SZ==4) { ######################################### NEON stuff #
- # You'll surely note a lot of similarities with sha256-armv4 module,
- # and of course it's not a coincidence. sha256-armv4 was used as
- # initial template, but was adapted for ARMv8 instruction set and
- # extensively re-tuned for all-round performance.
- my @V = ($A,$B,$C,$D,$E,$F,$G,$H) = map("w$_",(3..10));
- my ($t0,$t1,$t2,$t3,$t4) = map("w$_",(11..15));
- my $Ktbl="x16";
- my $Xfer="x17";
- my @X = map("q$_",(0..3));
- my ($T0,$T1,$T2,$T3,$T4,$T5,$T6,$T7) = map("q$_",(4..7,16..19));
- my $j=0;
- sub AUTOLOAD() # thunk [simplified] x86-style perlasm
- { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; $opcode =~ s/_/\./;
- my $arg = pop;
- $arg = "#$arg" if ($arg*1 eq $arg);
- $code .= "\t$opcode\t".join(',',@_,$arg)."\n";
- }
- sub Dscalar { shift =~ m|[qv]([0-9]+)|?"d$1":""; }
- sub Dlo { shift =~ m|[qv]([0-9]+)|?"v$1.d[0]":""; }
- sub Dhi { shift =~ m|[qv]([0-9]+)|?"v$1.d[1]":""; }
- sub Xupdate()
- { use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body);
- my ($a,$b,$c,$d,$e,$f,$g,$h);
- &ext_8 ($T0,@X[0],@X[1],4); # X[1..4]
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- &ext_8 ($T3,@X[2],@X[3],4); # X[9..12]
- eval(shift(@insns));
- eval(shift(@insns));
- &mov (&Dscalar($T7),&Dhi(@X[3])); # X[14..15]
- eval(shift(@insns));
- eval(shift(@insns));
- &ushr_32 ($T2,$T0,$sigma0[0]);
- eval(shift(@insns));
- &ushr_32 ($T1,$T0,$sigma0[2]);
- eval(shift(@insns));
- &add_32 (@X[0],@X[0],$T3); # X[0..3] += X[9..12]
- eval(shift(@insns));
- &sli_32 ($T2,$T0,32-$sigma0[0]);
- eval(shift(@insns));
- eval(shift(@insns));
- &ushr_32 ($T3,$T0,$sigma0[1]);
- eval(shift(@insns));
- eval(shift(@insns));
- &eor_8 ($T1,$T1,$T2);
- eval(shift(@insns));
- eval(shift(@insns));
- &sli_32 ($T3,$T0,32-$sigma0[1]);
- eval(shift(@insns));
- eval(shift(@insns));
- &ushr_32 ($T4,$T7,$sigma1[0]);
- eval(shift(@insns));
- eval(shift(@insns));
- &eor_8 ($T1,$T1,$T3); # sigma0(X[1..4])
- eval(shift(@insns));
- eval(shift(@insns));
- &sli_32 ($T4,$T7,32-$sigma1[0]);
- eval(shift(@insns));
- eval(shift(@insns));
- &ushr_32 ($T5,$T7,$sigma1[2]);
- eval(shift(@insns));
- eval(shift(@insns));
- &ushr_32 ($T3,$T7,$sigma1[1]);
- eval(shift(@insns));
- eval(shift(@insns));
- &add_32 (@X[0],@X[0],$T1); # X[0..3] += sigma0(X[1..4])
- eval(shift(@insns));
- eval(shift(@insns));
- &sli_u32 ($T3,$T7,32-$sigma1[1]);
- eval(shift(@insns));
- eval(shift(@insns));
- &eor_8 ($T5,$T5,$T4);
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- &eor_8 ($T5,$T5,$T3); # sigma1(X[14..15])
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- &add_32 (@X[0],@X[0],$T5); # X[0..1] += sigma1(X[14..15])
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- &ushr_32 ($T6,@X[0],$sigma1[0]);
- eval(shift(@insns));
- &ushr_32 ($T7,@X[0],$sigma1[2]);
- eval(shift(@insns));
- eval(shift(@insns));
- &sli_32 ($T6,@X[0],32-$sigma1[0]);
- eval(shift(@insns));
- &ushr_32 ($T5,@X[0],$sigma1[1]);
- eval(shift(@insns));
- eval(shift(@insns));
- &eor_8 ($T7,$T7,$T6);
- eval(shift(@insns));
- eval(shift(@insns));
- &sli_32 ($T5,@X[0],32-$sigma1[1]);
- eval(shift(@insns));
- eval(shift(@insns));
- &ld1_32 ("{$T0}","[$Ktbl], #16");
- eval(shift(@insns));
- &eor_8 ($T7,$T7,$T5); # sigma1(X[16..17])
- eval(shift(@insns));
- eval(shift(@insns));
- &eor_8 ($T5,$T5,$T5);
- eval(shift(@insns));
- eval(shift(@insns));
- &mov (&Dhi($T5), &Dlo($T7));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- &add_32 (@X[0],@X[0],$T5); # X[2..3] += sigma1(X[16..17])
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- &add_32 ($T0,$T0,@X[0]);
- while($#insns>=1) { eval(shift(@insns)); }
- &st1_32 ("{$T0}","[$Xfer], #16");
- eval(shift(@insns));
- push(@X,shift(@X)); # "rotate" X[]
- }
- sub Xpreload()
- { use integer;
- my $body = shift;
- my @insns = (&$body,&$body,&$body,&$body);
- my ($a,$b,$c,$d,$e,$f,$g,$h);
- eval(shift(@insns));
- eval(shift(@insns));
- &ld1_8 ("{@X[0]}","[$inp],#16");
- eval(shift(@insns));
- eval(shift(@insns));
- &ld1_32 ("{$T0}","[$Ktbl],#16");
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- &rev32 (@X[0],@X[0]);
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- eval(shift(@insns));
- &add_32 ($T0,$T0,@X[0]);
- foreach (@insns) { eval; } # remaining instructions
- &st1_32 ("{$T0}","[$Xfer], #16");
- push(@X,shift(@X)); # "rotate" X[]
- }
- sub body_00_15 () {
- (
- '($a,$b,$c,$d,$e,$f,$g,$h)=@V;'.
- '&add ($h,$h,$t1)', # h+=X[i]+K[i]
- '&add ($a,$a,$t4);'. # h+=Sigma0(a) from the past
- '&and ($t1,$f,$e)',
- '&bic ($t4,$g,$e)',
- '&eor ($t0,$e,$e,"ror#".($Sigma1[1]-$Sigma1[0]))',
- '&add ($a,$a,$t2)', # h+=Maj(a,b,c) from the past
- '&orr ($t1,$t1,$t4)', # Ch(e,f,g)
- '&eor ($t0,$t0,$e,"ror#".($Sigma1[2]-$Sigma1[0]))', # Sigma1(e)
- '&eor ($t4,$a,$a,"ror#".($Sigma0[1]-$Sigma0[0]))',
- '&add ($h,$h,$t1)', # h+=Ch(e,f,g)
- '&ror ($t0,$t0,"#$Sigma1[0]")',
- '&eor ($t2,$a,$b)', # a^b, b^c in next round
- '&eor ($t4,$t4,$a,"ror#".($Sigma0[2]-$Sigma0[0]))', # Sigma0(a)
- '&add ($h,$h,$t0)', # h+=Sigma1(e)
- '&ldr ($t1,sprintf "[sp,#%d]",4*(($j+1)&15)) if (($j&15)!=15);'.
- '&ldr ($t1,"[$Ktbl]") if ($j==15);'.
- '&and ($t3,$t3,$t2)', # (b^c)&=(a^b)
- '&ror ($t4,$t4,"#$Sigma0[0]")',
- '&add ($d,$d,$h)', # d+=h
- '&eor ($t3,$t3,$b)', # Maj(a,b,c)
- '$j++; unshift(@V,pop(@V)); ($t2,$t3)=($t3,$t2);'
- )
- }
- $code.=<<___;
- #ifdef __KERNEL__
- .globl sha256_block_neon
- #endif
- .type sha256_block_neon,%function
- .align 4
- sha256_block_neon:
- .Lneon_entry:
- stp x29, x30, [sp, #-16]!
- mov x29, sp
- sub sp,sp,#16*4
- adr $Ktbl,.LK256
- add $num,$inp,$num,lsl#6 // len to point at the end of inp
- ld1.8 {@X[0]},[$inp], #16
- ld1.8 {@X[1]},[$inp], #16
- ld1.8 {@X[2]},[$inp], #16
- ld1.8 {@X[3]},[$inp], #16
- ld1.32 {$T0},[$Ktbl], #16
- ld1.32 {$T1},[$Ktbl], #16
- ld1.32 {$T2},[$Ktbl], #16
- ld1.32 {$T3},[$Ktbl], #16
- rev32 @X[0],@X[0] // yes, even on
- rev32 @X[1],@X[1] // big-endian
- rev32 @X[2],@X[2]
- rev32 @X[3],@X[3]
- mov $Xfer,sp
- add.32 $T0,$T0,@X[0]
- add.32 $T1,$T1,@X[1]
- add.32 $T2,$T2,@X[2]
- st1.32 {$T0-$T1},[$Xfer], #32
- add.32 $T3,$T3,@X[3]
- st1.32 {$T2-$T3},[$Xfer]
- sub $Xfer,$Xfer,#32
- ldp $A,$B,[$ctx]
- ldp $C,$D,[$ctx,#8]
- ldp $E,$F,[$ctx,#16]
- ldp $G,$H,[$ctx,#24]
- ldr $t1,[sp,#0]
- mov $t2,wzr
- eor $t3,$B,$C
- mov $t4,wzr
- b .L_00_48
- .align 4
- .L_00_48:
- ___
- &Xupdate(\&body_00_15);
- &Xupdate(\&body_00_15);
- &Xupdate(\&body_00_15);
- &Xupdate(\&body_00_15);
- $code.=<<___;
- cmp $t1,#0 // check for K256 terminator
- ldr $t1,[sp,#0]
- sub $Xfer,$Xfer,#64
- bne .L_00_48
- sub $Ktbl,$Ktbl,#256 // rewind $Ktbl
- cmp $inp,$num
- mov $Xfer, #64
- csel $Xfer, $Xfer, xzr, eq
- sub $inp,$inp,$Xfer // avoid SEGV
- mov $Xfer,sp
- ___
- &Xpreload(\&body_00_15);
- &Xpreload(\&body_00_15);
- &Xpreload(\&body_00_15);
- &Xpreload(\&body_00_15);
- $code.=<<___;
- add $A,$A,$t4 // h+=Sigma0(a) from the past
- ldp $t0,$t1,[$ctx,#0]
- add $A,$A,$t2 // h+=Maj(a,b,c) from the past
- ldp $t2,$t3,[$ctx,#8]
- add $A,$A,$t0 // accumulate
- add $B,$B,$t1
- ldp $t0,$t1,[$ctx,#16]
- add $C,$C,$t2
- add $D,$D,$t3
- ldp $t2,$t3,[$ctx,#24]
- add $E,$E,$t0
- add $F,$F,$t1
- ldr $t1,[sp,#0]
- stp $A,$B,[$ctx,#0]
- add $G,$G,$t2
- mov $t2,wzr
- stp $C,$D,[$ctx,#8]
- add $H,$H,$t3
- stp $E,$F,[$ctx,#16]
- eor $t3,$B,$C
- stp $G,$H,[$ctx,#24]
- mov $t4,wzr
- mov $Xfer,sp
- b.ne .L_00_48
- ldr x29,[x29]
- add sp,sp,#16*4+16
- ret
- .size sha256_block_neon,.-sha256_block_neon
- ___
- }
- $code.=<<___;
- #ifndef __KERNEL__
- .comm OPENSSL_armcap_P,4,4
- #endif
- ___
- { my %opcode = (
- "sha256h" => 0x5e004000, "sha256h2" => 0x5e005000,
- "sha256su0" => 0x5e282800, "sha256su1" => 0x5e006000 );
- sub unsha256 {
- my ($mnemonic,$arg)=@_;
- $arg =~ m/[qv]([0-9]+)[^,]*,\s*[qv]([0-9]+)[^,]*(?:,\s*[qv]([0-9]+))?/o
- &&
- sprintf ".inst\t0x%08x\t//%s %s",
- $opcode{$mnemonic}|$1|($2<<5)|($3<<16),
- $mnemonic,$arg;
- }
- }
- open SELF,$0;
- while(<SELF>) {
- next if (/^#!/);
- last if (!s/^#/\/\// and !/^$/);
- print;
- }
- close SELF;
- foreach(split("\n",$code)) {
- s/\`([^\`]*)\`/eval($1)/ge;
- s/\b(sha256\w+)\s+([qv].*)/unsha256($1,$2)/ge;
- s/\bq([0-9]+)\b/v$1.16b/g; # old->new registers
- s/\.[ui]?8(\s)/$1/;
- s/\.\w?32\b// and s/\.16b/\.4s/g;
- m/(ld|st)1[^\[]+\[0\]/ and s/\.4s/\.s/g;
- print $_,"\n";
- }
- close STDOUT;
|