123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193 |
- # event_analyzing_sample.py: general event handler in python
- # SPDX-License-Identifier: GPL-2.0
- #
- # Current perf report is already very powerful with the annotation integrated,
- # and this script is not trying to be as powerful as perf report, but
- # providing end user/developer a flexible way to analyze the events other
- # than trace points.
- #
- # The 2 database related functions in this script just show how to gather
- # the basic information, and users can modify and write their own functions
- # according to their specific requirement.
- #
- # The first function "show_general_events" just does a basic grouping for all
- # generic events with the help of sqlite, and the 2nd one "show_pebs_ll" is
- # for a x86 HW PMU event: PEBS with load latency data.
- #
- from __future__ import print_function
- import os
- import sys
- import math
- import struct
- import sqlite3
- sys.path.append(os.environ['PERF_EXEC_PATH'] + \
- '/scripts/python/Perf-Trace-Util/lib/Perf/Trace')
- from perf_trace_context import *
- from EventClass import *
- #
- # If the perf.data has a big number of samples, then the insert operation
- # will be very time consuming (about 10+ minutes for 10000 samples) if the
- # .db database is on disk. Move the .db file to RAM based FS to speedup
- # the handling, which will cut the time down to several seconds.
- #
- con = sqlite3.connect("/dev/shm/perf.db")
- con.isolation_level = None
- def trace_begin():
- print("In trace_begin:\n")
- #
- # Will create several tables at the start, pebs_ll is for PEBS data with
- # load latency info, while gen_events is for general event.
- #
- con.execute("""
- create table if not exists gen_events (
- name text,
- symbol text,
- comm text,
- dso text
- );""")
- con.execute("""
- create table if not exists pebs_ll (
- name text,
- symbol text,
- comm text,
- dso text,
- flags integer,
- ip integer,
- status integer,
- dse integer,
- dla integer,
- lat integer
- );""")
- #
- # Create and insert event object to a database so that user could
- # do more analysis with simple database commands.
- #
- def process_event(param_dict):
- event_attr = param_dict["attr"]
- sample = param_dict["sample"]
- raw_buf = param_dict["raw_buf"]
- comm = param_dict["comm"]
- name = param_dict["ev_name"]
- # Symbol and dso info are not always resolved
- if ("dso" in param_dict):
- dso = param_dict["dso"]
- else:
- dso = "Unknown_dso"
- if ("symbol" in param_dict):
- symbol = param_dict["symbol"]
- else:
- symbol = "Unknown_symbol"
- # Create the event object and insert it to the right table in database
- event = create_event(name, comm, dso, symbol, raw_buf)
- insert_db(event)
- def insert_db(event):
- if event.ev_type == EVTYPE_GENERIC:
- con.execute("insert into gen_events values(?, ?, ?, ?)",
- (event.name, event.symbol, event.comm, event.dso))
- elif event.ev_type == EVTYPE_PEBS_LL:
- event.ip &= 0x7fffffffffffffff
- event.dla &= 0x7fffffffffffffff
- con.execute("insert into pebs_ll values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
- (event.name, event.symbol, event.comm, event.dso, event.flags,
- event.ip, event.status, event.dse, event.dla, event.lat))
- def trace_end():
- print("In trace_end:\n")
- # We show the basic info for the 2 type of event classes
- show_general_events()
- show_pebs_ll()
- con.close()
- #
- # As the event number may be very big, so we can't use linear way
- # to show the histogram in real number, but use a log2 algorithm.
- #
- def num2sym(num):
- # Each number will have at least one '#'
- snum = '#' * (int)(math.log(num, 2) + 1)
- return snum
- def show_general_events():
- # Check the total record number in the table
- count = con.execute("select count(*) from gen_events")
- for t in count:
- print("There is %d records in gen_events table" % t[0])
- if t[0] == 0:
- return
- print("Statistics about the general events grouped by thread/symbol/dso: \n")
- # Group by thread
- commq = con.execute("select comm, count(comm) from gen_events group by comm order by -count(comm)")
- print("\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42))
- for row in commq:
- print("%16s %8d %s" % (row[0], row[1], num2sym(row[1])))
- # Group by symbol
- print("\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58))
- symbolq = con.execute("select symbol, count(symbol) from gen_events group by symbol order by -count(symbol)")
- for row in symbolq:
- print("%32s %8d %s" % (row[0], row[1], num2sym(row[1])))
- # Group by dso
- print("\n%40s %8s %16s\n%s" % ("dso", "number", "histogram", "="*74))
- dsoq = con.execute("select dso, count(dso) from gen_events group by dso order by -count(dso)")
- for row in dsoq:
- print("%40s %8d %s" % (row[0], row[1], num2sym(row[1])))
- #
- # This function just shows the basic info, and we could do more with the
- # data in the tables, like checking the function parameters when some
- # big latency events happen.
- #
- def show_pebs_ll():
- count = con.execute("select count(*) from pebs_ll")
- for t in count:
- print("There is %d records in pebs_ll table" % t[0])
- if t[0] == 0:
- return
- print("Statistics about the PEBS Load Latency events grouped by thread/symbol/dse/latency: \n")
- # Group by thread
- commq = con.execute("select comm, count(comm) from pebs_ll group by comm order by -count(comm)")
- print("\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42))
- for row in commq:
- print("%16s %8d %s" % (row[0], row[1], num2sym(row[1])))
- # Group by symbol
- print("\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58))
- symbolq = con.execute("select symbol, count(symbol) from pebs_ll group by symbol order by -count(symbol)")
- for row in symbolq:
- print("%32s %8d %s" % (row[0], row[1], num2sym(row[1])))
- # Group by dse
- dseq = con.execute("select dse, count(dse) from pebs_ll group by dse order by -count(dse)")
- print("\n%32s %8s %16s\n%s" % ("dse", "number", "histogram", "="*58))
- for row in dseq:
- print("%32s %8d %s" % (row[0], row[1], num2sym(row[1])))
- # Group by latency
- latq = con.execute("select lat, count(lat) from pebs_ll group by lat order by lat")
- print("\n%32s %8s %16s\n%s" % ("latency", "number", "histogram", "="*58))
- for row in latq:
- print("%32s %8d %s" % (row[0], row[1], num2sym(row[1])))
- def trace_unhandled(event_name, context, event_fields_dict):
- print (' '.join(['%s=%s'%(k,str(v))for k,v in sorted(event_fields_dict.items())]))
|