event_analyzing_sample.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193
  1. # event_analyzing_sample.py: general event handler in python
  2. # SPDX-License-Identifier: GPL-2.0
  3. #
  4. # Current perf report is already very powerful with the annotation integrated,
  5. # and this script is not trying to be as powerful as perf report, but
  6. # providing end user/developer a flexible way to analyze the events other
  7. # than trace points.
  8. #
  9. # The 2 database related functions in this script just show how to gather
  10. # the basic information, and users can modify and write their own functions
  11. # according to their specific requirement.
  12. #
  13. # The first function "show_general_events" just does a basic grouping for all
  14. # generic events with the help of sqlite, and the 2nd one "show_pebs_ll" is
  15. # for a x86 HW PMU event: PEBS with load latency data.
  16. #
  17. from __future__ import print_function
  18. import os
  19. import sys
  20. import math
  21. import struct
  22. import sqlite3
  23. sys.path.append(os.environ['PERF_EXEC_PATH'] + \
  24. '/scripts/python/Perf-Trace-Util/lib/Perf/Trace')
  25. from perf_trace_context import *
  26. from EventClass import *
  27. #
  28. # If the perf.data has a big number of samples, then the insert operation
  29. # will be very time consuming (about 10+ minutes for 10000 samples) if the
  30. # .db database is on disk. Move the .db file to RAM based FS to speedup
  31. # the handling, which will cut the time down to several seconds.
  32. #
  33. con = sqlite3.connect("/dev/shm/perf.db")
  34. con.isolation_level = None
  35. def trace_begin():
  36. print("In trace_begin:\n")
  37. #
  38. # Will create several tables at the start, pebs_ll is for PEBS data with
  39. # load latency info, while gen_events is for general event.
  40. #
  41. con.execute("""
  42. create table if not exists gen_events (
  43. name text,
  44. symbol text,
  45. comm text,
  46. dso text
  47. );""")
  48. con.execute("""
  49. create table if not exists pebs_ll (
  50. name text,
  51. symbol text,
  52. comm text,
  53. dso text,
  54. flags integer,
  55. ip integer,
  56. status integer,
  57. dse integer,
  58. dla integer,
  59. lat integer
  60. );""")
  61. #
  62. # Create and insert event object to a database so that user could
  63. # do more analysis with simple database commands.
  64. #
  65. def process_event(param_dict):
  66. event_attr = param_dict["attr"]
  67. sample = param_dict["sample"]
  68. raw_buf = param_dict["raw_buf"]
  69. comm = param_dict["comm"]
  70. name = param_dict["ev_name"]
  71. # Symbol and dso info are not always resolved
  72. if ("dso" in param_dict):
  73. dso = param_dict["dso"]
  74. else:
  75. dso = "Unknown_dso"
  76. if ("symbol" in param_dict):
  77. symbol = param_dict["symbol"]
  78. else:
  79. symbol = "Unknown_symbol"
  80. # Create the event object and insert it to the right table in database
  81. event = create_event(name, comm, dso, symbol, raw_buf)
  82. insert_db(event)
  83. def insert_db(event):
  84. if event.ev_type == EVTYPE_GENERIC:
  85. con.execute("insert into gen_events values(?, ?, ?, ?)",
  86. (event.name, event.symbol, event.comm, event.dso))
  87. elif event.ev_type == EVTYPE_PEBS_LL:
  88. event.ip &= 0x7fffffffffffffff
  89. event.dla &= 0x7fffffffffffffff
  90. con.execute("insert into pebs_ll values (?, ?, ?, ?, ?, ?, ?, ?, ?, ?)",
  91. (event.name, event.symbol, event.comm, event.dso, event.flags,
  92. event.ip, event.status, event.dse, event.dla, event.lat))
  93. def trace_end():
  94. print("In trace_end:\n")
  95. # We show the basic info for the 2 type of event classes
  96. show_general_events()
  97. show_pebs_ll()
  98. con.close()
  99. #
  100. # As the event number may be very big, so we can't use linear way
  101. # to show the histogram in real number, but use a log2 algorithm.
  102. #
  103. def num2sym(num):
  104. # Each number will have at least one '#'
  105. snum = '#' * (int)(math.log(num, 2) + 1)
  106. return snum
  107. def show_general_events():
  108. # Check the total record number in the table
  109. count = con.execute("select count(*) from gen_events")
  110. for t in count:
  111. print("There is %d records in gen_events table" % t[0])
  112. if t[0] == 0:
  113. return
  114. print("Statistics about the general events grouped by thread/symbol/dso: \n")
  115. # Group by thread
  116. commq = con.execute("select comm, count(comm) from gen_events group by comm order by -count(comm)")
  117. print("\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42))
  118. for row in commq:
  119. print("%16s %8d %s" % (row[0], row[1], num2sym(row[1])))
  120. # Group by symbol
  121. print("\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58))
  122. symbolq = con.execute("select symbol, count(symbol) from gen_events group by symbol order by -count(symbol)")
  123. for row in symbolq:
  124. print("%32s %8d %s" % (row[0], row[1], num2sym(row[1])))
  125. # Group by dso
  126. print("\n%40s %8s %16s\n%s" % ("dso", "number", "histogram", "="*74))
  127. dsoq = con.execute("select dso, count(dso) from gen_events group by dso order by -count(dso)")
  128. for row in dsoq:
  129. print("%40s %8d %s" % (row[0], row[1], num2sym(row[1])))
  130. #
  131. # This function just shows the basic info, and we could do more with the
  132. # data in the tables, like checking the function parameters when some
  133. # big latency events happen.
  134. #
  135. def show_pebs_ll():
  136. count = con.execute("select count(*) from pebs_ll")
  137. for t in count:
  138. print("There is %d records in pebs_ll table" % t[0])
  139. if t[0] == 0:
  140. return
  141. print("Statistics about the PEBS Load Latency events grouped by thread/symbol/dse/latency: \n")
  142. # Group by thread
  143. commq = con.execute("select comm, count(comm) from pebs_ll group by comm order by -count(comm)")
  144. print("\n%16s %8s %16s\n%s" % ("comm", "number", "histogram", "="*42))
  145. for row in commq:
  146. print("%16s %8d %s" % (row[0], row[1], num2sym(row[1])))
  147. # Group by symbol
  148. print("\n%32s %8s %16s\n%s" % ("symbol", "number", "histogram", "="*58))
  149. symbolq = con.execute("select symbol, count(symbol) from pebs_ll group by symbol order by -count(symbol)")
  150. for row in symbolq:
  151. print("%32s %8d %s" % (row[0], row[1], num2sym(row[1])))
  152. # Group by dse
  153. dseq = con.execute("select dse, count(dse) from pebs_ll group by dse order by -count(dse)")
  154. print("\n%32s %8s %16s\n%s" % ("dse", "number", "histogram", "="*58))
  155. for row in dseq:
  156. print("%32s %8d %s" % (row[0], row[1], num2sym(row[1])))
  157. # Group by latency
  158. latq = con.execute("select lat, count(lat) from pebs_ll group by lat order by lat")
  159. print("\n%32s %8s %16s\n%s" % ("latency", "number", "histogram", "="*58))
  160. for row in latq:
  161. print("%32s %8d %s" % (row[0], row[1], num2sym(row[1])))
  162. def trace_unhandled(event_name, context, event_fields_dict):
  163. print (' '.join(['%s=%s'%(k,str(v))for k,v in sorted(event_fields_dict.items())]))