i40e_txrx.h 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525
  1. /* SPDX-License-Identifier: GPL-2.0 */
  2. /* Copyright(c) 2013 - 2018 Intel Corporation. */
  3. #ifndef _I40E_TXRX_H_
  4. #define _I40E_TXRX_H_
  5. /* Interrupt Throttling and Rate Limiting Goodies */
  6. #define I40E_DEFAULT_IRQ_WORK 256
  7. /* The datasheet for the X710 and XL710 indicate that the maximum value for
  8. * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
  9. * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
  10. * the register value which is divided by 2 lets use the actual values and
  11. * avoid an excessive amount of translation.
  12. */
  13. #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
  14. #define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */
  15. #define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */
  16. #define I40E_ITR_100K 10 /* all values below must be even */
  17. #define I40E_ITR_50K 20
  18. #define I40E_ITR_20K 50
  19. #define I40E_ITR_18K 60
  20. #define I40E_ITR_8K 122
  21. #define I40E_MAX_ITR 8160 /* maximum value as per datasheet */
  22. #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
  23. #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
  24. #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
  25. #define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
  26. #define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
  27. /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
  28. * the value of the rate limit is non-zero
  29. */
  30. #define INTRL_ENA BIT(6)
  31. #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
  32. #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
  33. #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
  34. #define I40E_INTRL_8K 125 /* 8000 ints/sec */
  35. #define I40E_INTRL_62K 16 /* 62500 ints/sec */
  36. #define I40E_INTRL_83K 12 /* 83333 ints/sec */
  37. #define I40E_QUEUE_END_OF_LIST 0x7FF
  38. /* this enum matches hardware bits and is meant to be used by DYN_CTLN
  39. * registers and QINT registers or more generally anywhere in the manual
  40. * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
  41. * register but instead is a special value meaning "don't update" ITR0/1/2.
  42. */
  43. enum i40e_dyn_idx_t {
  44. I40E_IDX_ITR0 = 0,
  45. I40E_IDX_ITR1 = 1,
  46. I40E_IDX_ITR2 = 2,
  47. I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
  48. };
  49. /* these are indexes into ITRN registers */
  50. #define I40E_RX_ITR I40E_IDX_ITR0
  51. #define I40E_TX_ITR I40E_IDX_ITR1
  52. #define I40E_PE_ITR I40E_IDX_ITR2
  53. /* Supported RSS offloads */
  54. #define I40E_DEFAULT_RSS_HENA ( \
  55. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
  56. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
  57. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
  58. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
  59. BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
  60. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
  61. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
  62. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
  63. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
  64. BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
  65. BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
  66. #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
  67. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
  68. BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
  69. BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
  70. BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
  71. BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
  72. BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
  73. /* Supported Rx Buffer Sizes (a multiple of 128) */
  74. #define I40E_RXBUFFER_256 256
  75. #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */
  76. #define I40E_RXBUFFER_2048 2048
  77. #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */
  78. #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
  79. /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
  80. * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
  81. * this adds up to 512 bytes of extra data meaning the smallest allocation
  82. * we could have is 1K.
  83. * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
  84. * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
  85. */
  86. #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
  87. #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
  88. #define i40e_rx_desc i40e_32byte_rx_desc
  89. #define I40E_RX_DMA_ATTR \
  90. (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
  91. /* Attempt to maximize the headroom available for incoming frames. We
  92. * use a 2K buffer for receives and need 1536/1534 to store the data for
  93. * the frame. This leaves us with 512 bytes of room. From that we need
  94. * to deduct the space needed for the shared info and the padding needed
  95. * to IP align the frame.
  96. *
  97. * Note: For cache line sizes 256 or larger this value is going to end
  98. * up negative. In these cases we should fall back to the legacy
  99. * receive path.
  100. */
  101. #if (PAGE_SIZE < 8192)
  102. #define I40E_2K_TOO_SMALL_WITH_PADDING \
  103. ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
  104. static inline int i40e_compute_pad(int rx_buf_len)
  105. {
  106. int page_size, pad_size;
  107. page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
  108. pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
  109. return pad_size;
  110. }
  111. static inline int i40e_skb_pad(void)
  112. {
  113. int rx_buf_len;
  114. /* If a 2K buffer cannot handle a standard Ethernet frame then
  115. * optimize padding for a 3K buffer instead of a 1.5K buffer.
  116. *
  117. * For a 3K buffer we need to add enough padding to allow for
  118. * tailroom due to NET_IP_ALIGN possibly shifting us out of
  119. * cache-line alignment.
  120. */
  121. if (I40E_2K_TOO_SMALL_WITH_PADDING)
  122. rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
  123. else
  124. rx_buf_len = I40E_RXBUFFER_1536;
  125. /* if needed make room for NET_IP_ALIGN */
  126. rx_buf_len -= NET_IP_ALIGN;
  127. return i40e_compute_pad(rx_buf_len);
  128. }
  129. #define I40E_SKB_PAD i40e_skb_pad()
  130. #else
  131. #define I40E_2K_TOO_SMALL_WITH_PADDING false
  132. #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
  133. #endif
  134. /**
  135. * i40e_test_staterr - tests bits in Rx descriptor status and error fields
  136. * @rx_desc: pointer to receive descriptor (in le64 format)
  137. * @stat_err_bits: value to mask
  138. *
  139. * This function does some fast chicanery in order to return the
  140. * value of the mask which is really only used for boolean tests.
  141. * The status_error_len doesn't need to be shifted because it begins
  142. * at offset zero.
  143. */
  144. static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
  145. const u64 stat_err_bits)
  146. {
  147. return !!(rx_desc->wb.qword1.status_error_len &
  148. cpu_to_le64(stat_err_bits));
  149. }
  150. /* How many Rx Buffers do we bundle into one write to the hardware ? */
  151. #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */
  152. #define I40E_RX_INCREMENT(r, i) \
  153. do { \
  154. (i)++; \
  155. if ((i) == (r)->count) \
  156. i = 0; \
  157. r->next_to_clean = i; \
  158. } while (0)
  159. #define I40E_RX_NEXT_DESC(r, i, n) \
  160. do { \
  161. (i)++; \
  162. if ((i) == (r)->count) \
  163. i = 0; \
  164. (n) = I40E_RX_DESC((r), (i)); \
  165. } while (0)
  166. #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
  167. do { \
  168. I40E_RX_NEXT_DESC((r), (i), (n)); \
  169. prefetch((n)); \
  170. } while (0)
  171. #define I40E_MAX_BUFFER_TXD 8
  172. #define I40E_MIN_TX_LEN 17
  173. /* The size limit for a transmit buffer in a descriptor is (16K - 1).
  174. * In order to align with the read requests we will align the value to
  175. * the nearest 4K which represents our maximum read request size.
  176. */
  177. #define I40E_MAX_READ_REQ_SIZE 4096
  178. #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
  179. #define I40E_MAX_DATA_PER_TXD_ALIGNED \
  180. (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
  181. /**
  182. * i40e_txd_use_count - estimate the number of descriptors needed for Tx
  183. * @size: transmit request size in bytes
  184. *
  185. * Due to hardware alignment restrictions (4K alignment), we need to
  186. * assume that we can have no more than 12K of data per descriptor, even
  187. * though each descriptor can take up to 16K - 1 bytes of aligned memory.
  188. * Thus, we need to divide by 12K. But division is slow! Instead,
  189. * we decompose the operation into shifts and one relatively cheap
  190. * multiply operation.
  191. *
  192. * To divide by 12K, we first divide by 4K, then divide by 3:
  193. * To divide by 4K, shift right by 12 bits
  194. * To divide by 3, multiply by 85, then divide by 256
  195. * (Divide by 256 is done by shifting right by 8 bits)
  196. * Finally, we add one to round up. Because 256 isn't an exact multiple of
  197. * 3, we'll underestimate near each multiple of 12K. This is actually more
  198. * accurate as we have 4K - 1 of wiggle room that we can fit into the last
  199. * segment. For our purposes this is accurate out to 1M which is orders of
  200. * magnitude greater than our largest possible GSO size.
  201. *
  202. * This would then be implemented as:
  203. * return (((size >> 12) * 85) >> 8) + 1;
  204. *
  205. * Since multiplication and division are commutative, we can reorder
  206. * operations into:
  207. * return ((size * 85) >> 20) + 1;
  208. */
  209. static inline unsigned int i40e_txd_use_count(unsigned int size)
  210. {
  211. return ((size * 85) >> 20) + 1;
  212. }
  213. /* Tx Descriptors needed, worst case */
  214. #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
  215. #define I40E_MIN_DESC_PENDING 4
  216. #define I40E_TX_FLAGS_HW_VLAN BIT(1)
  217. #define I40E_TX_FLAGS_SW_VLAN BIT(2)
  218. #define I40E_TX_FLAGS_TSO BIT(3)
  219. #define I40E_TX_FLAGS_IPV4 BIT(4)
  220. #define I40E_TX_FLAGS_IPV6 BIT(5)
  221. #define I40E_TX_FLAGS_FCCRC BIT(6)
  222. #define I40E_TX_FLAGS_FSO BIT(7)
  223. #define I40E_TX_FLAGS_FD_SB BIT(9)
  224. #define I40E_TX_FLAGS_VXLAN_TUNNEL BIT(10)
  225. #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
  226. #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
  227. #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
  228. #define I40E_TX_FLAGS_VLAN_SHIFT 16
  229. struct i40e_tx_buffer {
  230. struct i40e_tx_desc *next_to_watch;
  231. union {
  232. struct sk_buff *skb;
  233. void *raw_buf;
  234. };
  235. unsigned int bytecount;
  236. unsigned short gso_segs;
  237. DEFINE_DMA_UNMAP_ADDR(dma);
  238. DEFINE_DMA_UNMAP_LEN(len);
  239. u32 tx_flags;
  240. };
  241. struct i40e_rx_buffer {
  242. dma_addr_t dma;
  243. struct page *page;
  244. #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
  245. __u32 page_offset;
  246. #else
  247. __u16 page_offset;
  248. #endif
  249. __u16 pagecnt_bias;
  250. };
  251. struct i40e_queue_stats {
  252. u64 packets;
  253. u64 bytes;
  254. };
  255. struct i40e_tx_queue_stats {
  256. u64 restart_queue;
  257. u64 tx_busy;
  258. u64 tx_done_old;
  259. u64 tx_linearize;
  260. u64 tx_force_wb;
  261. int prev_pkt_ctr;
  262. u64 tx_lost_interrupt;
  263. };
  264. struct i40e_rx_queue_stats {
  265. u64 non_eop_descs;
  266. u64 alloc_page_failed;
  267. u64 alloc_buff_failed;
  268. u64 page_reuse_count;
  269. u64 realloc_count;
  270. };
  271. enum i40e_ring_state_t {
  272. __I40E_TX_FDIR_INIT_DONE,
  273. __I40E_TX_XPS_INIT_DONE,
  274. __I40E_RING_STATE_NBITS /* must be last */
  275. };
  276. /* some useful defines for virtchannel interface, which
  277. * is the only remaining user of header split
  278. */
  279. #define I40E_RX_DTYPE_NO_SPLIT 0
  280. #define I40E_RX_DTYPE_HEADER_SPLIT 1
  281. #define I40E_RX_DTYPE_SPLIT_ALWAYS 2
  282. #define I40E_RX_SPLIT_L2 0x1
  283. #define I40E_RX_SPLIT_IP 0x2
  284. #define I40E_RX_SPLIT_TCP_UDP 0x4
  285. #define I40E_RX_SPLIT_SCTP 0x8
  286. /* struct that defines a descriptor ring, associated with a VSI */
  287. struct i40e_ring {
  288. struct i40e_ring *next; /* pointer to next ring in q_vector */
  289. void *desc; /* Descriptor ring memory */
  290. struct device *dev; /* Used for DMA mapping */
  291. struct net_device *netdev; /* netdev ring maps to */
  292. union {
  293. struct i40e_tx_buffer *tx_bi;
  294. struct i40e_rx_buffer *rx_bi;
  295. };
  296. DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
  297. u16 queue_index; /* Queue number of ring */
  298. u8 dcb_tc; /* Traffic class of ring */
  299. u8 __iomem *tail;
  300. /* high bit set means dynamic, use accessors routines to read/write.
  301. * hardware only supports 2us resolution for the ITR registers.
  302. * these values always store the USER setting, and must be converted
  303. * before programming to a register.
  304. */
  305. u16 itr_setting;
  306. u16 count; /* Number of descriptors */
  307. u16 reg_idx; /* HW register index of the ring */
  308. u16 rx_buf_len;
  309. /* used in interrupt processing */
  310. u16 next_to_use;
  311. u16 next_to_clean;
  312. u8 atr_sample_rate;
  313. u8 atr_count;
  314. bool ring_active; /* is ring online or not */
  315. bool arm_wb; /* do something to arm write back */
  316. u8 packet_stride;
  317. u16 flags;
  318. #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
  319. #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1)
  320. /* stats structs */
  321. struct i40e_queue_stats stats;
  322. struct u64_stats_sync syncp;
  323. union {
  324. struct i40e_tx_queue_stats tx_stats;
  325. struct i40e_rx_queue_stats rx_stats;
  326. };
  327. unsigned int size; /* length of descriptor ring in bytes */
  328. dma_addr_t dma; /* physical address of ring */
  329. struct i40e_vsi *vsi; /* Backreference to associated VSI */
  330. struct i40e_q_vector *q_vector; /* Backreference to associated vector */
  331. struct rcu_head rcu; /* to avoid race on free */
  332. u16 next_to_alloc;
  333. struct sk_buff *skb; /* When i40evf_clean_rx_ring_irq() must
  334. * return before it sees the EOP for
  335. * the current packet, we save that skb
  336. * here and resume receiving this
  337. * packet the next time
  338. * i40evf_clean_rx_ring_irq() is called
  339. * for this ring.
  340. */
  341. } ____cacheline_internodealigned_in_smp;
  342. static inline bool ring_uses_build_skb(struct i40e_ring *ring)
  343. {
  344. return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
  345. }
  346. static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
  347. {
  348. ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
  349. }
  350. static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
  351. {
  352. ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
  353. }
  354. #define I40E_ITR_ADAPTIVE_MIN_INC 0x0002
  355. #define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002
  356. #define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e
  357. #define I40E_ITR_ADAPTIVE_LATENCY 0x8000
  358. #define I40E_ITR_ADAPTIVE_BULK 0x0000
  359. #define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
  360. struct i40e_ring_container {
  361. struct i40e_ring *ring; /* pointer to linked list of ring(s) */
  362. unsigned long next_update; /* jiffies value of next update */
  363. unsigned int total_bytes; /* total bytes processed this int */
  364. unsigned int total_packets; /* total packets processed this int */
  365. u16 count;
  366. u16 target_itr; /* target ITR setting for ring(s) */
  367. u16 current_itr; /* current ITR setting for ring(s) */
  368. };
  369. /* iterator for handling rings in ring container */
  370. #define i40e_for_each_ring(pos, head) \
  371. for (pos = (head).ring; pos != NULL; pos = pos->next)
  372. static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
  373. {
  374. #if (PAGE_SIZE < 8192)
  375. if (ring->rx_buf_len > (PAGE_SIZE / 2))
  376. return 1;
  377. #endif
  378. return 0;
  379. }
  380. #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
  381. bool i40evf_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
  382. netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
  383. void i40evf_clean_tx_ring(struct i40e_ring *tx_ring);
  384. void i40evf_clean_rx_ring(struct i40e_ring *rx_ring);
  385. int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring);
  386. int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring);
  387. void i40evf_free_tx_resources(struct i40e_ring *tx_ring);
  388. void i40evf_free_rx_resources(struct i40e_ring *rx_ring);
  389. int i40evf_napi_poll(struct napi_struct *napi, int budget);
  390. void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
  391. u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw);
  392. void i40evf_detect_recover_hung(struct i40e_vsi *vsi);
  393. int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
  394. bool __i40evf_chk_linearize(struct sk_buff *skb);
  395. /**
  396. * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
  397. * @skb: send buffer
  398. * @tx_ring: ring to send buffer on
  399. *
  400. * Returns number of data descriptors needed for this skb. Returns 0 to indicate
  401. * there is not enough descriptors available in this ring since we need at least
  402. * one descriptor.
  403. **/
  404. static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
  405. {
  406. const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
  407. unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
  408. int count = 0, size = skb_headlen(skb);
  409. for (;;) {
  410. count += i40e_txd_use_count(size);
  411. if (!nr_frags--)
  412. break;
  413. size = skb_frag_size(frag++);
  414. }
  415. return count;
  416. }
  417. /**
  418. * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
  419. * @tx_ring: the ring to be checked
  420. * @size: the size buffer we want to assure is available
  421. *
  422. * Returns 0 if stop is not needed
  423. **/
  424. static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
  425. {
  426. if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
  427. return 0;
  428. return __i40evf_maybe_stop_tx(tx_ring, size);
  429. }
  430. /**
  431. * i40e_chk_linearize - Check if there are more than 8 fragments per packet
  432. * @skb: send buffer
  433. * @count: number of buffers used
  434. *
  435. * Note: Our HW can't scatter-gather more than 8 fragments to build
  436. * a packet on the wire and so we need to figure out the cases where we
  437. * need to linearize the skb.
  438. **/
  439. static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
  440. {
  441. /* Both TSO and single send will work if count is less than 8 */
  442. if (likely(count < I40E_MAX_BUFFER_TXD))
  443. return false;
  444. if (skb_is_gso(skb))
  445. return __i40evf_chk_linearize(skb);
  446. /* we can support up to 8 data buffers for a single send */
  447. return count != I40E_MAX_BUFFER_TXD;
  448. }
  449. /**
  450. * @ring: Tx ring to find the netdev equivalent of
  451. **/
  452. static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
  453. {
  454. return netdev_get_tx_queue(ring->netdev, ring->queue_index);
  455. }
  456. #endif /* _I40E_TXRX_H_ */