123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525 |
- /* SPDX-License-Identifier: GPL-2.0 */
- /* Copyright(c) 2013 - 2018 Intel Corporation. */
- #ifndef _I40E_TXRX_H_
- #define _I40E_TXRX_H_
- /* Interrupt Throttling and Rate Limiting Goodies */
- #define I40E_DEFAULT_IRQ_WORK 256
- /* The datasheet for the X710 and XL710 indicate that the maximum value for
- * the ITR is 8160usec which is then called out as 0xFF0 with a 2usec
- * resolution. 8160 is 0x1FE0 when written out in hex. So instead of storing
- * the register value which is divided by 2 lets use the actual values and
- * avoid an excessive amount of translation.
- */
- #define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
- #define I40E_ITR_MASK 0x1FFE /* mask for ITR register value */
- #define I40E_MIN_ITR 2 /* reg uses 2 usec resolution */
- #define I40E_ITR_100K 10 /* all values below must be even */
- #define I40E_ITR_50K 20
- #define I40E_ITR_20K 50
- #define I40E_ITR_18K 60
- #define I40E_ITR_8K 122
- #define I40E_MAX_ITR 8160 /* maximum value as per datasheet */
- #define ITR_TO_REG(setting) ((setting) & ~I40E_ITR_DYNAMIC)
- #define ITR_REG_ALIGN(setting) __ALIGN_MASK(setting, ~I40E_ITR_MASK)
- #define ITR_IS_DYNAMIC(setting) (!!((setting) & I40E_ITR_DYNAMIC))
- #define I40E_ITR_RX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
- #define I40E_ITR_TX_DEF (I40E_ITR_20K | I40E_ITR_DYNAMIC)
- /* 0x40 is the enable bit for interrupt rate limiting, and must be set if
- * the value of the rate limit is non-zero
- */
- #define INTRL_ENA BIT(6)
- #define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
- #define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
- #define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
- #define I40E_INTRL_8K 125 /* 8000 ints/sec */
- #define I40E_INTRL_62K 16 /* 62500 ints/sec */
- #define I40E_INTRL_83K 12 /* 83333 ints/sec */
- #define I40E_QUEUE_END_OF_LIST 0x7FF
- /* this enum matches hardware bits and is meant to be used by DYN_CTLN
- * registers and QINT registers or more generally anywhere in the manual
- * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
- * register but instead is a special value meaning "don't update" ITR0/1/2.
- */
- enum i40e_dyn_idx_t {
- I40E_IDX_ITR0 = 0,
- I40E_IDX_ITR1 = 1,
- I40E_IDX_ITR2 = 2,
- I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
- };
- /* these are indexes into ITRN registers */
- #define I40E_RX_ITR I40E_IDX_ITR0
- #define I40E_TX_ITR I40E_IDX_ITR1
- #define I40E_PE_ITR I40E_IDX_ITR2
- /* Supported RSS offloads */
- #define I40E_DEFAULT_RSS_HENA ( \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
- BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
- BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
- BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
- #define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
- BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
- /* Supported Rx Buffer Sizes (a multiple of 128) */
- #define I40E_RXBUFFER_256 256
- #define I40E_RXBUFFER_1536 1536 /* 128B aligned standard Ethernet frame */
- #define I40E_RXBUFFER_2048 2048
- #define I40E_RXBUFFER_3072 3072 /* Used for large frames w/ padding */
- #define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
- /* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
- * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
- * this adds up to 512 bytes of extra data meaning the smallest allocation
- * we could have is 1K.
- * i.e. RXBUFFER_256 --> 960 byte skb (size-1024 slab)
- * i.e. RXBUFFER_512 --> 1216 byte skb (size-2048 slab)
- */
- #define I40E_RX_HDR_SIZE I40E_RXBUFFER_256
- #define I40E_PACKET_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2))
- #define i40e_rx_desc i40e_32byte_rx_desc
- #define I40E_RX_DMA_ATTR \
- (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING)
- /* Attempt to maximize the headroom available for incoming frames. We
- * use a 2K buffer for receives and need 1536/1534 to store the data for
- * the frame. This leaves us with 512 bytes of room. From that we need
- * to deduct the space needed for the shared info and the padding needed
- * to IP align the frame.
- *
- * Note: For cache line sizes 256 or larger this value is going to end
- * up negative. In these cases we should fall back to the legacy
- * receive path.
- */
- #if (PAGE_SIZE < 8192)
- #define I40E_2K_TOO_SMALL_WITH_PADDING \
- ((NET_SKB_PAD + I40E_RXBUFFER_1536) > SKB_WITH_OVERHEAD(I40E_RXBUFFER_2048))
- static inline int i40e_compute_pad(int rx_buf_len)
- {
- int page_size, pad_size;
- page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2);
- pad_size = SKB_WITH_OVERHEAD(page_size) - rx_buf_len;
- return pad_size;
- }
- static inline int i40e_skb_pad(void)
- {
- int rx_buf_len;
- /* If a 2K buffer cannot handle a standard Ethernet frame then
- * optimize padding for a 3K buffer instead of a 1.5K buffer.
- *
- * For a 3K buffer we need to add enough padding to allow for
- * tailroom due to NET_IP_ALIGN possibly shifting us out of
- * cache-line alignment.
- */
- if (I40E_2K_TOO_SMALL_WITH_PADDING)
- rx_buf_len = I40E_RXBUFFER_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN);
- else
- rx_buf_len = I40E_RXBUFFER_1536;
- /* if needed make room for NET_IP_ALIGN */
- rx_buf_len -= NET_IP_ALIGN;
- return i40e_compute_pad(rx_buf_len);
- }
- #define I40E_SKB_PAD i40e_skb_pad()
- #else
- #define I40E_2K_TOO_SMALL_WITH_PADDING false
- #define I40E_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN)
- #endif
- /**
- * i40e_test_staterr - tests bits in Rx descriptor status and error fields
- * @rx_desc: pointer to receive descriptor (in le64 format)
- * @stat_err_bits: value to mask
- *
- * This function does some fast chicanery in order to return the
- * value of the mask which is really only used for boolean tests.
- * The status_error_len doesn't need to be shifted because it begins
- * at offset zero.
- */
- static inline bool i40e_test_staterr(union i40e_rx_desc *rx_desc,
- const u64 stat_err_bits)
- {
- return !!(rx_desc->wb.qword1.status_error_len &
- cpu_to_le64(stat_err_bits));
- }
- /* How many Rx Buffers do we bundle into one write to the hardware ? */
- #define I40E_RX_BUFFER_WRITE 32 /* Must be power of 2 */
- #define I40E_RX_INCREMENT(r, i) \
- do { \
- (i)++; \
- if ((i) == (r)->count) \
- i = 0; \
- r->next_to_clean = i; \
- } while (0)
- #define I40E_RX_NEXT_DESC(r, i, n) \
- do { \
- (i)++; \
- if ((i) == (r)->count) \
- i = 0; \
- (n) = I40E_RX_DESC((r), (i)); \
- } while (0)
- #define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
- do { \
- I40E_RX_NEXT_DESC((r), (i), (n)); \
- prefetch((n)); \
- } while (0)
- #define I40E_MAX_BUFFER_TXD 8
- #define I40E_MIN_TX_LEN 17
- /* The size limit for a transmit buffer in a descriptor is (16K - 1).
- * In order to align with the read requests we will align the value to
- * the nearest 4K which represents our maximum read request size.
- */
- #define I40E_MAX_READ_REQ_SIZE 4096
- #define I40E_MAX_DATA_PER_TXD (16 * 1024 - 1)
- #define I40E_MAX_DATA_PER_TXD_ALIGNED \
- (I40E_MAX_DATA_PER_TXD & ~(I40E_MAX_READ_REQ_SIZE - 1))
- /**
- * i40e_txd_use_count - estimate the number of descriptors needed for Tx
- * @size: transmit request size in bytes
- *
- * Due to hardware alignment restrictions (4K alignment), we need to
- * assume that we can have no more than 12K of data per descriptor, even
- * though each descriptor can take up to 16K - 1 bytes of aligned memory.
- * Thus, we need to divide by 12K. But division is slow! Instead,
- * we decompose the operation into shifts and one relatively cheap
- * multiply operation.
- *
- * To divide by 12K, we first divide by 4K, then divide by 3:
- * To divide by 4K, shift right by 12 bits
- * To divide by 3, multiply by 85, then divide by 256
- * (Divide by 256 is done by shifting right by 8 bits)
- * Finally, we add one to round up. Because 256 isn't an exact multiple of
- * 3, we'll underestimate near each multiple of 12K. This is actually more
- * accurate as we have 4K - 1 of wiggle room that we can fit into the last
- * segment. For our purposes this is accurate out to 1M which is orders of
- * magnitude greater than our largest possible GSO size.
- *
- * This would then be implemented as:
- * return (((size >> 12) * 85) >> 8) + 1;
- *
- * Since multiplication and division are commutative, we can reorder
- * operations into:
- * return ((size * 85) >> 20) + 1;
- */
- static inline unsigned int i40e_txd_use_count(unsigned int size)
- {
- return ((size * 85) >> 20) + 1;
- }
- /* Tx Descriptors needed, worst case */
- #define DESC_NEEDED (MAX_SKB_FRAGS + 6)
- #define I40E_MIN_DESC_PENDING 4
- #define I40E_TX_FLAGS_HW_VLAN BIT(1)
- #define I40E_TX_FLAGS_SW_VLAN BIT(2)
- #define I40E_TX_FLAGS_TSO BIT(3)
- #define I40E_TX_FLAGS_IPV4 BIT(4)
- #define I40E_TX_FLAGS_IPV6 BIT(5)
- #define I40E_TX_FLAGS_FCCRC BIT(6)
- #define I40E_TX_FLAGS_FSO BIT(7)
- #define I40E_TX_FLAGS_FD_SB BIT(9)
- #define I40E_TX_FLAGS_VXLAN_TUNNEL BIT(10)
- #define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
- #define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
- #define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
- #define I40E_TX_FLAGS_VLAN_SHIFT 16
- struct i40e_tx_buffer {
- struct i40e_tx_desc *next_to_watch;
- union {
- struct sk_buff *skb;
- void *raw_buf;
- };
- unsigned int bytecount;
- unsigned short gso_segs;
- DEFINE_DMA_UNMAP_ADDR(dma);
- DEFINE_DMA_UNMAP_LEN(len);
- u32 tx_flags;
- };
- struct i40e_rx_buffer {
- dma_addr_t dma;
- struct page *page;
- #if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
- __u32 page_offset;
- #else
- __u16 page_offset;
- #endif
- __u16 pagecnt_bias;
- };
- struct i40e_queue_stats {
- u64 packets;
- u64 bytes;
- };
- struct i40e_tx_queue_stats {
- u64 restart_queue;
- u64 tx_busy;
- u64 tx_done_old;
- u64 tx_linearize;
- u64 tx_force_wb;
- int prev_pkt_ctr;
- u64 tx_lost_interrupt;
- };
- struct i40e_rx_queue_stats {
- u64 non_eop_descs;
- u64 alloc_page_failed;
- u64 alloc_buff_failed;
- u64 page_reuse_count;
- u64 realloc_count;
- };
- enum i40e_ring_state_t {
- __I40E_TX_FDIR_INIT_DONE,
- __I40E_TX_XPS_INIT_DONE,
- __I40E_RING_STATE_NBITS /* must be last */
- };
- /* some useful defines for virtchannel interface, which
- * is the only remaining user of header split
- */
- #define I40E_RX_DTYPE_NO_SPLIT 0
- #define I40E_RX_DTYPE_HEADER_SPLIT 1
- #define I40E_RX_DTYPE_SPLIT_ALWAYS 2
- #define I40E_RX_SPLIT_L2 0x1
- #define I40E_RX_SPLIT_IP 0x2
- #define I40E_RX_SPLIT_TCP_UDP 0x4
- #define I40E_RX_SPLIT_SCTP 0x8
- /* struct that defines a descriptor ring, associated with a VSI */
- struct i40e_ring {
- struct i40e_ring *next; /* pointer to next ring in q_vector */
- void *desc; /* Descriptor ring memory */
- struct device *dev; /* Used for DMA mapping */
- struct net_device *netdev; /* netdev ring maps to */
- union {
- struct i40e_tx_buffer *tx_bi;
- struct i40e_rx_buffer *rx_bi;
- };
- DECLARE_BITMAP(state, __I40E_RING_STATE_NBITS);
- u16 queue_index; /* Queue number of ring */
- u8 dcb_tc; /* Traffic class of ring */
- u8 __iomem *tail;
- /* high bit set means dynamic, use accessors routines to read/write.
- * hardware only supports 2us resolution for the ITR registers.
- * these values always store the USER setting, and must be converted
- * before programming to a register.
- */
- u16 itr_setting;
- u16 count; /* Number of descriptors */
- u16 reg_idx; /* HW register index of the ring */
- u16 rx_buf_len;
- /* used in interrupt processing */
- u16 next_to_use;
- u16 next_to_clean;
- u8 atr_sample_rate;
- u8 atr_count;
- bool ring_active; /* is ring online or not */
- bool arm_wb; /* do something to arm write back */
- u8 packet_stride;
- u16 flags;
- #define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
- #define I40E_RXR_FLAGS_BUILD_SKB_ENABLED BIT(1)
- /* stats structs */
- struct i40e_queue_stats stats;
- struct u64_stats_sync syncp;
- union {
- struct i40e_tx_queue_stats tx_stats;
- struct i40e_rx_queue_stats rx_stats;
- };
- unsigned int size; /* length of descriptor ring in bytes */
- dma_addr_t dma; /* physical address of ring */
- struct i40e_vsi *vsi; /* Backreference to associated VSI */
- struct i40e_q_vector *q_vector; /* Backreference to associated vector */
- struct rcu_head rcu; /* to avoid race on free */
- u16 next_to_alloc;
- struct sk_buff *skb; /* When i40evf_clean_rx_ring_irq() must
- * return before it sees the EOP for
- * the current packet, we save that skb
- * here and resume receiving this
- * packet the next time
- * i40evf_clean_rx_ring_irq() is called
- * for this ring.
- */
- } ____cacheline_internodealigned_in_smp;
- static inline bool ring_uses_build_skb(struct i40e_ring *ring)
- {
- return !!(ring->flags & I40E_RXR_FLAGS_BUILD_SKB_ENABLED);
- }
- static inline void set_ring_build_skb_enabled(struct i40e_ring *ring)
- {
- ring->flags |= I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
- }
- static inline void clear_ring_build_skb_enabled(struct i40e_ring *ring)
- {
- ring->flags &= ~I40E_RXR_FLAGS_BUILD_SKB_ENABLED;
- }
- #define I40E_ITR_ADAPTIVE_MIN_INC 0x0002
- #define I40E_ITR_ADAPTIVE_MIN_USECS 0x0002
- #define I40E_ITR_ADAPTIVE_MAX_USECS 0x007e
- #define I40E_ITR_ADAPTIVE_LATENCY 0x8000
- #define I40E_ITR_ADAPTIVE_BULK 0x0000
- #define ITR_IS_BULK(x) (!((x) & I40E_ITR_ADAPTIVE_LATENCY))
- struct i40e_ring_container {
- struct i40e_ring *ring; /* pointer to linked list of ring(s) */
- unsigned long next_update; /* jiffies value of next update */
- unsigned int total_bytes; /* total bytes processed this int */
- unsigned int total_packets; /* total packets processed this int */
- u16 count;
- u16 target_itr; /* target ITR setting for ring(s) */
- u16 current_itr; /* current ITR setting for ring(s) */
- };
- /* iterator for handling rings in ring container */
- #define i40e_for_each_ring(pos, head) \
- for (pos = (head).ring; pos != NULL; pos = pos->next)
- static inline unsigned int i40e_rx_pg_order(struct i40e_ring *ring)
- {
- #if (PAGE_SIZE < 8192)
- if (ring->rx_buf_len > (PAGE_SIZE / 2))
- return 1;
- #endif
- return 0;
- }
- #define i40e_rx_pg_size(_ring) (PAGE_SIZE << i40e_rx_pg_order(_ring))
- bool i40evf_alloc_rx_buffers(struct i40e_ring *rxr, u16 cleaned_count);
- netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
- void i40evf_clean_tx_ring(struct i40e_ring *tx_ring);
- void i40evf_clean_rx_ring(struct i40e_ring *rx_ring);
- int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring);
- int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring);
- void i40evf_free_tx_resources(struct i40e_ring *tx_ring);
- void i40evf_free_rx_resources(struct i40e_ring *rx_ring);
- int i40evf_napi_poll(struct napi_struct *napi, int budget);
- void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
- u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw);
- void i40evf_detect_recover_hung(struct i40e_vsi *vsi);
- int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
- bool __i40evf_chk_linearize(struct sk_buff *skb);
- /**
- * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
- * @skb: send buffer
- * @tx_ring: ring to send buffer on
- *
- * Returns number of data descriptors needed for this skb. Returns 0 to indicate
- * there is not enough descriptors available in this ring since we need at least
- * one descriptor.
- **/
- static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
- {
- const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
- unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
- int count = 0, size = skb_headlen(skb);
- for (;;) {
- count += i40e_txd_use_count(size);
- if (!nr_frags--)
- break;
- size = skb_frag_size(frag++);
- }
- return count;
- }
- /**
- * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
- * @tx_ring: the ring to be checked
- * @size: the size buffer we want to assure is available
- *
- * Returns 0 if stop is not needed
- **/
- static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
- {
- if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
- return 0;
- return __i40evf_maybe_stop_tx(tx_ring, size);
- }
- /**
- * i40e_chk_linearize - Check if there are more than 8 fragments per packet
- * @skb: send buffer
- * @count: number of buffers used
- *
- * Note: Our HW can't scatter-gather more than 8 fragments to build
- * a packet on the wire and so we need to figure out the cases where we
- * need to linearize the skb.
- **/
- static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
- {
- /* Both TSO and single send will work if count is less than 8 */
- if (likely(count < I40E_MAX_BUFFER_TXD))
- return false;
- if (skb_is_gso(skb))
- return __i40evf_chk_linearize(skb);
- /* we can support up to 8 data buffers for a single send */
- return count != I40E_MAX_BUFFER_TXD;
- }
- /**
- * @ring: Tx ring to find the netdev equivalent of
- **/
- static inline struct netdev_queue *txring_txq(const struct i40e_ring *ring)
- {
- return netdev_get_tx_queue(ring->netdev, ring->queue_index);
- }
- #endif /* _I40E_TXRX_H_ */
|