123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423 |
- // Copyright (C) 2002-2012 Nikolaus Gebhardt
- // This file is part of the "Irrlicht Engine".
- // For conditions of distribution and use, see copyright notice in irrlicht.h
- #ifndef __IRR_POINT_2D_H_INCLUDED__
- #define __IRR_POINT_2D_H_INCLUDED__
- #include "irrMath.h"
- #include "dimension2d.h"
- namespace irr
- {
- namespace core
- {
- //! 2d vector template class with lots of operators and methods.
- /** As of Irrlicht 1.6, this class supersedes position2d, which should
- be considered deprecated. */
- template <class T>
- class vector2d
- {
- public:
- //! Default constructor (null vector)
- vector2d() : X(0), Y(0) {}
- //! Constructor with two different values
- vector2d(T nx, T ny) : X(nx), Y(ny) {}
- //! Constructor with the same value for both members
- explicit vector2d(T n) : X(n), Y(n) {}
- //! Copy constructor
- vector2d(const vector2d<T>& other) : X(other.X), Y(other.Y) {}
- vector2d(const dimension2d<T>& other) : X(other.Width), Y(other.Height) {}
- // operators
- vector2d<T> operator-() const { return vector2d<T>(-X, -Y); }
- vector2d<T>& operator=(const vector2d<T>& other) { X = other.X; Y = other.Y; return *this; }
- vector2d<T>& operator=(const dimension2d<T>& other) { X = other.Width; Y = other.Height; return *this; }
- vector2d<T> operator+(const vector2d<T>& other) const { return vector2d<T>(X + other.X, Y + other.Y); }
- vector2d<T> operator+(const dimension2d<T>& other) const { return vector2d<T>(X + other.Width, Y + other.Height); }
- vector2d<T>& operator+=(const vector2d<T>& other) { X+=other.X; Y+=other.Y; return *this; }
- vector2d<T> operator+(const T v) const { return vector2d<T>(X + v, Y + v); }
- vector2d<T>& operator+=(const T v) { X+=v; Y+=v; return *this; }
- vector2d<T>& operator+=(const dimension2d<T>& other) { X += other.Width; Y += other.Height; return *this; }
- vector2d<T> operator-(const vector2d<T>& other) const { return vector2d<T>(X - other.X, Y - other.Y); }
- vector2d<T> operator-(const dimension2d<T>& other) const { return vector2d<T>(X - other.Width, Y - other.Height); }
- vector2d<T>& operator-=(const vector2d<T>& other) { X-=other.X; Y-=other.Y; return *this; }
- vector2d<T> operator-(const T v) const { return vector2d<T>(X - v, Y - v); }
- vector2d<T>& operator-=(const T v) { X-=v; Y-=v; return *this; }
- vector2d<T>& operator-=(const dimension2d<T>& other) { X -= other.Width; Y -= other.Height; return *this; }
- vector2d<T> operator*(const vector2d<T>& other) const { return vector2d<T>(X * other.X, Y * other.Y); }
- vector2d<T>& operator*=(const vector2d<T>& other) { X*=other.X; Y*=other.Y; return *this; }
- vector2d<T> operator*(const T v) const { return vector2d<T>(X * v, Y * v); }
- vector2d<T>& operator*=(const T v) { X*=v; Y*=v; return *this; }
- vector2d<T> operator/(const vector2d<T>& other) const { return vector2d<T>(X / other.X, Y / other.Y); }
- vector2d<T>& operator/=(const vector2d<T>& other) { X/=other.X; Y/=other.Y; return *this; }
- vector2d<T> operator/(const T v) const { return vector2d<T>(X / v, Y / v); }
- vector2d<T>& operator/=(const T v) { X/=v; Y/=v; return *this; }
- T& operator [](u32 index)
- {
- _IRR_DEBUG_BREAK_IF(index>1) // access violation
- return *(&X+index);
- }
- const T& operator [](u32 index) const
- {
- _IRR_DEBUG_BREAK_IF(index>1) // access violation
- return *(&X+index);
- }
- //! sort in order X, Y. Equality with rounding tolerance.
- bool operator<=(const vector2d<T>&other) const
- {
- return (X<other.X || core::equals(X, other.X)) ||
- (core::equals(X, other.X) && (Y<other.Y || core::equals(Y, other.Y)));
- }
- //! sort in order X, Y. Equality with rounding tolerance.
- bool operator>=(const vector2d<T>&other) const
- {
- return (X>other.X || core::equals(X, other.X)) ||
- (core::equals(X, other.X) && (Y>other.Y || core::equals(Y, other.Y)));
- }
- //! sort in order X, Y. Difference must be above rounding tolerance.
- bool operator<(const vector2d<T>&other) const
- {
- return (X<other.X && !core::equals(X, other.X)) ||
- (core::equals(X, other.X) && Y<other.Y && !core::equals(Y, other.Y));
- }
- //! sort in order X, Y. Difference must be above rounding tolerance.
- bool operator>(const vector2d<T>&other) const
- {
- return (X>other.X && !core::equals(X, other.X)) ||
- (core::equals(X, other.X) && Y>other.Y && !core::equals(Y, other.Y));
- }
- bool operator==(const vector2d<T>& other) const { return equals(other); }
- bool operator!=(const vector2d<T>& other) const { return !equals(other); }
- // functions
- //! Checks if this vector equals the other one.
- /** Takes floating point rounding errors into account.
- \param other Vector to compare with.
- \param tolerance Epsilon value for both - comparing X and Y.
- \return True if the two vector are (almost) equal, else false. */
- bool equals(const vector2d<T>& other, const T tolerance = (T)ROUNDING_ERROR_f32 ) const
- {
- return core::equals(X, other.X, tolerance) && core::equals(Y, other.Y, tolerance);
- }
- vector2d<T>& set(T nx, T ny) {X=nx; Y=ny; return *this; }
- vector2d<T>& set(const vector2d<T>& p) { X=p.X; Y=p.Y; return *this; }
- //! Gets the length of the vector.
- /** \return The length of the vector. */
- T getLength() const { return core::squareroot( X*X + Y*Y ); }
- //! Get the squared length of this vector
- /** This is useful because it is much faster than getLength().
- \return The squared length of the vector. */
- T getLengthSQ() const { return X*X + Y*Y; }
- //! Get the dot product of this vector with another.
- /** \param other Other vector to take dot product with.
- \return The dot product of the two vectors. */
- T dotProduct(const vector2d<T>& other) const
- {
- return X*other.X + Y*other.Y;
- }
- //! check if this vector is parallel to another vector
- bool nearlyParallel( const vector2d<T> & other, const T factor = relativeErrorFactor<T>()) const
- {
- // https://eagergames.wordpress.com/2017/04/01/fast-parallel-lines-and-vectors-test/
- // if a || b then a.x/a.y = b.x/b.y (similiar triangles)
- // if a || b then either both x are 0 or both y are 0.
- return equalsRelative( X*other.Y, other.X* Y, factor)
- && // a bit counterintuitive, but makes sure that
- // only y or only x are 0, and at same time deals
- // with the case where one vector is zero vector.
- (X*other.X + Y*other.Y) != 0;
- }
- //! Gets distance from another point.
- /** Here, the vector is interpreted as a point in 2-dimensional space.
- \param other Other vector to measure from.
- \return Distance from other point. */
- T getDistanceFrom(const vector2d<T>& other) const
- {
- return vector2d<T>(X - other.X, Y - other.Y).getLength();
- }
- //! Returns squared distance from another point.
- /** Here, the vector is interpreted as a point in 2-dimensional space.
- \param other Other vector to measure from.
- \return Squared distance from other point. */
- T getDistanceFromSQ(const vector2d<T>& other) const
- {
- return vector2d<T>(X - other.X, Y - other.Y).getLengthSQ();
- }
- //! rotates the point anticlockwise around a center by an amount of degrees.
- /** \param degrees Amount of degrees to rotate by, anticlockwise.
- \param center Rotation center.
- \return This vector after transformation. */
- vector2d<T>& rotateBy(f64 degrees, const vector2d<T>& center=vector2d<T>())
- {
- degrees *= DEGTORAD64;
- const f64 cs = cos(degrees);
- const f64 sn = sin(degrees);
- X -= center.X;
- Y -= center.Y;
- set((T)(X*cs - Y*sn), (T)(X*sn + Y*cs));
- X += center.X;
- Y += center.Y;
- return *this;
- }
- //! Normalize the vector.
- /** The null vector is left untouched.
- \return Reference to this vector, after normalization. */
- vector2d<T>& normalize()
- {
- f32 length = (f32)(X*X + Y*Y);
- if ( length == 0 )
- return *this;
- length = core::reciprocal_squareroot ( length );
- X = (T)(X * length);
- Y = (T)(Y * length);
- return *this;
- }
- //! Calculates the angle of this vector in degrees in the trigonometric sense.
- /** 0 is to the right (3 o'clock), values increase counter-clockwise.
- This method has been suggested by Pr3t3nd3r.
- \return Returns a value between 0 and 360. */
- f64 getAngleTrig() const
- {
- if (Y == 0)
- return X < 0 ? 180 : 0;
- else
- if (X == 0)
- return Y < 0 ? 270 : 90;
- if ( Y > 0)
- if (X > 0)
- return atan((irr::f64)Y/(irr::f64)X) * RADTODEG64;
- else
- return 180.0-atan((irr::f64)Y/-(irr::f64)X) * RADTODEG64;
- else
- if (X > 0)
- return 360.0-atan(-(irr::f64)Y/(irr::f64)X) * RADTODEG64;
- else
- return 180.0+atan(-(irr::f64)Y/-(irr::f64)X) * RADTODEG64;
- }
- //! Calculates the angle of this vector in degrees in the counter trigonometric sense.
- /** 0 is to the right (3 o'clock), values increase clockwise.
- \return Returns a value between 0 and 360. */
- inline f64 getAngle() const
- {
- if (Y == 0) // corrected thanks to a suggestion by Jox
- return X < 0 ? 180 : 0;
- else if (X == 0)
- return Y < 0 ? 90 : 270;
- // don't use getLength here to avoid precision loss with s32 vectors
- // avoid floating-point trouble as sqrt(y*y) is occasionally larger than y, so clamp
- const f64 tmp = core::clamp(Y / sqrt((f64)(X*X + Y*Y)), -1.0, 1.0);
- const f64 angle = atan( core::squareroot(1 - tmp*tmp) / tmp) * RADTODEG64;
- if (X>0 && Y>0)
- return angle + 270;
- else
- if (X>0 && Y<0)
- return angle + 90;
- else
- if (X<0 && Y<0)
- return 90 - angle;
- else
- if (X<0 && Y>0)
- return 270 - angle;
- return angle;
- }
- //! Calculates the angle between this vector and another one in degree.
- /** \param b Other vector to test with.
- \return Returns a value between 0 and 90. */
- inline f64 getAngleWith(const vector2d<T>& b) const
- {
- f64 tmp = (f64)(X*b.X + Y*b.Y);
- if (tmp == 0.0)
- return 90.0;
- tmp = tmp / core::squareroot((f64)((X*X + Y*Y) * (b.X*b.X + b.Y*b.Y)));
- if (tmp < 0.0)
- tmp = -tmp;
- if ( tmp > 1.0 ) // avoid floating-point trouble
- tmp = 1.0;
- return atan(sqrt(1 - tmp*tmp) / tmp) * RADTODEG64;
- }
- //! Returns if this vector interpreted as a point is on a line between two other points.
- /** It is assumed that the point is on the line.
- \param begin Beginning vector to compare between.
- \param end Ending vector to compare between.
- \return True if this vector is between begin and end, false if not. */
- bool isBetweenPoints(const vector2d<T>& begin, const vector2d<T>& end) const
- {
- // . end
- // /
- // /
- // /
- // . begin
- // -
- // -
- // . this point (am I inside or outside)?
- //
- if (begin.X != end.X)
- {
- return ((begin.X <= X && X <= end.X) ||
- (begin.X >= X && X >= end.X));
- }
- else
- {
- return ((begin.Y <= Y && Y <= end.Y) ||
- (begin.Y >= Y && Y >= end.Y));
- }
- }
- //! Creates an interpolated vector between this vector and another vector.
- /** \param other The other vector to interpolate with.
- \param d Interpolation value between 0.0f (all the other vector) and 1.0f (all this vector).
- Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
- \return An interpolated vector. This vector is not modified. */
- vector2d<T> getInterpolated(const vector2d<T>& other, f64 d) const
- {
- const f64 inv = 1.0f - d;
- return vector2d<T>((T)(other.X*inv + X*d), (T)(other.Y*inv + Y*d));
- }
- //! Creates a quadratically interpolated vector between this and two other vectors.
- /** \param v2 Second vector to interpolate with.
- \param v3 Third vector to interpolate with (maximum at 1.0f)
- \param d Interpolation value between 0.0f (all this vector) and 1.0f (all the 3rd vector).
- Note that this is the opposite direction of interpolation to getInterpolated() and interpolate()
- \return An interpolated vector. This vector is not modified. */
- vector2d<T> getInterpolated_quadratic(const vector2d<T>& v2, const vector2d<T>& v3, f64 d) const
- {
- // this*(1-d)*(1-d) + 2 * v2 * (1-d) + v3 * d * d;
- const f64 inv = 1.0f - d;
- const f64 mul0 = inv * inv;
- const f64 mul1 = 2.0f * d * inv;
- const f64 mul2 = d * d;
- return vector2d<T> ( (T)(X * mul0 + v2.X * mul1 + v3.X * mul2),
- (T)(Y * mul0 + v2.Y * mul1 + v3.Y * mul2));
- }
- /*! Test if this point and another 2 points taken as triplet
- are colinear, clockwise, anticlockwise. This can be used also
- to check winding order in triangles for 2D meshes.
- \return 0 if points are colinear, 1 if clockwise, 2 if anticlockwise
- */
- s32 checkOrientation( const vector2d<T> & b, const vector2d<T> & c) const
- {
- // Example of clockwise points
- //
- // ^ Y
- // | A
- // | . .
- // | . .
- // | C.....B
- // +---------------> X
- T val = (b.Y - Y) * (c.X - b.X) -
- (b.X - X) * (c.Y - b.Y);
- if (val == 0) return 0; // colinear
- return (val > 0) ? 1 : 2; // clock or counterclock wise
- }
- /*! Returns true if points (a,b,c) are clockwise on the X,Y plane*/
- inline bool areClockwise( const vector2d<T> & b, const vector2d<T> & c) const
- {
- T val = (b.Y - Y) * (c.X - b.X) -
- (b.X - X) * (c.Y - b.Y);
- return val > 0;
- }
- /*! Returns true if points (a,b,c) are counterclockwise on the X,Y plane*/
- inline bool areCounterClockwise( const vector2d<T> & b, const vector2d<T> & c) const
- {
- T val = (b.Y - Y) * (c.X - b.X) -
- (b.X - X) * (c.Y - b.Y);
- return val < 0;
- }
- //! Sets this vector to the linearly interpolated vector between a and b.
- /** \param a first vector to interpolate with, maximum at 1.0f
- \param b second vector to interpolate with, maximum at 0.0f
- \param d Interpolation value between 0.0f (all vector b) and 1.0f (all vector a)
- Note that this is the opposite direction of interpolation to getInterpolated_quadratic()
- */
- vector2d<T>& interpolate( const vector2d<T>& a, const vector2d<T>& b, f64 d)
- {
- X = (T)((f64)b.X + ( ( a.X - b.X ) * d ));
- Y = (T)((f64)b.Y + ( ( a.Y - b.Y ) * d ));
- return *this;
- }
- //! X coordinate of vector.
- T X;
- //! Y coordinate of vector.
- T Y;
- };
- //! Typedef for f32 2d vector.
- typedef vector2d<f32> vector2df;
- //! Typedef for integer 2d vector.
- typedef vector2d<s32> vector2di;
- template<class S, class T>
- vector2d<T> operator*(const S scalar, const vector2d<T>& vector) { return vector*scalar; }
- // These methods are declared in dimension2d, but need definitions of vector2d
- template<class T>
- dimension2d<T>::dimension2d(const vector2d<T>& other) : Width(other.X), Height(other.Y) { }
- template<class T>
- bool dimension2d<T>::operator==(const vector2d<T>& other) const { return Width == other.X && Height == other.Y; }
- } // end namespace core
- } // end namespace irr
- #endif
|