1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861 |
- /*
- ** 2001 September 15
- **
- ** The author disclaims copyright to this source code. In place of
- ** a legal notice, here is a blessing:
- **
- ** May you do good and not evil.
- ** May you find forgiveness for yourself and forgive others.
- ** May you share freely, never taking more than you give.
- **
- *************************************************************************
- ** This header file defines the interface that the SQLite library
- ** presents to client programs. If a C-function, structure, datatype,
- ** or constant definition does not appear in this file, then it is
- ** not a published API of SQLite, is subject to change without
- ** notice, and should not be referenced by programs that use SQLite.
- **
- ** Some of the definitions that are in this file are marked as
- ** "experimental". Experimental interfaces are normally new
- ** features recently added to SQLite. We do not anticipate changes
- ** to experimental interfaces but reserve the right to make minor changes
- ** if experience from use "in the wild" suggest such changes are prudent.
- **
- ** The official C-language API documentation for SQLite is derived
- ** from comments in this file. This file is the authoritative source
- ** on how SQLite interfaces are supposed to operate.
- **
- ** The name of this file under configuration management is "sqlite.h.in".
- ** The makefile makes some minor changes to this file (such as inserting
- ** the version number) and changes its name to "sqlite3.h" as
- ** part of the build process.
- */
- #ifndef _SQLITE3_H_
- #define _SQLITE3_H_
- #include <stdarg.h> /* Needed for the definition of va_list */
- /*
- ** Make sure we can call this stuff from C++.
- */
- #ifdef __cplusplus
- extern "C" {
- #endif
- /*
- ** Provide the ability to override linkage features of the interface.
- */
- #ifndef SQLITE_EXTERN
- # define SQLITE_EXTERN extern
- #endif
- #ifndef SQLITE_API
- # define SQLITE_API
- #endif
- #ifndef SQLITE_CDECL
- # define SQLITE_CDECL
- #endif
- #ifndef SQLITE_STDCALL
- # define SQLITE_STDCALL
- #endif
- /*
- ** These no-op macros are used in front of interfaces to mark those
- ** interfaces as either deprecated or experimental. New applications
- ** should not use deprecated interfaces - they are supported for backwards
- ** compatibility only. Application writers should be aware that
- ** experimental interfaces are subject to change in point releases.
- **
- ** These macros used to resolve to various kinds of compiler magic that
- ** would generate warning messages when they were used. But that
- ** compiler magic ended up generating such a flurry of bug reports
- ** that we have taken it all out and gone back to using simple
- ** noop macros.
- */
- #define SQLITE_DEPRECATED
- #define SQLITE_EXPERIMENTAL
- /*
- ** Ensure these symbols were not defined by some previous header file.
- */
- #ifdef SQLITE_VERSION
- # undef SQLITE_VERSION
- #endif
- #ifdef SQLITE_VERSION_NUMBER
- # undef SQLITE_VERSION_NUMBER
- #endif
- /*
- ** CAPI3REF: Compile-Time Library Version Numbers
- **
- ** ^(The [SQLITE_VERSION] C preprocessor macro in the sqlite3.h header
- ** evaluates to a string literal that is the SQLite version in the
- ** format "X.Y.Z" where X is the major version number (always 3 for
- ** SQLite3) and Y is the minor version number and Z is the release number.)^
- ** ^(The [SQLITE_VERSION_NUMBER] C preprocessor macro resolves to an integer
- ** with the value (X*1000000 + Y*1000 + Z) where X, Y, and Z are the same
- ** numbers used in [SQLITE_VERSION].)^
- ** The SQLITE_VERSION_NUMBER for any given release of SQLite will also
- ** be larger than the release from which it is derived. Either Y will
- ** be held constant and Z will be incremented or else Y will be incremented
- ** and Z will be reset to zero.
- **
- ** Since version 3.6.18, SQLite source code has been stored in the
- ** <a href="http://www.fossil-scm.org/">Fossil configuration management
- ** system</a>. ^The SQLITE_SOURCE_ID macro evaluates to
- ** a string which identifies a particular check-in of SQLite
- ** within its configuration management system. ^The SQLITE_SOURCE_ID
- ** string contains the date and time of the check-in (UTC) and an SHA1
- ** hash of the entire source tree.
- **
- ** See also: [sqlite3_libversion()],
- ** [sqlite3_libversion_number()], [sqlite3_sourceid()],
- ** [sqlite_version()] and [sqlite_source_id()].
- */
- #define SQLITE_VERSION "3.8.11.1"
- #define SQLITE_VERSION_NUMBER 3008011
- #define SQLITE_SOURCE_ID "2015-07-29 20:00:57 cf538e2783e468bbc25e7cb2a9ee64d3e0e80b2f"
- /*
- ** CAPI3REF: Run-Time Library Version Numbers
- ** KEYWORDS: sqlite3_version, sqlite3_sourceid
- **
- ** These interfaces provide the same information as the [SQLITE_VERSION],
- ** [SQLITE_VERSION_NUMBER], and [SQLITE_SOURCE_ID] C preprocessor macros
- ** but are associated with the library instead of the header file. ^(Cautious
- ** programmers might include assert() statements in their application to
- ** verify that values returned by these interfaces match the macros in
- ** the header, and thus insure that the application is
- ** compiled with matching library and header files.
- **
- ** <blockquote><pre>
- ** assert( sqlite3_libversion_number()==SQLITE_VERSION_NUMBER );
- ** assert( strcmp(sqlite3_sourceid(),SQLITE_SOURCE_ID)==0 );
- ** assert( strcmp(sqlite3_libversion(),SQLITE_VERSION)==0 );
- ** </pre></blockquote>)^
- **
- ** ^The sqlite3_version[] string constant contains the text of [SQLITE_VERSION]
- ** macro. ^The sqlite3_libversion() function returns a pointer to the
- ** to the sqlite3_version[] string constant. The sqlite3_libversion()
- ** function is provided for use in DLLs since DLL users usually do not have
- ** direct access to string constants within the DLL. ^The
- ** sqlite3_libversion_number() function returns an integer equal to
- ** [SQLITE_VERSION_NUMBER]. ^The sqlite3_sourceid() function returns
- ** a pointer to a string constant whose value is the same as the
- ** [SQLITE_SOURCE_ID] C preprocessor macro.
- **
- ** See also: [sqlite_version()] and [sqlite_source_id()].
- */
- SQLITE_API SQLITE_EXTERN const char sqlite3_version[];
- SQLITE_API const char *SQLITE_STDCALL sqlite3_libversion(void);
- SQLITE_API const char *SQLITE_STDCALL sqlite3_sourceid(void);
- SQLITE_API int SQLITE_STDCALL sqlite3_libversion_number(void);
- /*
- ** CAPI3REF: Run-Time Library Compilation Options Diagnostics
- **
- ** ^The sqlite3_compileoption_used() function returns 0 or 1
- ** indicating whether the specified option was defined at
- ** compile time. ^The SQLITE_ prefix may be omitted from the
- ** option name passed to sqlite3_compileoption_used().
- **
- ** ^The sqlite3_compileoption_get() function allows iterating
- ** over the list of options that were defined at compile time by
- ** returning the N-th compile time option string. ^If N is out of range,
- ** sqlite3_compileoption_get() returns a NULL pointer. ^The SQLITE_
- ** prefix is omitted from any strings returned by
- ** sqlite3_compileoption_get().
- **
- ** ^Support for the diagnostic functions sqlite3_compileoption_used()
- ** and sqlite3_compileoption_get() may be omitted by specifying the
- ** [SQLITE_OMIT_COMPILEOPTION_DIAGS] option at compile time.
- **
- ** See also: SQL functions [sqlite_compileoption_used()] and
- ** [sqlite_compileoption_get()] and the [compile_options pragma].
- */
- #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
- SQLITE_API int SQLITE_STDCALL sqlite3_compileoption_used(const char *zOptName);
- SQLITE_API const char *SQLITE_STDCALL sqlite3_compileoption_get(int N);
- #endif
- /*
- ** CAPI3REF: Test To See If The Library Is Threadsafe
- **
- ** ^The sqlite3_threadsafe() function returns zero if and only if
- ** SQLite was compiled with mutexing code omitted due to the
- ** [SQLITE_THREADSAFE] compile-time option being set to 0.
- **
- ** SQLite can be compiled with or without mutexes. When
- ** the [SQLITE_THREADSAFE] C preprocessor macro is 1 or 2, mutexes
- ** are enabled and SQLite is threadsafe. When the
- ** [SQLITE_THREADSAFE] macro is 0,
- ** the mutexes are omitted. Without the mutexes, it is not safe
- ** to use SQLite concurrently from more than one thread.
- **
- ** Enabling mutexes incurs a measurable performance penalty.
- ** So if speed is of utmost importance, it makes sense to disable
- ** the mutexes. But for maximum safety, mutexes should be enabled.
- ** ^The default behavior is for mutexes to be enabled.
- **
- ** This interface can be used by an application to make sure that the
- ** version of SQLite that it is linking against was compiled with
- ** the desired setting of the [SQLITE_THREADSAFE] macro.
- **
- ** This interface only reports on the compile-time mutex setting
- ** of the [SQLITE_THREADSAFE] flag. If SQLite is compiled with
- ** SQLITE_THREADSAFE=1 or =2 then mutexes are enabled by default but
- ** can be fully or partially disabled using a call to [sqlite3_config()]
- ** with the verbs [SQLITE_CONFIG_SINGLETHREAD], [SQLITE_CONFIG_MULTITHREAD],
- ** or [SQLITE_CONFIG_SERIALIZED]. ^(The return value of the
- ** sqlite3_threadsafe() function shows only the compile-time setting of
- ** thread safety, not any run-time changes to that setting made by
- ** sqlite3_config(). In other words, the return value from sqlite3_threadsafe()
- ** is unchanged by calls to sqlite3_config().)^
- **
- ** See the [threading mode] documentation for additional information.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_threadsafe(void);
- /*
- ** CAPI3REF: Database Connection Handle
- ** KEYWORDS: {database connection} {database connections}
- **
- ** Each open SQLite database is represented by a pointer to an instance of
- ** the opaque structure named "sqlite3". It is useful to think of an sqlite3
- ** pointer as an object. The [sqlite3_open()], [sqlite3_open16()], and
- ** [sqlite3_open_v2()] interfaces are its constructors, and [sqlite3_close()]
- ** and [sqlite3_close_v2()] are its destructors. There are many other
- ** interfaces (such as
- ** [sqlite3_prepare_v2()], [sqlite3_create_function()], and
- ** [sqlite3_busy_timeout()] to name but three) that are methods on an
- ** sqlite3 object.
- */
- typedef struct sqlite3 sqlite3;
- /*
- ** CAPI3REF: 64-Bit Integer Types
- ** KEYWORDS: sqlite_int64 sqlite_uint64
- **
- ** Because there is no cross-platform way to specify 64-bit integer types
- ** SQLite includes typedefs for 64-bit signed and unsigned integers.
- **
- ** The sqlite3_int64 and sqlite3_uint64 are the preferred type definitions.
- ** The sqlite_int64 and sqlite_uint64 types are supported for backwards
- ** compatibility only.
- **
- ** ^The sqlite3_int64 and sqlite_int64 types can store integer values
- ** between -9223372036854775808 and +9223372036854775807 inclusive. ^The
- ** sqlite3_uint64 and sqlite_uint64 types can store integer values
- ** between 0 and +18446744073709551615 inclusive.
- */
- #ifdef SQLITE_INT64_TYPE
- typedef SQLITE_INT64_TYPE sqlite_int64;
- typedef unsigned SQLITE_INT64_TYPE sqlite_uint64;
- #elif defined(_MSC_VER) || defined(__BORLANDC__)
- typedef __int64 sqlite_int64;
- typedef unsigned __int64 sqlite_uint64;
- #else
- typedef long long int sqlite_int64;
- typedef unsigned long long int sqlite_uint64;
- #endif
- typedef sqlite_int64 sqlite3_int64;
- typedef sqlite_uint64 sqlite3_uint64;
- /*
- ** If compiling for a processor that lacks floating point support,
- ** substitute integer for floating-point.
- */
- #ifdef SQLITE_OMIT_FLOATING_POINT
- # define double sqlite3_int64
- #endif
- /*
- ** CAPI3REF: Closing A Database Connection
- ** DESTRUCTOR: sqlite3
- **
- ** ^The sqlite3_close() and sqlite3_close_v2() routines are destructors
- ** for the [sqlite3] object.
- ** ^Calls to sqlite3_close() and sqlite3_close_v2() return [SQLITE_OK] if
- ** the [sqlite3] object is successfully destroyed and all associated
- ** resources are deallocated.
- **
- ** ^If the database connection is associated with unfinalized prepared
- ** statements or unfinished sqlite3_backup objects then sqlite3_close()
- ** will leave the database connection open and return [SQLITE_BUSY].
- ** ^If sqlite3_close_v2() is called with unfinalized prepared statements
- ** and/or unfinished sqlite3_backups, then the database connection becomes
- ** an unusable "zombie" which will automatically be deallocated when the
- ** last prepared statement is finalized or the last sqlite3_backup is
- ** finished. The sqlite3_close_v2() interface is intended for use with
- ** host languages that are garbage collected, and where the order in which
- ** destructors are called is arbitrary.
- **
- ** Applications should [sqlite3_finalize | finalize] all [prepared statements],
- ** [sqlite3_blob_close | close] all [BLOB handles], and
- ** [sqlite3_backup_finish | finish] all [sqlite3_backup] objects associated
- ** with the [sqlite3] object prior to attempting to close the object. ^If
- ** sqlite3_close_v2() is called on a [database connection] that still has
- ** outstanding [prepared statements], [BLOB handles], and/or
- ** [sqlite3_backup] objects then it returns [SQLITE_OK] and the deallocation
- ** of resources is deferred until all [prepared statements], [BLOB handles],
- ** and [sqlite3_backup] objects are also destroyed.
- **
- ** ^If an [sqlite3] object is destroyed while a transaction is open,
- ** the transaction is automatically rolled back.
- **
- ** The C parameter to [sqlite3_close(C)] and [sqlite3_close_v2(C)]
- ** must be either a NULL
- ** pointer or an [sqlite3] object pointer obtained
- ** from [sqlite3_open()], [sqlite3_open16()], or
- ** [sqlite3_open_v2()], and not previously closed.
- ** ^Calling sqlite3_close() or sqlite3_close_v2() with a NULL pointer
- ** argument is a harmless no-op.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_close(sqlite3*);
- SQLITE_API int SQLITE_STDCALL sqlite3_close_v2(sqlite3*);
- /*
- ** The type for a callback function.
- ** This is legacy and deprecated. It is included for historical
- ** compatibility and is not documented.
- */
- typedef int (*sqlite3_callback)(void*,int,char**, char**);
- /*
- ** CAPI3REF: One-Step Query Execution Interface
- ** METHOD: sqlite3
- **
- ** The sqlite3_exec() interface is a convenience wrapper around
- ** [sqlite3_prepare_v2()], [sqlite3_step()], and [sqlite3_finalize()],
- ** that allows an application to run multiple statements of SQL
- ** without having to use a lot of C code.
- **
- ** ^The sqlite3_exec() interface runs zero or more UTF-8 encoded,
- ** semicolon-separate SQL statements passed into its 2nd argument,
- ** in the context of the [database connection] passed in as its 1st
- ** argument. ^If the callback function of the 3rd argument to
- ** sqlite3_exec() is not NULL, then it is invoked for each result row
- ** coming out of the evaluated SQL statements. ^The 4th argument to
- ** sqlite3_exec() is relayed through to the 1st argument of each
- ** callback invocation. ^If the callback pointer to sqlite3_exec()
- ** is NULL, then no callback is ever invoked and result rows are
- ** ignored.
- **
- ** ^If an error occurs while evaluating the SQL statements passed into
- ** sqlite3_exec(), then execution of the current statement stops and
- ** subsequent statements are skipped. ^If the 5th parameter to sqlite3_exec()
- ** is not NULL then any error message is written into memory obtained
- ** from [sqlite3_malloc()] and passed back through the 5th parameter.
- ** To avoid memory leaks, the application should invoke [sqlite3_free()]
- ** on error message strings returned through the 5th parameter of
- ** of sqlite3_exec() after the error message string is no longer needed.
- ** ^If the 5th parameter to sqlite3_exec() is not NULL and no errors
- ** occur, then sqlite3_exec() sets the pointer in its 5th parameter to
- ** NULL before returning.
- **
- ** ^If an sqlite3_exec() callback returns non-zero, the sqlite3_exec()
- ** routine returns SQLITE_ABORT without invoking the callback again and
- ** without running any subsequent SQL statements.
- **
- ** ^The 2nd argument to the sqlite3_exec() callback function is the
- ** number of columns in the result. ^The 3rd argument to the sqlite3_exec()
- ** callback is an array of pointers to strings obtained as if from
- ** [sqlite3_column_text()], one for each column. ^If an element of a
- ** result row is NULL then the corresponding string pointer for the
- ** sqlite3_exec() callback is a NULL pointer. ^The 4th argument to the
- ** sqlite3_exec() callback is an array of pointers to strings where each
- ** entry represents the name of corresponding result column as obtained
- ** from [sqlite3_column_name()].
- **
- ** ^If the 2nd parameter to sqlite3_exec() is a NULL pointer, a pointer
- ** to an empty string, or a pointer that contains only whitespace and/or
- ** SQL comments, then no SQL statements are evaluated and the database
- ** is not changed.
- **
- ** Restrictions:
- **
- ** <ul>
- ** <li> The application must insure that the 1st parameter to sqlite3_exec()
- ** is a valid and open [database connection].
- ** <li> The application must not close the [database connection] specified by
- ** the 1st parameter to sqlite3_exec() while sqlite3_exec() is running.
- ** <li> The application must not modify the SQL statement text passed into
- ** the 2nd parameter of sqlite3_exec() while sqlite3_exec() is running.
- ** </ul>
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_exec(
- sqlite3*, /* An open database */
- const char *sql, /* SQL to be evaluated */
- int (*callback)(void*,int,char**,char**), /* Callback function */
- void *, /* 1st argument to callback */
- char **errmsg /* Error msg written here */
- );
- /*
- ** CAPI3REF: Result Codes
- ** KEYWORDS: {result code definitions}
- **
- ** Many SQLite functions return an integer result code from the set shown
- ** here in order to indicate success or failure.
- **
- ** New error codes may be added in future versions of SQLite.
- **
- ** See also: [extended result code definitions]
- */
- #define SQLITE_OK 0 /* Successful result */
- /* beginning-of-error-codes */
- #define SQLITE_ERROR 1 /* SQL error or missing database */
- #define SQLITE_INTERNAL 2 /* Internal logic error in SQLite */
- #define SQLITE_PERM 3 /* Access permission denied */
- #define SQLITE_ABORT 4 /* Callback routine requested an abort */
- #define SQLITE_BUSY 5 /* The database file is locked */
- #define SQLITE_LOCKED 6 /* A table in the database is locked */
- #define SQLITE_NOMEM 7 /* A malloc() failed */
- #define SQLITE_READONLY 8 /* Attempt to write a readonly database */
- #define SQLITE_INTERRUPT 9 /* Operation terminated by sqlite3_interrupt()*/
- #define SQLITE_IOERR 10 /* Some kind of disk I/O error occurred */
- #define SQLITE_CORRUPT 11 /* The database disk image is malformed */
- #define SQLITE_NOTFOUND 12 /* Unknown opcode in sqlite3_file_control() */
- #define SQLITE_FULL 13 /* Insertion failed because database is full */
- #define SQLITE_CANTOPEN 14 /* Unable to open the database file */
- #define SQLITE_PROTOCOL 15 /* Database lock protocol error */
- #define SQLITE_EMPTY 16 /* Database is empty */
- #define SQLITE_SCHEMA 17 /* The database schema changed */
- #define SQLITE_TOOBIG 18 /* String or BLOB exceeds size limit */
- #define SQLITE_CONSTRAINT 19 /* Abort due to constraint violation */
- #define SQLITE_MISMATCH 20 /* Data type mismatch */
- #define SQLITE_MISUSE 21 /* Library used incorrectly */
- #define SQLITE_NOLFS 22 /* Uses OS features not supported on host */
- #define SQLITE_AUTH 23 /* Authorization denied */
- #define SQLITE_FORMAT 24 /* Auxiliary database format error */
- #define SQLITE_RANGE 25 /* 2nd parameter to sqlite3_bind out of range */
- #define SQLITE_NOTADB 26 /* File opened that is not a database file */
- #define SQLITE_NOTICE 27 /* Notifications from sqlite3_log() */
- #define SQLITE_WARNING 28 /* Warnings from sqlite3_log() */
- #define SQLITE_ROW 100 /* sqlite3_step() has another row ready */
- #define SQLITE_DONE 101 /* sqlite3_step() has finished executing */
- /* end-of-error-codes */
- /*
- ** CAPI3REF: Extended Result Codes
- ** KEYWORDS: {extended result code definitions}
- **
- ** In its default configuration, SQLite API routines return one of 30 integer
- ** [result codes]. However, experience has shown that many of
- ** these result codes are too coarse-grained. They do not provide as
- ** much information about problems as programmers might like. In an effort to
- ** address this, newer versions of SQLite (version 3.3.8 and later) include
- ** support for additional result codes that provide more detailed information
- ** about errors. These [extended result codes] are enabled or disabled
- ** on a per database connection basis using the
- ** [sqlite3_extended_result_codes()] API. Or, the extended code for
- ** the most recent error can be obtained using
- ** [sqlite3_extended_errcode()].
- */
- #define SQLITE_IOERR_READ (SQLITE_IOERR | (1<<8))
- #define SQLITE_IOERR_SHORT_READ (SQLITE_IOERR | (2<<8))
- #define SQLITE_IOERR_WRITE (SQLITE_IOERR | (3<<8))
- #define SQLITE_IOERR_FSYNC (SQLITE_IOERR | (4<<8))
- #define SQLITE_IOERR_DIR_FSYNC (SQLITE_IOERR | (5<<8))
- #define SQLITE_IOERR_TRUNCATE (SQLITE_IOERR | (6<<8))
- #define SQLITE_IOERR_FSTAT (SQLITE_IOERR | (7<<8))
- #define SQLITE_IOERR_UNLOCK (SQLITE_IOERR | (8<<8))
- #define SQLITE_IOERR_RDLOCK (SQLITE_IOERR | (9<<8))
- #define SQLITE_IOERR_DELETE (SQLITE_IOERR | (10<<8))
- #define SQLITE_IOERR_BLOCKED (SQLITE_IOERR | (11<<8))
- #define SQLITE_IOERR_NOMEM (SQLITE_IOERR | (12<<8))
- #define SQLITE_IOERR_ACCESS (SQLITE_IOERR | (13<<8))
- #define SQLITE_IOERR_CHECKRESERVEDLOCK (SQLITE_IOERR | (14<<8))
- #define SQLITE_IOERR_LOCK (SQLITE_IOERR | (15<<8))
- #define SQLITE_IOERR_CLOSE (SQLITE_IOERR | (16<<8))
- #define SQLITE_IOERR_DIR_CLOSE (SQLITE_IOERR | (17<<8))
- #define SQLITE_IOERR_SHMOPEN (SQLITE_IOERR | (18<<8))
- #define SQLITE_IOERR_SHMSIZE (SQLITE_IOERR | (19<<8))
- #define SQLITE_IOERR_SHMLOCK (SQLITE_IOERR | (20<<8))
- #define SQLITE_IOERR_SHMMAP (SQLITE_IOERR | (21<<8))
- #define SQLITE_IOERR_SEEK (SQLITE_IOERR | (22<<8))
- #define SQLITE_IOERR_DELETE_NOENT (SQLITE_IOERR | (23<<8))
- #define SQLITE_IOERR_MMAP (SQLITE_IOERR | (24<<8))
- #define SQLITE_IOERR_GETTEMPPATH (SQLITE_IOERR | (25<<8))
- #define SQLITE_IOERR_CONVPATH (SQLITE_IOERR | (26<<8))
- #define SQLITE_LOCKED_SHAREDCACHE (SQLITE_LOCKED | (1<<8))
- #define SQLITE_BUSY_RECOVERY (SQLITE_BUSY | (1<<8))
- #define SQLITE_BUSY_SNAPSHOT (SQLITE_BUSY | (2<<8))
- #define SQLITE_CANTOPEN_NOTEMPDIR (SQLITE_CANTOPEN | (1<<8))
- #define SQLITE_CANTOPEN_ISDIR (SQLITE_CANTOPEN | (2<<8))
- #define SQLITE_CANTOPEN_FULLPATH (SQLITE_CANTOPEN | (3<<8))
- #define SQLITE_CANTOPEN_CONVPATH (SQLITE_CANTOPEN | (4<<8))
- #define SQLITE_CORRUPT_VTAB (SQLITE_CORRUPT | (1<<8))
- #define SQLITE_READONLY_RECOVERY (SQLITE_READONLY | (1<<8))
- #define SQLITE_READONLY_CANTLOCK (SQLITE_READONLY | (2<<8))
- #define SQLITE_READONLY_ROLLBACK (SQLITE_READONLY | (3<<8))
- #define SQLITE_READONLY_DBMOVED (SQLITE_READONLY | (4<<8))
- #define SQLITE_ABORT_ROLLBACK (SQLITE_ABORT | (2<<8))
- #define SQLITE_CONSTRAINT_CHECK (SQLITE_CONSTRAINT | (1<<8))
- #define SQLITE_CONSTRAINT_COMMITHOOK (SQLITE_CONSTRAINT | (2<<8))
- #define SQLITE_CONSTRAINT_FOREIGNKEY (SQLITE_CONSTRAINT | (3<<8))
- #define SQLITE_CONSTRAINT_FUNCTION (SQLITE_CONSTRAINT | (4<<8))
- #define SQLITE_CONSTRAINT_NOTNULL (SQLITE_CONSTRAINT | (5<<8))
- #define SQLITE_CONSTRAINT_PRIMARYKEY (SQLITE_CONSTRAINT | (6<<8))
- #define SQLITE_CONSTRAINT_TRIGGER (SQLITE_CONSTRAINT | (7<<8))
- #define SQLITE_CONSTRAINT_UNIQUE (SQLITE_CONSTRAINT | (8<<8))
- #define SQLITE_CONSTRAINT_VTAB (SQLITE_CONSTRAINT | (9<<8))
- #define SQLITE_CONSTRAINT_ROWID (SQLITE_CONSTRAINT |(10<<8))
- #define SQLITE_NOTICE_RECOVER_WAL (SQLITE_NOTICE | (1<<8))
- #define SQLITE_NOTICE_RECOVER_ROLLBACK (SQLITE_NOTICE | (2<<8))
- #define SQLITE_WARNING_AUTOINDEX (SQLITE_WARNING | (1<<8))
- #define SQLITE_AUTH_USER (SQLITE_AUTH | (1<<8))
- /*
- ** CAPI3REF: Flags For File Open Operations
- **
- ** These bit values are intended for use in the
- ** 3rd parameter to the [sqlite3_open_v2()] interface and
- ** in the 4th parameter to the [sqlite3_vfs.xOpen] method.
- */
- #define SQLITE_OPEN_READONLY 0x00000001 /* Ok for sqlite3_open_v2() */
- #define SQLITE_OPEN_READWRITE 0x00000002 /* Ok for sqlite3_open_v2() */
- #define SQLITE_OPEN_CREATE 0x00000004 /* Ok for sqlite3_open_v2() */
- #define SQLITE_OPEN_DELETEONCLOSE 0x00000008 /* VFS only */
- #define SQLITE_OPEN_EXCLUSIVE 0x00000010 /* VFS only */
- #define SQLITE_OPEN_AUTOPROXY 0x00000020 /* VFS only */
- #define SQLITE_OPEN_URI 0x00000040 /* Ok for sqlite3_open_v2() */
- #define SQLITE_OPEN_MEMORY 0x00000080 /* Ok for sqlite3_open_v2() */
- #define SQLITE_OPEN_MAIN_DB 0x00000100 /* VFS only */
- #define SQLITE_OPEN_TEMP_DB 0x00000200 /* VFS only */
- #define SQLITE_OPEN_TRANSIENT_DB 0x00000400 /* VFS only */
- #define SQLITE_OPEN_MAIN_JOURNAL 0x00000800 /* VFS only */
- #define SQLITE_OPEN_TEMP_JOURNAL 0x00001000 /* VFS only */
- #define SQLITE_OPEN_SUBJOURNAL 0x00002000 /* VFS only */
- #define SQLITE_OPEN_MASTER_JOURNAL 0x00004000 /* VFS only */
- #define SQLITE_OPEN_NOMUTEX 0x00008000 /* Ok for sqlite3_open_v2() */
- #define SQLITE_OPEN_FULLMUTEX 0x00010000 /* Ok for sqlite3_open_v2() */
- #define SQLITE_OPEN_SHAREDCACHE 0x00020000 /* Ok for sqlite3_open_v2() */
- #define SQLITE_OPEN_PRIVATECACHE 0x00040000 /* Ok for sqlite3_open_v2() */
- #define SQLITE_OPEN_WAL 0x00080000 /* VFS only */
- /* Reserved: 0x00F00000 */
- /*
- ** CAPI3REF: Device Characteristics
- **
- ** The xDeviceCharacteristics method of the [sqlite3_io_methods]
- ** object returns an integer which is a vector of these
- ** bit values expressing I/O characteristics of the mass storage
- ** device that holds the file that the [sqlite3_io_methods]
- ** refers to.
- **
- ** The SQLITE_IOCAP_ATOMIC property means that all writes of
- ** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
- ** mean that writes of blocks that are nnn bytes in size and
- ** are aligned to an address which is an integer multiple of
- ** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
- ** that when data is appended to a file, the data is appended
- ** first then the size of the file is extended, never the other
- ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
- ** information is written to disk in the same order as calls
- ** to xWrite(). The SQLITE_IOCAP_POWERSAFE_OVERWRITE property means that
- ** after reboot following a crash or power loss, the only bytes in a
- ** file that were written at the application level might have changed
- ** and that adjacent bytes, even bytes within the same sector are
- ** guaranteed to be unchanged. The SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
- ** flag indicate that a file cannot be deleted when open. The
- ** SQLITE_IOCAP_IMMUTABLE flag indicates that the file is on
- ** read-only media and cannot be changed even by processes with
- ** elevated privileges.
- */
- #define SQLITE_IOCAP_ATOMIC 0x00000001
- #define SQLITE_IOCAP_ATOMIC512 0x00000002
- #define SQLITE_IOCAP_ATOMIC1K 0x00000004
- #define SQLITE_IOCAP_ATOMIC2K 0x00000008
- #define SQLITE_IOCAP_ATOMIC4K 0x00000010
- #define SQLITE_IOCAP_ATOMIC8K 0x00000020
- #define SQLITE_IOCAP_ATOMIC16K 0x00000040
- #define SQLITE_IOCAP_ATOMIC32K 0x00000080
- #define SQLITE_IOCAP_ATOMIC64K 0x00000100
- #define SQLITE_IOCAP_SAFE_APPEND 0x00000200
- #define SQLITE_IOCAP_SEQUENTIAL 0x00000400
- #define SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN 0x00000800
- #define SQLITE_IOCAP_POWERSAFE_OVERWRITE 0x00001000
- #define SQLITE_IOCAP_IMMUTABLE 0x00002000
- /*
- ** CAPI3REF: File Locking Levels
- **
- ** SQLite uses one of these integer values as the second
- ** argument to calls it makes to the xLock() and xUnlock() methods
- ** of an [sqlite3_io_methods] object.
- */
- #define SQLITE_LOCK_NONE 0
- #define SQLITE_LOCK_SHARED 1
- #define SQLITE_LOCK_RESERVED 2
- #define SQLITE_LOCK_PENDING 3
- #define SQLITE_LOCK_EXCLUSIVE 4
- /*
- ** CAPI3REF: Synchronization Type Flags
- **
- ** When SQLite invokes the xSync() method of an
- ** [sqlite3_io_methods] object it uses a combination of
- ** these integer values as the second argument.
- **
- ** When the SQLITE_SYNC_DATAONLY flag is used, it means that the
- ** sync operation only needs to flush data to mass storage. Inode
- ** information need not be flushed. If the lower four bits of the flag
- ** equal SQLITE_SYNC_NORMAL, that means to use normal fsync() semantics.
- ** If the lower four bits equal SQLITE_SYNC_FULL, that means
- ** to use Mac OS X style fullsync instead of fsync().
- **
- ** Do not confuse the SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags
- ** with the [PRAGMA synchronous]=NORMAL and [PRAGMA synchronous]=FULL
- ** settings. The [synchronous pragma] determines when calls to the
- ** xSync VFS method occur and applies uniformly across all platforms.
- ** The SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL flags determine how
- ** energetic or rigorous or forceful the sync operations are and
- ** only make a difference on Mac OSX for the default SQLite code.
- ** (Third-party VFS implementations might also make the distinction
- ** between SQLITE_SYNC_NORMAL and SQLITE_SYNC_FULL, but among the
- ** operating systems natively supported by SQLite, only Mac OSX
- ** cares about the difference.)
- */
- #define SQLITE_SYNC_NORMAL 0x00002
- #define SQLITE_SYNC_FULL 0x00003
- #define SQLITE_SYNC_DATAONLY 0x00010
- /*
- ** CAPI3REF: OS Interface Open File Handle
- **
- ** An [sqlite3_file] object represents an open file in the
- ** [sqlite3_vfs | OS interface layer]. Individual OS interface
- ** implementations will
- ** want to subclass this object by appending additional fields
- ** for their own use. The pMethods entry is a pointer to an
- ** [sqlite3_io_methods] object that defines methods for performing
- ** I/O operations on the open file.
- */
- typedef struct sqlite3_file sqlite3_file;
- struct sqlite3_file {
- const struct sqlite3_io_methods *pMethods; /* Methods for an open file */
- };
- /*
- ** CAPI3REF: OS Interface File Virtual Methods Object
- **
- ** Every file opened by the [sqlite3_vfs.xOpen] method populates an
- ** [sqlite3_file] object (or, more commonly, a subclass of the
- ** [sqlite3_file] object) with a pointer to an instance of this object.
- ** This object defines the methods used to perform various operations
- ** against the open file represented by the [sqlite3_file] object.
- **
- ** If the [sqlite3_vfs.xOpen] method sets the sqlite3_file.pMethods element
- ** to a non-NULL pointer, then the sqlite3_io_methods.xClose method
- ** may be invoked even if the [sqlite3_vfs.xOpen] reported that it failed. The
- ** only way to prevent a call to xClose following a failed [sqlite3_vfs.xOpen]
- ** is for the [sqlite3_vfs.xOpen] to set the sqlite3_file.pMethods element
- ** to NULL.
- **
- ** The flags argument to xSync may be one of [SQLITE_SYNC_NORMAL] or
- ** [SQLITE_SYNC_FULL]. The first choice is the normal fsync().
- ** The second choice is a Mac OS X style fullsync. The [SQLITE_SYNC_DATAONLY]
- ** flag may be ORed in to indicate that only the data of the file
- ** and not its inode needs to be synced.
- **
- ** The integer values to xLock() and xUnlock() are one of
- ** <ul>
- ** <li> [SQLITE_LOCK_NONE],
- ** <li> [SQLITE_LOCK_SHARED],
- ** <li> [SQLITE_LOCK_RESERVED],
- ** <li> [SQLITE_LOCK_PENDING], or
- ** <li> [SQLITE_LOCK_EXCLUSIVE].
- ** </ul>
- ** xLock() increases the lock. xUnlock() decreases the lock.
- ** The xCheckReservedLock() method checks whether any database connection,
- ** either in this process or in some other process, is holding a RESERVED,
- ** PENDING, or EXCLUSIVE lock on the file. It returns true
- ** if such a lock exists and false otherwise.
- **
- ** The xFileControl() method is a generic interface that allows custom
- ** VFS implementations to directly control an open file using the
- ** [sqlite3_file_control()] interface. The second "op" argument is an
- ** integer opcode. The third argument is a generic pointer intended to
- ** point to a structure that may contain arguments or space in which to
- ** write return values. Potential uses for xFileControl() might be
- ** functions to enable blocking locks with timeouts, to change the
- ** locking strategy (for example to use dot-file locks), to inquire
- ** about the status of a lock, or to break stale locks. The SQLite
- ** core reserves all opcodes less than 100 for its own use.
- ** A [file control opcodes | list of opcodes] less than 100 is available.
- ** Applications that define a custom xFileControl method should use opcodes
- ** greater than 100 to avoid conflicts. VFS implementations should
- ** return [SQLITE_NOTFOUND] for file control opcodes that they do not
- ** recognize.
- **
- ** The xSectorSize() method returns the sector size of the
- ** device that underlies the file. The sector size is the
- ** minimum write that can be performed without disturbing
- ** other bytes in the file. The xDeviceCharacteristics()
- ** method returns a bit vector describing behaviors of the
- ** underlying device:
- **
- ** <ul>
- ** <li> [SQLITE_IOCAP_ATOMIC]
- ** <li> [SQLITE_IOCAP_ATOMIC512]
- ** <li> [SQLITE_IOCAP_ATOMIC1K]
- ** <li> [SQLITE_IOCAP_ATOMIC2K]
- ** <li> [SQLITE_IOCAP_ATOMIC4K]
- ** <li> [SQLITE_IOCAP_ATOMIC8K]
- ** <li> [SQLITE_IOCAP_ATOMIC16K]
- ** <li> [SQLITE_IOCAP_ATOMIC32K]
- ** <li> [SQLITE_IOCAP_ATOMIC64K]
- ** <li> [SQLITE_IOCAP_SAFE_APPEND]
- ** <li> [SQLITE_IOCAP_SEQUENTIAL]
- ** </ul>
- **
- ** The SQLITE_IOCAP_ATOMIC property means that all writes of
- ** any size are atomic. The SQLITE_IOCAP_ATOMICnnn values
- ** mean that writes of blocks that are nnn bytes in size and
- ** are aligned to an address which is an integer multiple of
- ** nnn are atomic. The SQLITE_IOCAP_SAFE_APPEND value means
- ** that when data is appended to a file, the data is appended
- ** first then the size of the file is extended, never the other
- ** way around. The SQLITE_IOCAP_SEQUENTIAL property means that
- ** information is written to disk in the same order as calls
- ** to xWrite().
- **
- ** If xRead() returns SQLITE_IOERR_SHORT_READ it must also fill
- ** in the unread portions of the buffer with zeros. A VFS that
- ** fails to zero-fill short reads might seem to work. However,
- ** failure to zero-fill short reads will eventually lead to
- ** database corruption.
- */
- typedef struct sqlite3_io_methods sqlite3_io_methods;
- struct sqlite3_io_methods {
- int iVersion;
- int (*xClose)(sqlite3_file*);
- int (*xRead)(sqlite3_file*, void*, int iAmt, sqlite3_int64 iOfst);
- int (*xWrite)(sqlite3_file*, const void*, int iAmt, sqlite3_int64 iOfst);
- int (*xTruncate)(sqlite3_file*, sqlite3_int64 size);
- int (*xSync)(sqlite3_file*, int flags);
- int (*xFileSize)(sqlite3_file*, sqlite3_int64 *pSize);
- int (*xLock)(sqlite3_file*, int);
- int (*xUnlock)(sqlite3_file*, int);
- int (*xCheckReservedLock)(sqlite3_file*, int *pResOut);
- int (*xFileControl)(sqlite3_file*, int op, void *pArg);
- int (*xSectorSize)(sqlite3_file*);
- int (*xDeviceCharacteristics)(sqlite3_file*);
- /* Methods above are valid for version 1 */
- int (*xShmMap)(sqlite3_file*, int iPg, int pgsz, int, void volatile**);
- int (*xShmLock)(sqlite3_file*, int offset, int n, int flags);
- void (*xShmBarrier)(sqlite3_file*);
- int (*xShmUnmap)(sqlite3_file*, int deleteFlag);
- /* Methods above are valid for version 2 */
- int (*xFetch)(sqlite3_file*, sqlite3_int64 iOfst, int iAmt, void **pp);
- int (*xUnfetch)(sqlite3_file*, sqlite3_int64 iOfst, void *p);
- /* Methods above are valid for version 3 */
- /* Additional methods may be added in future releases */
- };
- /*
- ** CAPI3REF: Standard File Control Opcodes
- ** KEYWORDS: {file control opcodes} {file control opcode}
- **
- ** These integer constants are opcodes for the xFileControl method
- ** of the [sqlite3_io_methods] object and for the [sqlite3_file_control()]
- ** interface.
- **
- ** <ul>
- ** <li>[[SQLITE_FCNTL_LOCKSTATE]]
- ** The [SQLITE_FCNTL_LOCKSTATE] opcode is used for debugging. This
- ** opcode causes the xFileControl method to write the current state of
- ** the lock (one of [SQLITE_LOCK_NONE], [SQLITE_LOCK_SHARED],
- ** [SQLITE_LOCK_RESERVED], [SQLITE_LOCK_PENDING], or [SQLITE_LOCK_EXCLUSIVE])
- ** into an integer that the pArg argument points to. This capability
- ** is used during testing and is only available when the SQLITE_TEST
- ** compile-time option is used.
- **
- ** <li>[[SQLITE_FCNTL_SIZE_HINT]]
- ** The [SQLITE_FCNTL_SIZE_HINT] opcode is used by SQLite to give the VFS
- ** layer a hint of how large the database file will grow to be during the
- ** current transaction. This hint is not guaranteed to be accurate but it
- ** is often close. The underlying VFS might choose to preallocate database
- ** file space based on this hint in order to help writes to the database
- ** file run faster.
- **
- ** <li>[[SQLITE_FCNTL_CHUNK_SIZE]]
- ** The [SQLITE_FCNTL_CHUNK_SIZE] opcode is used to request that the VFS
- ** extends and truncates the database file in chunks of a size specified
- ** by the user. The fourth argument to [sqlite3_file_control()] should
- ** point to an integer (type int) containing the new chunk-size to use
- ** for the nominated database. Allocating database file space in large
- ** chunks (say 1MB at a time), may reduce file-system fragmentation and
- ** improve performance on some systems.
- **
- ** <li>[[SQLITE_FCNTL_FILE_POINTER]]
- ** The [SQLITE_FCNTL_FILE_POINTER] opcode is used to obtain a pointer
- ** to the [sqlite3_file] object associated with a particular database
- ** connection. See the [sqlite3_file_control()] documentation for
- ** additional information.
- **
- ** <li>[[SQLITE_FCNTL_SYNC_OMITTED]]
- ** No longer in use.
- **
- ** <li>[[SQLITE_FCNTL_SYNC]]
- ** The [SQLITE_FCNTL_SYNC] opcode is generated internally by SQLite and
- ** sent to the VFS immediately before the xSync method is invoked on a
- ** database file descriptor. Or, if the xSync method is not invoked
- ** because the user has configured SQLite with
- ** [PRAGMA synchronous | PRAGMA synchronous=OFF] it is invoked in place
- ** of the xSync method. In most cases, the pointer argument passed with
- ** this file-control is NULL. However, if the database file is being synced
- ** as part of a multi-database commit, the argument points to a nul-terminated
- ** string containing the transactions master-journal file name. VFSes that
- ** do not need this signal should silently ignore this opcode. Applications
- ** should not call [sqlite3_file_control()] with this opcode as doing so may
- ** disrupt the operation of the specialized VFSes that do require it.
- **
- ** <li>[[SQLITE_FCNTL_COMMIT_PHASETWO]]
- ** The [SQLITE_FCNTL_COMMIT_PHASETWO] opcode is generated internally by SQLite
- ** and sent to the VFS after a transaction has been committed immediately
- ** but before the database is unlocked. VFSes that do not need this signal
- ** should silently ignore this opcode. Applications should not call
- ** [sqlite3_file_control()] with this opcode as doing so may disrupt the
- ** operation of the specialized VFSes that do require it.
- **
- ** <li>[[SQLITE_FCNTL_WIN32_AV_RETRY]]
- ** ^The [SQLITE_FCNTL_WIN32_AV_RETRY] opcode is used to configure automatic
- ** retry counts and intervals for certain disk I/O operations for the
- ** windows [VFS] in order to provide robustness in the presence of
- ** anti-virus programs. By default, the windows VFS will retry file read,
- ** file write, and file delete operations up to 10 times, with a delay
- ** of 25 milliseconds before the first retry and with the delay increasing
- ** by an additional 25 milliseconds with each subsequent retry. This
- ** opcode allows these two values (10 retries and 25 milliseconds of delay)
- ** to be adjusted. The values are changed for all database connections
- ** within the same process. The argument is a pointer to an array of two
- ** integers where the first integer i the new retry count and the second
- ** integer is the delay. If either integer is negative, then the setting
- ** is not changed but instead the prior value of that setting is written
- ** into the array entry, allowing the current retry settings to be
- ** interrogated. The zDbName parameter is ignored.
- **
- ** <li>[[SQLITE_FCNTL_PERSIST_WAL]]
- ** ^The [SQLITE_FCNTL_PERSIST_WAL] opcode is used to set or query the
- ** persistent [WAL | Write Ahead Log] setting. By default, the auxiliary
- ** write ahead log and shared memory files used for transaction control
- ** are automatically deleted when the latest connection to the database
- ** closes. Setting persistent WAL mode causes those files to persist after
- ** close. Persisting the files is useful when other processes that do not
- ** have write permission on the directory containing the database file want
- ** to read the database file, as the WAL and shared memory files must exist
- ** in order for the database to be readable. The fourth parameter to
- ** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
- ** That integer is 0 to disable persistent WAL mode or 1 to enable persistent
- ** WAL mode. If the integer is -1, then it is overwritten with the current
- ** WAL persistence setting.
- **
- ** <li>[[SQLITE_FCNTL_POWERSAFE_OVERWRITE]]
- ** ^The [SQLITE_FCNTL_POWERSAFE_OVERWRITE] opcode is used to set or query the
- ** persistent "powersafe-overwrite" or "PSOW" setting. The PSOW setting
- ** determines the [SQLITE_IOCAP_POWERSAFE_OVERWRITE] bit of the
- ** xDeviceCharacteristics methods. The fourth parameter to
- ** [sqlite3_file_control()] for this opcode should be a pointer to an integer.
- ** That integer is 0 to disable zero-damage mode or 1 to enable zero-damage
- ** mode. If the integer is -1, then it is overwritten with the current
- ** zero-damage mode setting.
- **
- ** <li>[[SQLITE_FCNTL_OVERWRITE]]
- ** ^The [SQLITE_FCNTL_OVERWRITE] opcode is invoked by SQLite after opening
- ** a write transaction to indicate that, unless it is rolled back for some
- ** reason, the entire database file will be overwritten by the current
- ** transaction. This is used by VACUUM operations.
- **
- ** <li>[[SQLITE_FCNTL_VFSNAME]]
- ** ^The [SQLITE_FCNTL_VFSNAME] opcode can be used to obtain the names of
- ** all [VFSes] in the VFS stack. The names are of all VFS shims and the
- ** final bottom-level VFS are written into memory obtained from
- ** [sqlite3_malloc()] and the result is stored in the char* variable
- ** that the fourth parameter of [sqlite3_file_control()] points to.
- ** The caller is responsible for freeing the memory when done. As with
- ** all file-control actions, there is no guarantee that this will actually
- ** do anything. Callers should initialize the char* variable to a NULL
- ** pointer in case this file-control is not implemented. This file-control
- ** is intended for diagnostic use only.
- **
- ** <li>[[SQLITE_FCNTL_PRAGMA]]
- ** ^Whenever a [PRAGMA] statement is parsed, an [SQLITE_FCNTL_PRAGMA]
- ** file control is sent to the open [sqlite3_file] object corresponding
- ** to the database file to which the pragma statement refers. ^The argument
- ** to the [SQLITE_FCNTL_PRAGMA] file control is an array of
- ** pointers to strings (char**) in which the second element of the array
- ** is the name of the pragma and the third element is the argument to the
- ** pragma or NULL if the pragma has no argument. ^The handler for an
- ** [SQLITE_FCNTL_PRAGMA] file control can optionally make the first element
- ** of the char** argument point to a string obtained from [sqlite3_mprintf()]
- ** or the equivalent and that string will become the result of the pragma or
- ** the error message if the pragma fails. ^If the
- ** [SQLITE_FCNTL_PRAGMA] file control returns [SQLITE_NOTFOUND], then normal
- ** [PRAGMA] processing continues. ^If the [SQLITE_FCNTL_PRAGMA]
- ** file control returns [SQLITE_OK], then the parser assumes that the
- ** VFS has handled the PRAGMA itself and the parser generates a no-op
- ** prepared statement if result string is NULL, or that returns a copy
- ** of the result string if the string is non-NULL.
- ** ^If the [SQLITE_FCNTL_PRAGMA] file control returns
- ** any result code other than [SQLITE_OK] or [SQLITE_NOTFOUND], that means
- ** that the VFS encountered an error while handling the [PRAGMA] and the
- ** compilation of the PRAGMA fails with an error. ^The [SQLITE_FCNTL_PRAGMA]
- ** file control occurs at the beginning of pragma statement analysis and so
- ** it is able to override built-in [PRAGMA] statements.
- **
- ** <li>[[SQLITE_FCNTL_BUSYHANDLER]]
- ** ^The [SQLITE_FCNTL_BUSYHANDLER]
- ** file-control may be invoked by SQLite on the database file handle
- ** shortly after it is opened in order to provide a custom VFS with access
- ** to the connections busy-handler callback. The argument is of type (void **)
- ** - an array of two (void *) values. The first (void *) actually points
- ** to a function of type (int (*)(void *)). In order to invoke the connections
- ** busy-handler, this function should be invoked with the second (void *) in
- ** the array as the only argument. If it returns non-zero, then the operation
- ** should be retried. If it returns zero, the custom VFS should abandon the
- ** current operation.
- **
- ** <li>[[SQLITE_FCNTL_TEMPFILENAME]]
- ** ^Application can invoke the [SQLITE_FCNTL_TEMPFILENAME] file-control
- ** to have SQLite generate a
- ** temporary filename using the same algorithm that is followed to generate
- ** temporary filenames for TEMP tables and other internal uses. The
- ** argument should be a char** which will be filled with the filename
- ** written into memory obtained from [sqlite3_malloc()]. The caller should
- ** invoke [sqlite3_free()] on the result to avoid a memory leak.
- **
- ** <li>[[SQLITE_FCNTL_MMAP_SIZE]]
- ** The [SQLITE_FCNTL_MMAP_SIZE] file control is used to query or set the
- ** maximum number of bytes that will be used for memory-mapped I/O.
- ** The argument is a pointer to a value of type sqlite3_int64 that
- ** is an advisory maximum number of bytes in the file to memory map. The
- ** pointer is overwritten with the old value. The limit is not changed if
- ** the value originally pointed to is negative, and so the current limit
- ** can be queried by passing in a pointer to a negative number. This
- ** file-control is used internally to implement [PRAGMA mmap_size].
- **
- ** <li>[[SQLITE_FCNTL_TRACE]]
- ** The [SQLITE_FCNTL_TRACE] file control provides advisory information
- ** to the VFS about what the higher layers of the SQLite stack are doing.
- ** This file control is used by some VFS activity tracing [shims].
- ** The argument is a zero-terminated string. Higher layers in the
- ** SQLite stack may generate instances of this file control if
- ** the [SQLITE_USE_FCNTL_TRACE] compile-time option is enabled.
- **
- ** <li>[[SQLITE_FCNTL_HAS_MOVED]]
- ** The [SQLITE_FCNTL_HAS_MOVED] file control interprets its argument as a
- ** pointer to an integer and it writes a boolean into that integer depending
- ** on whether or not the file has been renamed, moved, or deleted since it
- ** was first opened.
- **
- ** <li>[[SQLITE_FCNTL_WIN32_SET_HANDLE]]
- ** The [SQLITE_FCNTL_WIN32_SET_HANDLE] opcode is used for debugging. This
- ** opcode causes the xFileControl method to swap the file handle with the one
- ** pointed to by the pArg argument. This capability is used during testing
- ** and only needs to be supported when SQLITE_TEST is defined.
- **
- ** <li>[[SQLITE_FCNTL_WAL_BLOCK]]
- ** The [SQLITE_FCNTL_WAL_BLOCK] is a signal to the VFS layer that it might
- ** be advantageous to block on the next WAL lock if the lock is not immediately
- ** available. The WAL subsystem issues this signal during rare
- ** circumstances in order to fix a problem with priority inversion.
- ** Applications should <em>not</em> use this file-control.
- **
- ** <li>[[SQLITE_FCNTL_ZIPVFS]]
- ** The [SQLITE_FCNTL_ZIPVFS] opcode is implemented by zipvfs only. All other
- ** VFS should return SQLITE_NOTFOUND for this opcode.
- **
- ** <li>[[SQLITE_FCNTL_RBU]]
- ** The [SQLITE_FCNTL_RBU] opcode is implemented by the special VFS used by
- ** the RBU extension only. All other VFS should return SQLITE_NOTFOUND for
- ** this opcode.
- ** </ul>
- */
- #define SQLITE_FCNTL_LOCKSTATE 1
- #define SQLITE_FCNTL_GET_LOCKPROXYFILE 2
- #define SQLITE_FCNTL_SET_LOCKPROXYFILE 3
- #define SQLITE_FCNTL_LAST_ERRNO 4
- #define SQLITE_FCNTL_SIZE_HINT 5
- #define SQLITE_FCNTL_CHUNK_SIZE 6
- #define SQLITE_FCNTL_FILE_POINTER 7
- #define SQLITE_FCNTL_SYNC_OMITTED 8
- #define SQLITE_FCNTL_WIN32_AV_RETRY 9
- #define SQLITE_FCNTL_PERSIST_WAL 10
- #define SQLITE_FCNTL_OVERWRITE 11
- #define SQLITE_FCNTL_VFSNAME 12
- #define SQLITE_FCNTL_POWERSAFE_OVERWRITE 13
- #define SQLITE_FCNTL_PRAGMA 14
- #define SQLITE_FCNTL_BUSYHANDLER 15
- #define SQLITE_FCNTL_TEMPFILENAME 16
- #define SQLITE_FCNTL_MMAP_SIZE 18
- #define SQLITE_FCNTL_TRACE 19
- #define SQLITE_FCNTL_HAS_MOVED 20
- #define SQLITE_FCNTL_SYNC 21
- #define SQLITE_FCNTL_COMMIT_PHASETWO 22
- #define SQLITE_FCNTL_WIN32_SET_HANDLE 23
- #define SQLITE_FCNTL_WAL_BLOCK 24
- #define SQLITE_FCNTL_ZIPVFS 25
- #define SQLITE_FCNTL_RBU 26
- /* deprecated names */
- #define SQLITE_GET_LOCKPROXYFILE SQLITE_FCNTL_GET_LOCKPROXYFILE
- #define SQLITE_SET_LOCKPROXYFILE SQLITE_FCNTL_SET_LOCKPROXYFILE
- #define SQLITE_LAST_ERRNO SQLITE_FCNTL_LAST_ERRNO
- /*
- ** CAPI3REF: Mutex Handle
- **
- ** The mutex module within SQLite defines [sqlite3_mutex] to be an
- ** abstract type for a mutex object. The SQLite core never looks
- ** at the internal representation of an [sqlite3_mutex]. It only
- ** deals with pointers to the [sqlite3_mutex] object.
- **
- ** Mutexes are created using [sqlite3_mutex_alloc()].
- */
- typedef struct sqlite3_mutex sqlite3_mutex;
- /*
- ** CAPI3REF: OS Interface Object
- **
- ** An instance of the sqlite3_vfs object defines the interface between
- ** the SQLite core and the underlying operating system. The "vfs"
- ** in the name of the object stands for "virtual file system". See
- ** the [VFS | VFS documentation] for further information.
- **
- ** The value of the iVersion field is initially 1 but may be larger in
- ** future versions of SQLite. Additional fields may be appended to this
- ** object when the iVersion value is increased. Note that the structure
- ** of the sqlite3_vfs object changes in the transaction between
- ** SQLite version 3.5.9 and 3.6.0 and yet the iVersion field was not
- ** modified.
- **
- ** The szOsFile field is the size of the subclassed [sqlite3_file]
- ** structure used by this VFS. mxPathname is the maximum length of
- ** a pathname in this VFS.
- **
- ** Registered sqlite3_vfs objects are kept on a linked list formed by
- ** the pNext pointer. The [sqlite3_vfs_register()]
- ** and [sqlite3_vfs_unregister()] interfaces manage this list
- ** in a thread-safe way. The [sqlite3_vfs_find()] interface
- ** searches the list. Neither the application code nor the VFS
- ** implementation should use the pNext pointer.
- **
- ** The pNext field is the only field in the sqlite3_vfs
- ** structure that SQLite will ever modify. SQLite will only access
- ** or modify this field while holding a particular static mutex.
- ** The application should never modify anything within the sqlite3_vfs
- ** object once the object has been registered.
- **
- ** The zName field holds the name of the VFS module. The name must
- ** be unique across all VFS modules.
- **
- ** [[sqlite3_vfs.xOpen]]
- ** ^SQLite guarantees that the zFilename parameter to xOpen
- ** is either a NULL pointer or string obtained
- ** from xFullPathname() with an optional suffix added.
- ** ^If a suffix is added to the zFilename parameter, it will
- ** consist of a single "-" character followed by no more than
- ** 11 alphanumeric and/or "-" characters.
- ** ^SQLite further guarantees that
- ** the string will be valid and unchanged until xClose() is
- ** called. Because of the previous sentence,
- ** the [sqlite3_file] can safely store a pointer to the
- ** filename if it needs to remember the filename for some reason.
- ** If the zFilename parameter to xOpen is a NULL pointer then xOpen
- ** must invent its own temporary name for the file. ^Whenever the
- ** xFilename parameter is NULL it will also be the case that the
- ** flags parameter will include [SQLITE_OPEN_DELETEONCLOSE].
- **
- ** The flags argument to xOpen() includes all bits set in
- ** the flags argument to [sqlite3_open_v2()]. Or if [sqlite3_open()]
- ** or [sqlite3_open16()] is used, then flags includes at least
- ** [SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE].
- ** If xOpen() opens a file read-only then it sets *pOutFlags to
- ** include [SQLITE_OPEN_READONLY]. Other bits in *pOutFlags may be set.
- **
- ** ^(SQLite will also add one of the following flags to the xOpen()
- ** call, depending on the object being opened:
- **
- ** <ul>
- ** <li> [SQLITE_OPEN_MAIN_DB]
- ** <li> [SQLITE_OPEN_MAIN_JOURNAL]
- ** <li> [SQLITE_OPEN_TEMP_DB]
- ** <li> [SQLITE_OPEN_TEMP_JOURNAL]
- ** <li> [SQLITE_OPEN_TRANSIENT_DB]
- ** <li> [SQLITE_OPEN_SUBJOURNAL]
- ** <li> [SQLITE_OPEN_MASTER_JOURNAL]
- ** <li> [SQLITE_OPEN_WAL]
- ** </ul>)^
- **
- ** The file I/O implementation can use the object type flags to
- ** change the way it deals with files. For example, an application
- ** that does not care about crash recovery or rollback might make
- ** the open of a journal file a no-op. Writes to this journal would
- ** also be no-ops, and any attempt to read the journal would return
- ** SQLITE_IOERR. Or the implementation might recognize that a database
- ** file will be doing page-aligned sector reads and writes in a random
- ** order and set up its I/O subsystem accordingly.
- **
- ** SQLite might also add one of the following flags to the xOpen method:
- **
- ** <ul>
- ** <li> [SQLITE_OPEN_DELETEONCLOSE]
- ** <li> [SQLITE_OPEN_EXCLUSIVE]
- ** </ul>
- **
- ** The [SQLITE_OPEN_DELETEONCLOSE] flag means the file should be
- ** deleted when it is closed. ^The [SQLITE_OPEN_DELETEONCLOSE]
- ** will be set for TEMP databases and their journals, transient
- ** databases, and subjournals.
- **
- ** ^The [SQLITE_OPEN_EXCLUSIVE] flag is always used in conjunction
- ** with the [SQLITE_OPEN_CREATE] flag, which are both directly
- ** analogous to the O_EXCL and O_CREAT flags of the POSIX open()
- ** API. The SQLITE_OPEN_EXCLUSIVE flag, when paired with the
- ** SQLITE_OPEN_CREATE, is used to indicate that file should always
- ** be created, and that it is an error if it already exists.
- ** It is <i>not</i> used to indicate the file should be opened
- ** for exclusive access.
- **
- ** ^At least szOsFile bytes of memory are allocated by SQLite
- ** to hold the [sqlite3_file] structure passed as the third
- ** argument to xOpen. The xOpen method does not have to
- ** allocate the structure; it should just fill it in. Note that
- ** the xOpen method must set the sqlite3_file.pMethods to either
- ** a valid [sqlite3_io_methods] object or to NULL. xOpen must do
- ** this even if the open fails. SQLite expects that the sqlite3_file.pMethods
- ** element will be valid after xOpen returns regardless of the success
- ** or failure of the xOpen call.
- **
- ** [[sqlite3_vfs.xAccess]]
- ** ^The flags argument to xAccess() may be [SQLITE_ACCESS_EXISTS]
- ** to test for the existence of a file, or [SQLITE_ACCESS_READWRITE] to
- ** test whether a file is readable and writable, or [SQLITE_ACCESS_READ]
- ** to test whether a file is at least readable. The file can be a
- ** directory.
- **
- ** ^SQLite will always allocate at least mxPathname+1 bytes for the
- ** output buffer xFullPathname. The exact size of the output buffer
- ** is also passed as a parameter to both methods. If the output buffer
- ** is not large enough, [SQLITE_CANTOPEN] should be returned. Since this is
- ** handled as a fatal error by SQLite, vfs implementations should endeavor
- ** to prevent this by setting mxPathname to a sufficiently large value.
- **
- ** The xRandomness(), xSleep(), xCurrentTime(), and xCurrentTimeInt64()
- ** interfaces are not strictly a part of the filesystem, but they are
- ** included in the VFS structure for completeness.
- ** The xRandomness() function attempts to return nBytes bytes
- ** of good-quality randomness into zOut. The return value is
- ** the actual number of bytes of randomness obtained.
- ** The xSleep() method causes the calling thread to sleep for at
- ** least the number of microseconds given. ^The xCurrentTime()
- ** method returns a Julian Day Number for the current date and time as
- ** a floating point value.
- ** ^The xCurrentTimeInt64() method returns, as an integer, the Julian
- ** Day Number multiplied by 86400000 (the number of milliseconds in
- ** a 24-hour day).
- ** ^SQLite will use the xCurrentTimeInt64() method to get the current
- ** date and time if that method is available (if iVersion is 2 or
- ** greater and the function pointer is not NULL) and will fall back
- ** to xCurrentTime() if xCurrentTimeInt64() is unavailable.
- **
- ** ^The xSetSystemCall(), xGetSystemCall(), and xNestSystemCall() interfaces
- ** are not used by the SQLite core. These optional interfaces are provided
- ** by some VFSes to facilitate testing of the VFS code. By overriding
- ** system calls with functions under its control, a test program can
- ** simulate faults and error conditions that would otherwise be difficult
- ** or impossible to induce. The set of system calls that can be overridden
- ** varies from one VFS to another, and from one version of the same VFS to the
- ** next. Applications that use these interfaces must be prepared for any
- ** or all of these interfaces to be NULL or for their behavior to change
- ** from one release to the next. Applications must not attempt to access
- ** any of these methods if the iVersion of the VFS is less than 3.
- */
- typedef struct sqlite3_vfs sqlite3_vfs;
- typedef void (*sqlite3_syscall_ptr)(void);
- struct sqlite3_vfs {
- int iVersion; /* Structure version number (currently 3) */
- int szOsFile; /* Size of subclassed sqlite3_file */
- int mxPathname; /* Maximum file pathname length */
- sqlite3_vfs *pNext; /* Next registered VFS */
- const char *zName; /* Name of this virtual file system */
- void *pAppData; /* Pointer to application-specific data */
- int (*xOpen)(sqlite3_vfs*, const char *zName, sqlite3_file*,
- int flags, int *pOutFlags);
- int (*xDelete)(sqlite3_vfs*, const char *zName, int syncDir);
- int (*xAccess)(sqlite3_vfs*, const char *zName, int flags, int *pResOut);
- int (*xFullPathname)(sqlite3_vfs*, const char *zName, int nOut, char *zOut);
- void *(*xDlOpen)(sqlite3_vfs*, const char *zFilename);
- void (*xDlError)(sqlite3_vfs*, int nByte, char *zErrMsg);
- void (*(*xDlSym)(sqlite3_vfs*,void*, const char *zSymbol))(void);
- void (*xDlClose)(sqlite3_vfs*, void*);
- int (*xRandomness)(sqlite3_vfs*, int nByte, char *zOut);
- int (*xSleep)(sqlite3_vfs*, int microseconds);
- int (*xCurrentTime)(sqlite3_vfs*, double*);
- int (*xGetLastError)(sqlite3_vfs*, int, char *);
- /*
- ** The methods above are in version 1 of the sqlite_vfs object
- ** definition. Those that follow are added in version 2 or later
- */
- int (*xCurrentTimeInt64)(sqlite3_vfs*, sqlite3_int64*);
- /*
- ** The methods above are in versions 1 and 2 of the sqlite_vfs object.
- ** Those below are for version 3 and greater.
- */
- int (*xSetSystemCall)(sqlite3_vfs*, const char *zName, sqlite3_syscall_ptr);
- sqlite3_syscall_ptr (*xGetSystemCall)(sqlite3_vfs*, const char *zName);
- const char *(*xNextSystemCall)(sqlite3_vfs*, const char *zName);
- /*
- ** The methods above are in versions 1 through 3 of the sqlite_vfs object.
- ** New fields may be appended in figure versions. The iVersion
- ** value will increment whenever this happens.
- */
- };
- /*
- ** CAPI3REF: Flags for the xAccess VFS method
- **
- ** These integer constants can be used as the third parameter to
- ** the xAccess method of an [sqlite3_vfs] object. They determine
- ** what kind of permissions the xAccess method is looking for.
- ** With SQLITE_ACCESS_EXISTS, the xAccess method
- ** simply checks whether the file exists.
- ** With SQLITE_ACCESS_READWRITE, the xAccess method
- ** checks whether the named directory is both readable and writable
- ** (in other words, if files can be added, removed, and renamed within
- ** the directory).
- ** The SQLITE_ACCESS_READWRITE constant is currently used only by the
- ** [temp_store_directory pragma], though this could change in a future
- ** release of SQLite.
- ** With SQLITE_ACCESS_READ, the xAccess method
- ** checks whether the file is readable. The SQLITE_ACCESS_READ constant is
- ** currently unused, though it might be used in a future release of
- ** SQLite.
- */
- #define SQLITE_ACCESS_EXISTS 0
- #define SQLITE_ACCESS_READWRITE 1 /* Used by PRAGMA temp_store_directory */
- #define SQLITE_ACCESS_READ 2 /* Unused */
- /*
- ** CAPI3REF: Flags for the xShmLock VFS method
- **
- ** These integer constants define the various locking operations
- ** allowed by the xShmLock method of [sqlite3_io_methods]. The
- ** following are the only legal combinations of flags to the
- ** xShmLock method:
- **
- ** <ul>
- ** <li> SQLITE_SHM_LOCK | SQLITE_SHM_SHARED
- ** <li> SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE
- ** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED
- ** <li> SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE
- ** </ul>
- **
- ** When unlocking, the same SHARED or EXCLUSIVE flag must be supplied as
- ** was given on the corresponding lock.
- **
- ** The xShmLock method can transition between unlocked and SHARED or
- ** between unlocked and EXCLUSIVE. It cannot transition between SHARED
- ** and EXCLUSIVE.
- */
- #define SQLITE_SHM_UNLOCK 1
- #define SQLITE_SHM_LOCK 2
- #define SQLITE_SHM_SHARED 4
- #define SQLITE_SHM_EXCLUSIVE 8
- /*
- ** CAPI3REF: Maximum xShmLock index
- **
- ** The xShmLock method on [sqlite3_io_methods] may use values
- ** between 0 and this upper bound as its "offset" argument.
- ** The SQLite core will never attempt to acquire or release a
- ** lock outside of this range
- */
- #define SQLITE_SHM_NLOCK 8
- /*
- ** CAPI3REF: Initialize The SQLite Library
- **
- ** ^The sqlite3_initialize() routine initializes the
- ** SQLite library. ^The sqlite3_shutdown() routine
- ** deallocates any resources that were allocated by sqlite3_initialize().
- ** These routines are designed to aid in process initialization and
- ** shutdown on embedded systems. Workstation applications using
- ** SQLite normally do not need to invoke either of these routines.
- **
- ** A call to sqlite3_initialize() is an "effective" call if it is
- ** the first time sqlite3_initialize() is invoked during the lifetime of
- ** the process, or if it is the first time sqlite3_initialize() is invoked
- ** following a call to sqlite3_shutdown(). ^(Only an effective call
- ** of sqlite3_initialize() does any initialization. All other calls
- ** are harmless no-ops.)^
- **
- ** A call to sqlite3_shutdown() is an "effective" call if it is the first
- ** call to sqlite3_shutdown() since the last sqlite3_initialize(). ^(Only
- ** an effective call to sqlite3_shutdown() does any deinitialization.
- ** All other valid calls to sqlite3_shutdown() are harmless no-ops.)^
- **
- ** The sqlite3_initialize() interface is threadsafe, but sqlite3_shutdown()
- ** is not. The sqlite3_shutdown() interface must only be called from a
- ** single thread. All open [database connections] must be closed and all
- ** other SQLite resources must be deallocated prior to invoking
- ** sqlite3_shutdown().
- **
- ** Among other things, ^sqlite3_initialize() will invoke
- ** sqlite3_os_init(). Similarly, ^sqlite3_shutdown()
- ** will invoke sqlite3_os_end().
- **
- ** ^The sqlite3_initialize() routine returns [SQLITE_OK] on success.
- ** ^If for some reason, sqlite3_initialize() is unable to initialize
- ** the library (perhaps it is unable to allocate a needed resource such
- ** as a mutex) it returns an [error code] other than [SQLITE_OK].
- **
- ** ^The sqlite3_initialize() routine is called internally by many other
- ** SQLite interfaces so that an application usually does not need to
- ** invoke sqlite3_initialize() directly. For example, [sqlite3_open()]
- ** calls sqlite3_initialize() so the SQLite library will be automatically
- ** initialized when [sqlite3_open()] is called if it has not be initialized
- ** already. ^However, if SQLite is compiled with the [SQLITE_OMIT_AUTOINIT]
- ** compile-time option, then the automatic calls to sqlite3_initialize()
- ** are omitted and the application must call sqlite3_initialize() directly
- ** prior to using any other SQLite interface. For maximum portability,
- ** it is recommended that applications always invoke sqlite3_initialize()
- ** directly prior to using any other SQLite interface. Future releases
- ** of SQLite may require this. In other words, the behavior exhibited
- ** when SQLite is compiled with [SQLITE_OMIT_AUTOINIT] might become the
- ** default behavior in some future release of SQLite.
- **
- ** The sqlite3_os_init() routine does operating-system specific
- ** initialization of the SQLite library. The sqlite3_os_end()
- ** routine undoes the effect of sqlite3_os_init(). Typical tasks
- ** performed by these routines include allocation or deallocation
- ** of static resources, initialization of global variables,
- ** setting up a default [sqlite3_vfs] module, or setting up
- ** a default configuration using [sqlite3_config()].
- **
- ** The application should never invoke either sqlite3_os_init()
- ** or sqlite3_os_end() directly. The application should only invoke
- ** sqlite3_initialize() and sqlite3_shutdown(). The sqlite3_os_init()
- ** interface is called automatically by sqlite3_initialize() and
- ** sqlite3_os_end() is called by sqlite3_shutdown(). Appropriate
- ** implementations for sqlite3_os_init() and sqlite3_os_end()
- ** are built into SQLite when it is compiled for Unix, Windows, or OS/2.
- ** When [custom builds | built for other platforms]
- ** (using the [SQLITE_OS_OTHER=1] compile-time
- ** option) the application must supply a suitable implementation for
- ** sqlite3_os_init() and sqlite3_os_end(). An application-supplied
- ** implementation of sqlite3_os_init() or sqlite3_os_end()
- ** must return [SQLITE_OK] on success and some other [error code] upon
- ** failure.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_initialize(void);
- SQLITE_API int SQLITE_STDCALL sqlite3_shutdown(void);
- SQLITE_API int SQLITE_STDCALL sqlite3_os_init(void);
- SQLITE_API int SQLITE_STDCALL sqlite3_os_end(void);
- /*
- ** CAPI3REF: Configuring The SQLite Library
- **
- ** The sqlite3_config() interface is used to make global configuration
- ** changes to SQLite in order to tune SQLite to the specific needs of
- ** the application. The default configuration is recommended for most
- ** applications and so this routine is usually not necessary. It is
- ** provided to support rare applications with unusual needs.
- **
- ** The sqlite3_config() interface is not threadsafe. The application
- ** must insure that no other SQLite interfaces are invoked by other
- ** threads while sqlite3_config() is running. Furthermore, sqlite3_config()
- ** may only be invoked prior to library initialization using
- ** [sqlite3_initialize()] or after shutdown by [sqlite3_shutdown()].
- ** ^If sqlite3_config() is called after [sqlite3_initialize()] and before
- ** [sqlite3_shutdown()] then it will return SQLITE_MISUSE.
- ** Note, however, that ^sqlite3_config() can be called as part of the
- ** implementation of an application-defined [sqlite3_os_init()].
- **
- ** The first argument to sqlite3_config() is an integer
- ** [configuration option] that determines
- ** what property of SQLite is to be configured. Subsequent arguments
- ** vary depending on the [configuration option]
- ** in the first argument.
- **
- ** ^When a configuration option is set, sqlite3_config() returns [SQLITE_OK].
- ** ^If the option is unknown or SQLite is unable to set the option
- ** then this routine returns a non-zero [error code].
- */
- SQLITE_API int SQLITE_CDECL sqlite3_config(int, ...);
- /*
- ** CAPI3REF: Configure database connections
- ** METHOD: sqlite3
- **
- ** The sqlite3_db_config() interface is used to make configuration
- ** changes to a [database connection]. The interface is similar to
- ** [sqlite3_config()] except that the changes apply to a single
- ** [database connection] (specified in the first argument).
- **
- ** The second argument to sqlite3_db_config(D,V,...) is the
- ** [SQLITE_DBCONFIG_LOOKASIDE | configuration verb] - an integer code
- ** that indicates what aspect of the [database connection] is being configured.
- ** Subsequent arguments vary depending on the configuration verb.
- **
- ** ^Calls to sqlite3_db_config() return SQLITE_OK if and only if
- ** the call is considered successful.
- */
- SQLITE_API int SQLITE_CDECL sqlite3_db_config(sqlite3*, int op, ...);
- /*
- ** CAPI3REF: Memory Allocation Routines
- **
- ** An instance of this object defines the interface between SQLite
- ** and low-level memory allocation routines.
- **
- ** This object is used in only one place in the SQLite interface.
- ** A pointer to an instance of this object is the argument to
- ** [sqlite3_config()] when the configuration option is
- ** [SQLITE_CONFIG_MALLOC] or [SQLITE_CONFIG_GETMALLOC].
- ** By creating an instance of this object
- ** and passing it to [sqlite3_config]([SQLITE_CONFIG_MALLOC])
- ** during configuration, an application can specify an alternative
- ** memory allocation subsystem for SQLite to use for all of its
- ** dynamic memory needs.
- **
- ** Note that SQLite comes with several [built-in memory allocators]
- ** that are perfectly adequate for the overwhelming majority of applications
- ** and that this object is only useful to a tiny minority of applications
- ** with specialized memory allocation requirements. This object is
- ** also used during testing of SQLite in order to specify an alternative
- ** memory allocator that simulates memory out-of-memory conditions in
- ** order to verify that SQLite recovers gracefully from such
- ** conditions.
- **
- ** The xMalloc, xRealloc, and xFree methods must work like the
- ** malloc(), realloc() and free() functions from the standard C library.
- ** ^SQLite guarantees that the second argument to
- ** xRealloc is always a value returned by a prior call to xRoundup.
- **
- ** xSize should return the allocated size of a memory allocation
- ** previously obtained from xMalloc or xRealloc. The allocated size
- ** is always at least as big as the requested size but may be larger.
- **
- ** The xRoundup method returns what would be the allocated size of
- ** a memory allocation given a particular requested size. Most memory
- ** allocators round up memory allocations at least to the next multiple
- ** of 8. Some allocators round up to a larger multiple or to a power of 2.
- ** Every memory allocation request coming in through [sqlite3_malloc()]
- ** or [sqlite3_realloc()] first calls xRoundup. If xRoundup returns 0,
- ** that causes the corresponding memory allocation to fail.
- **
- ** The xInit method initializes the memory allocator. For example,
- ** it might allocate any require mutexes or initialize internal data
- ** structures. The xShutdown method is invoked (indirectly) by
- ** [sqlite3_shutdown()] and should deallocate any resources acquired
- ** by xInit. The pAppData pointer is used as the only parameter to
- ** xInit and xShutdown.
- **
- ** SQLite holds the [SQLITE_MUTEX_STATIC_MASTER] mutex when it invokes
- ** the xInit method, so the xInit method need not be threadsafe. The
- ** xShutdown method is only called from [sqlite3_shutdown()] so it does
- ** not need to be threadsafe either. For all other methods, SQLite
- ** holds the [SQLITE_MUTEX_STATIC_MEM] mutex as long as the
- ** [SQLITE_CONFIG_MEMSTATUS] configuration option is turned on (which
- ** it is by default) and so the methods are automatically serialized.
- ** However, if [SQLITE_CONFIG_MEMSTATUS] is disabled, then the other
- ** methods must be threadsafe or else make their own arrangements for
- ** serialization.
- **
- ** SQLite will never invoke xInit() more than once without an intervening
- ** call to xShutdown().
- */
- typedef struct sqlite3_mem_methods sqlite3_mem_methods;
- struct sqlite3_mem_methods {
- void *(*xMalloc)(int); /* Memory allocation function */
- void (*xFree)(void*); /* Free a prior allocation */
- void *(*xRealloc)(void*,int); /* Resize an allocation */
- int (*xSize)(void*); /* Return the size of an allocation */
- int (*xRoundup)(int); /* Round up request size to allocation size */
- int (*xInit)(void*); /* Initialize the memory allocator */
- void (*xShutdown)(void*); /* Deinitialize the memory allocator */
- void *pAppData; /* Argument to xInit() and xShutdown() */
- };
- /*
- ** CAPI3REF: Configuration Options
- ** KEYWORDS: {configuration option}
- **
- ** These constants are the available integer configuration options that
- ** can be passed as the first argument to the [sqlite3_config()] interface.
- **
- ** New configuration options may be added in future releases of SQLite.
- ** Existing configuration options might be discontinued. Applications
- ** should check the return code from [sqlite3_config()] to make sure that
- ** the call worked. The [sqlite3_config()] interface will return a
- ** non-zero [error code] if a discontinued or unsupported configuration option
- ** is invoked.
- **
- ** <dl>
- ** [[SQLITE_CONFIG_SINGLETHREAD]] <dt>SQLITE_CONFIG_SINGLETHREAD</dt>
- ** <dd>There are no arguments to this option. ^This option sets the
- ** [threading mode] to Single-thread. In other words, it disables
- ** all mutexing and puts SQLite into a mode where it can only be used
- ** by a single thread. ^If SQLite is compiled with
- ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
- ** it is not possible to change the [threading mode] from its default
- ** value of Single-thread and so [sqlite3_config()] will return
- ** [SQLITE_ERROR] if called with the SQLITE_CONFIG_SINGLETHREAD
- ** configuration option.</dd>
- **
- ** [[SQLITE_CONFIG_MULTITHREAD]] <dt>SQLITE_CONFIG_MULTITHREAD</dt>
- ** <dd>There are no arguments to this option. ^This option sets the
- ** [threading mode] to Multi-thread. In other words, it disables
- ** mutexing on [database connection] and [prepared statement] objects.
- ** The application is responsible for serializing access to
- ** [database connections] and [prepared statements]. But other mutexes
- ** are enabled so that SQLite will be safe to use in a multi-threaded
- ** environment as long as no two threads attempt to use the same
- ** [database connection] at the same time. ^If SQLite is compiled with
- ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
- ** it is not possible to set the Multi-thread [threading mode] and
- ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
- ** SQLITE_CONFIG_MULTITHREAD configuration option.</dd>
- **
- ** [[SQLITE_CONFIG_SERIALIZED]] <dt>SQLITE_CONFIG_SERIALIZED</dt>
- ** <dd>There are no arguments to this option. ^This option sets the
- ** [threading mode] to Serialized. In other words, this option enables
- ** all mutexes including the recursive
- ** mutexes on [database connection] and [prepared statement] objects.
- ** In this mode (which is the default when SQLite is compiled with
- ** [SQLITE_THREADSAFE=1]) the SQLite library will itself serialize access
- ** to [database connections] and [prepared statements] so that the
- ** application is free to use the same [database connection] or the
- ** same [prepared statement] in different threads at the same time.
- ** ^If SQLite is compiled with
- ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
- ** it is not possible to set the Serialized [threading mode] and
- ** [sqlite3_config()] will return [SQLITE_ERROR] if called with the
- ** SQLITE_CONFIG_SERIALIZED configuration option.</dd>
- **
- ** [[SQLITE_CONFIG_MALLOC]] <dt>SQLITE_CONFIG_MALLOC</dt>
- ** <dd> ^(The SQLITE_CONFIG_MALLOC option takes a single argument which is
- ** a pointer to an instance of the [sqlite3_mem_methods] structure.
- ** The argument specifies
- ** alternative low-level memory allocation routines to be used in place of
- ** the memory allocation routines built into SQLite.)^ ^SQLite makes
- ** its own private copy of the content of the [sqlite3_mem_methods] structure
- ** before the [sqlite3_config()] call returns.</dd>
- **
- ** [[SQLITE_CONFIG_GETMALLOC]] <dt>SQLITE_CONFIG_GETMALLOC</dt>
- ** <dd> ^(The SQLITE_CONFIG_GETMALLOC option takes a single argument which
- ** is a pointer to an instance of the [sqlite3_mem_methods] structure.
- ** The [sqlite3_mem_methods]
- ** structure is filled with the currently defined memory allocation routines.)^
- ** This option can be used to overload the default memory allocation
- ** routines with a wrapper that simulations memory allocation failure or
- ** tracks memory usage, for example. </dd>
- **
- ** [[SQLITE_CONFIG_MEMSTATUS]] <dt>SQLITE_CONFIG_MEMSTATUS</dt>
- ** <dd> ^The SQLITE_CONFIG_MEMSTATUS option takes single argument of type int,
- ** interpreted as a boolean, which enables or disables the collection of
- ** memory allocation statistics. ^(When memory allocation statistics are
- ** disabled, the following SQLite interfaces become non-operational:
- ** <ul>
- ** <li> [sqlite3_memory_used()]
- ** <li> [sqlite3_memory_highwater()]
- ** <li> [sqlite3_soft_heap_limit64()]
- ** <li> [sqlite3_status64()]
- ** </ul>)^
- ** ^Memory allocation statistics are enabled by default unless SQLite is
- ** compiled with [SQLITE_DEFAULT_MEMSTATUS]=0 in which case memory
- ** allocation statistics are disabled by default.
- ** </dd>
- **
- ** [[SQLITE_CONFIG_SCRATCH]] <dt>SQLITE_CONFIG_SCRATCH</dt>
- ** <dd> ^The SQLITE_CONFIG_SCRATCH option specifies a static memory buffer
- ** that SQLite can use for scratch memory. ^(There are three arguments
- ** to SQLITE_CONFIG_SCRATCH: A pointer an 8-byte
- ** aligned memory buffer from which the scratch allocations will be
- ** drawn, the size of each scratch allocation (sz),
- ** and the maximum number of scratch allocations (N).)^
- ** The first argument must be a pointer to an 8-byte aligned buffer
- ** of at least sz*N bytes of memory.
- ** ^SQLite will not use more than one scratch buffers per thread.
- ** ^SQLite will never request a scratch buffer that is more than 6
- ** times the database page size.
- ** ^If SQLite needs needs additional
- ** scratch memory beyond what is provided by this configuration option, then
- ** [sqlite3_malloc()] will be used to obtain the memory needed.<p>
- ** ^When the application provides any amount of scratch memory using
- ** SQLITE_CONFIG_SCRATCH, SQLite avoids unnecessary large
- ** [sqlite3_malloc|heap allocations].
- ** This can help [Robson proof|prevent memory allocation failures] due to heap
- ** fragmentation in low-memory embedded systems.
- ** </dd>
- **
- ** [[SQLITE_CONFIG_PAGECACHE]] <dt>SQLITE_CONFIG_PAGECACHE</dt>
- ** <dd> ^The SQLITE_CONFIG_PAGECACHE option specifies a static memory buffer
- ** that SQLite can use for the database page cache with the default page
- ** cache implementation.
- ** This configuration should not be used if an application-define page
- ** cache implementation is loaded using the [SQLITE_CONFIG_PCACHE2]
- ** configuration option.
- ** ^There are three arguments to SQLITE_CONFIG_PAGECACHE: A pointer to
- ** 8-byte aligned
- ** memory, the size of each page buffer (sz), and the number of pages (N).
- ** The sz argument should be the size of the largest database page
- ** (a power of two between 512 and 65536) plus some extra bytes for each
- ** page header. ^The number of extra bytes needed by the page header
- ** can be determined using the [SQLITE_CONFIG_PCACHE_HDRSZ] option
- ** to [sqlite3_config()].
- ** ^It is harmless, apart from the wasted memory,
- ** for the sz parameter to be larger than necessary. The first
- ** argument should pointer to an 8-byte aligned block of memory that
- ** is at least sz*N bytes of memory, otherwise subsequent behavior is
- ** undefined.
- ** ^SQLite will use the memory provided by the first argument to satisfy its
- ** memory needs for the first N pages that it adds to cache. ^If additional
- ** page cache memory is needed beyond what is provided by this option, then
- ** SQLite goes to [sqlite3_malloc()] for the additional storage space.</dd>
- **
- ** [[SQLITE_CONFIG_HEAP]] <dt>SQLITE_CONFIG_HEAP</dt>
- ** <dd> ^The SQLITE_CONFIG_HEAP option specifies a static memory buffer
- ** that SQLite will use for all of its dynamic memory allocation needs
- ** beyond those provided for by [SQLITE_CONFIG_SCRATCH] and
- ** [SQLITE_CONFIG_PAGECACHE].
- ** ^The SQLITE_CONFIG_HEAP option is only available if SQLite is compiled
- ** with either [SQLITE_ENABLE_MEMSYS3] or [SQLITE_ENABLE_MEMSYS5] and returns
- ** [SQLITE_ERROR] if invoked otherwise.
- ** ^There are three arguments to SQLITE_CONFIG_HEAP:
- ** An 8-byte aligned pointer to the memory,
- ** the number of bytes in the memory buffer, and the minimum allocation size.
- ** ^If the first pointer (the memory pointer) is NULL, then SQLite reverts
- ** to using its default memory allocator (the system malloc() implementation),
- ** undoing any prior invocation of [SQLITE_CONFIG_MALLOC]. ^If the
- ** memory pointer is not NULL then the alternative memory
- ** allocator is engaged to handle all of SQLites memory allocation needs.
- ** The first pointer (the memory pointer) must be aligned to an 8-byte
- ** boundary or subsequent behavior of SQLite will be undefined.
- ** The minimum allocation size is capped at 2**12. Reasonable values
- ** for the minimum allocation size are 2**5 through 2**8.</dd>
- **
- ** [[SQLITE_CONFIG_MUTEX]] <dt>SQLITE_CONFIG_MUTEX</dt>
- ** <dd> ^(The SQLITE_CONFIG_MUTEX option takes a single argument which is a
- ** pointer to an instance of the [sqlite3_mutex_methods] structure.
- ** The argument specifies alternative low-level mutex routines to be used
- ** in place the mutex routines built into SQLite.)^ ^SQLite makes a copy of
- ** the content of the [sqlite3_mutex_methods] structure before the call to
- ** [sqlite3_config()] returns. ^If SQLite is compiled with
- ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
- ** the entire mutexing subsystem is omitted from the build and hence calls to
- ** [sqlite3_config()] with the SQLITE_CONFIG_MUTEX configuration option will
- ** return [SQLITE_ERROR].</dd>
- **
- ** [[SQLITE_CONFIG_GETMUTEX]] <dt>SQLITE_CONFIG_GETMUTEX</dt>
- ** <dd> ^(The SQLITE_CONFIG_GETMUTEX option takes a single argument which
- ** is a pointer to an instance of the [sqlite3_mutex_methods] structure. The
- ** [sqlite3_mutex_methods]
- ** structure is filled with the currently defined mutex routines.)^
- ** This option can be used to overload the default mutex allocation
- ** routines with a wrapper used to track mutex usage for performance
- ** profiling or testing, for example. ^If SQLite is compiled with
- ** the [SQLITE_THREADSAFE | SQLITE_THREADSAFE=0] compile-time option then
- ** the entire mutexing subsystem is omitted from the build and hence calls to
- ** [sqlite3_config()] with the SQLITE_CONFIG_GETMUTEX configuration option will
- ** return [SQLITE_ERROR].</dd>
- **
- ** [[SQLITE_CONFIG_LOOKASIDE]] <dt>SQLITE_CONFIG_LOOKASIDE</dt>
- ** <dd> ^(The SQLITE_CONFIG_LOOKASIDE option takes two arguments that determine
- ** the default size of lookaside memory on each [database connection].
- ** The first argument is the
- ** size of each lookaside buffer slot and the second is the number of
- ** slots allocated to each database connection.)^ ^(SQLITE_CONFIG_LOOKASIDE
- ** sets the <i>default</i> lookaside size. The [SQLITE_DBCONFIG_LOOKASIDE]
- ** option to [sqlite3_db_config()] can be used to change the lookaside
- ** configuration on individual connections.)^ </dd>
- **
- ** [[SQLITE_CONFIG_PCACHE2]] <dt>SQLITE_CONFIG_PCACHE2</dt>
- ** <dd> ^(The SQLITE_CONFIG_PCACHE2 option takes a single argument which is
- ** a pointer to an [sqlite3_pcache_methods2] object. This object specifies
- ** the interface to a custom page cache implementation.)^
- ** ^SQLite makes a copy of the [sqlite3_pcache_methods2] object.</dd>
- **
- ** [[SQLITE_CONFIG_GETPCACHE2]] <dt>SQLITE_CONFIG_GETPCACHE2</dt>
- ** <dd> ^(The SQLITE_CONFIG_GETPCACHE2 option takes a single argument which
- ** is a pointer to an [sqlite3_pcache_methods2] object. SQLite copies of
- ** the current page cache implementation into that object.)^ </dd>
- **
- ** [[SQLITE_CONFIG_LOG]] <dt>SQLITE_CONFIG_LOG</dt>
- ** <dd> The SQLITE_CONFIG_LOG option is used to configure the SQLite
- ** global [error log].
- ** (^The SQLITE_CONFIG_LOG option takes two arguments: a pointer to a
- ** function with a call signature of void(*)(void*,int,const char*),
- ** and a pointer to void. ^If the function pointer is not NULL, it is
- ** invoked by [sqlite3_log()] to process each logging event. ^If the
- ** function pointer is NULL, the [sqlite3_log()] interface becomes a no-op.
- ** ^The void pointer that is the second argument to SQLITE_CONFIG_LOG is
- ** passed through as the first parameter to the application-defined logger
- ** function whenever that function is invoked. ^The second parameter to
- ** the logger function is a copy of the first parameter to the corresponding
- ** [sqlite3_log()] call and is intended to be a [result code] or an
- ** [extended result code]. ^The third parameter passed to the logger is
- ** log message after formatting via [sqlite3_snprintf()].
- ** The SQLite logging interface is not reentrant; the logger function
- ** supplied by the application must not invoke any SQLite interface.
- ** In a multi-threaded application, the application-defined logger
- ** function must be threadsafe. </dd>
- **
- ** [[SQLITE_CONFIG_URI]] <dt>SQLITE_CONFIG_URI
- ** <dd>^(The SQLITE_CONFIG_URI option takes a single argument of type int.
- ** If non-zero, then URI handling is globally enabled. If the parameter is zero,
- ** then URI handling is globally disabled.)^ ^If URI handling is globally
- ** enabled, all filenames passed to [sqlite3_open()], [sqlite3_open_v2()],
- ** [sqlite3_open16()] or
- ** specified as part of [ATTACH] commands are interpreted as URIs, regardless
- ** of whether or not the [SQLITE_OPEN_URI] flag is set when the database
- ** connection is opened. ^If it is globally disabled, filenames are
- ** only interpreted as URIs if the SQLITE_OPEN_URI flag is set when the
- ** database connection is opened. ^(By default, URI handling is globally
- ** disabled. The default value may be changed by compiling with the
- ** [SQLITE_USE_URI] symbol defined.)^
- **
- ** [[SQLITE_CONFIG_COVERING_INDEX_SCAN]] <dt>SQLITE_CONFIG_COVERING_INDEX_SCAN
- ** <dd>^The SQLITE_CONFIG_COVERING_INDEX_SCAN option takes a single integer
- ** argument which is interpreted as a boolean in order to enable or disable
- ** the use of covering indices for full table scans in the query optimizer.
- ** ^The default setting is determined
- ** by the [SQLITE_ALLOW_COVERING_INDEX_SCAN] compile-time option, or is "on"
- ** if that compile-time option is omitted.
- ** The ability to disable the use of covering indices for full table scans
- ** is because some incorrectly coded legacy applications might malfunction
- ** when the optimization is enabled. Providing the ability to
- ** disable the optimization allows the older, buggy application code to work
- ** without change even with newer versions of SQLite.
- **
- ** [[SQLITE_CONFIG_PCACHE]] [[SQLITE_CONFIG_GETPCACHE]]
- ** <dt>SQLITE_CONFIG_PCACHE and SQLITE_CONFIG_GETPCACHE
- ** <dd> These options are obsolete and should not be used by new code.
- ** They are retained for backwards compatibility but are now no-ops.
- ** </dd>
- **
- ** [[SQLITE_CONFIG_SQLLOG]]
- ** <dt>SQLITE_CONFIG_SQLLOG
- ** <dd>This option is only available if sqlite is compiled with the
- ** [SQLITE_ENABLE_SQLLOG] pre-processor macro defined. The first argument should
- ** be a pointer to a function of type void(*)(void*,sqlite3*,const char*, int).
- ** The second should be of type (void*). The callback is invoked by the library
- ** in three separate circumstances, identified by the value passed as the
- ** fourth parameter. If the fourth parameter is 0, then the database connection
- ** passed as the second argument has just been opened. The third argument
- ** points to a buffer containing the name of the main database file. If the
- ** fourth parameter is 1, then the SQL statement that the third parameter
- ** points to has just been executed. Or, if the fourth parameter is 2, then
- ** the connection being passed as the second parameter is being closed. The
- ** third parameter is passed NULL In this case. An example of using this
- ** configuration option can be seen in the "test_sqllog.c" source file in
- ** the canonical SQLite source tree.</dd>
- **
- ** [[SQLITE_CONFIG_MMAP_SIZE]]
- ** <dt>SQLITE_CONFIG_MMAP_SIZE
- ** <dd>^SQLITE_CONFIG_MMAP_SIZE takes two 64-bit integer (sqlite3_int64) values
- ** that are the default mmap size limit (the default setting for
- ** [PRAGMA mmap_size]) and the maximum allowed mmap size limit.
- ** ^The default setting can be overridden by each database connection using
- ** either the [PRAGMA mmap_size] command, or by using the
- ** [SQLITE_FCNTL_MMAP_SIZE] file control. ^(The maximum allowed mmap size
- ** will be silently truncated if necessary so that it does not exceed the
- ** compile-time maximum mmap size set by the
- ** [SQLITE_MAX_MMAP_SIZE] compile-time option.)^
- ** ^If either argument to this option is negative, then that argument is
- ** changed to its compile-time default.
- **
- ** [[SQLITE_CONFIG_WIN32_HEAPSIZE]]
- ** <dt>SQLITE_CONFIG_WIN32_HEAPSIZE
- ** <dd>^The SQLITE_CONFIG_WIN32_HEAPSIZE option is only available if SQLite is
- ** compiled for Windows with the [SQLITE_WIN32_MALLOC] pre-processor macro
- ** defined. ^SQLITE_CONFIG_WIN32_HEAPSIZE takes a 32-bit unsigned integer value
- ** that specifies the maximum size of the created heap.
- **
- ** [[SQLITE_CONFIG_PCACHE_HDRSZ]]
- ** <dt>SQLITE_CONFIG_PCACHE_HDRSZ
- ** <dd>^The SQLITE_CONFIG_PCACHE_HDRSZ option takes a single parameter which
- ** is a pointer to an integer and writes into that integer the number of extra
- ** bytes per page required for each page in [SQLITE_CONFIG_PAGECACHE].
- ** The amount of extra space required can change depending on the compiler,
- ** target platform, and SQLite version.
- **
- ** [[SQLITE_CONFIG_PMASZ]]
- ** <dt>SQLITE_CONFIG_PMASZ
- ** <dd>^The SQLITE_CONFIG_PMASZ option takes a single parameter which
- ** is an unsigned integer and sets the "Minimum PMA Size" for the multithreaded
- ** sorter to that integer. The default minimum PMA Size is set by the
- ** [SQLITE_SORTER_PMASZ] compile-time option. New threads are launched
- ** to help with sort operations when multithreaded sorting
- ** is enabled (using the [PRAGMA threads] command) and the amount of content
- ** to be sorted exceeds the page size times the minimum of the
- ** [PRAGMA cache_size] setting and this value.
- ** </dl>
- */
- #define SQLITE_CONFIG_SINGLETHREAD 1 /* nil */
- #define SQLITE_CONFIG_MULTITHREAD 2 /* nil */
- #define SQLITE_CONFIG_SERIALIZED 3 /* nil */
- #define SQLITE_CONFIG_MALLOC 4 /* sqlite3_mem_methods* */
- #define SQLITE_CONFIG_GETMALLOC 5 /* sqlite3_mem_methods* */
- #define SQLITE_CONFIG_SCRATCH 6 /* void*, int sz, int N */
- #define SQLITE_CONFIG_PAGECACHE 7 /* void*, int sz, int N */
- #define SQLITE_CONFIG_HEAP 8 /* void*, int nByte, int min */
- #define SQLITE_CONFIG_MEMSTATUS 9 /* boolean */
- #define SQLITE_CONFIG_MUTEX 10 /* sqlite3_mutex_methods* */
- #define SQLITE_CONFIG_GETMUTEX 11 /* sqlite3_mutex_methods* */
- /* previously SQLITE_CONFIG_CHUNKALLOC 12 which is now unused. */
- #define SQLITE_CONFIG_LOOKASIDE 13 /* int int */
- #define SQLITE_CONFIG_PCACHE 14 /* no-op */
- #define SQLITE_CONFIG_GETPCACHE 15 /* no-op */
- #define SQLITE_CONFIG_LOG 16 /* xFunc, void* */
- #define SQLITE_CONFIG_URI 17 /* int */
- #define SQLITE_CONFIG_PCACHE2 18 /* sqlite3_pcache_methods2* */
- #define SQLITE_CONFIG_GETPCACHE2 19 /* sqlite3_pcache_methods2* */
- #define SQLITE_CONFIG_COVERING_INDEX_SCAN 20 /* int */
- #define SQLITE_CONFIG_SQLLOG 21 /* xSqllog, void* */
- #define SQLITE_CONFIG_MMAP_SIZE 22 /* sqlite3_int64, sqlite3_int64 */
- #define SQLITE_CONFIG_WIN32_HEAPSIZE 23 /* int nByte */
- #define SQLITE_CONFIG_PCACHE_HDRSZ 24 /* int *psz */
- #define SQLITE_CONFIG_PMASZ 25 /* unsigned int szPma */
- /*
- ** CAPI3REF: Database Connection Configuration Options
- **
- ** These constants are the available integer configuration options that
- ** can be passed as the second argument to the [sqlite3_db_config()] interface.
- **
- ** New configuration options may be added in future releases of SQLite.
- ** Existing configuration options might be discontinued. Applications
- ** should check the return code from [sqlite3_db_config()] to make sure that
- ** the call worked. ^The [sqlite3_db_config()] interface will return a
- ** non-zero [error code] if a discontinued or unsupported configuration option
- ** is invoked.
- **
- ** <dl>
- ** <dt>SQLITE_DBCONFIG_LOOKASIDE</dt>
- ** <dd> ^This option takes three additional arguments that determine the
- ** [lookaside memory allocator] configuration for the [database connection].
- ** ^The first argument (the third parameter to [sqlite3_db_config()] is a
- ** pointer to a memory buffer to use for lookaside memory.
- ** ^The first argument after the SQLITE_DBCONFIG_LOOKASIDE verb
- ** may be NULL in which case SQLite will allocate the
- ** lookaside buffer itself using [sqlite3_malloc()]. ^The second argument is the
- ** size of each lookaside buffer slot. ^The third argument is the number of
- ** slots. The size of the buffer in the first argument must be greater than
- ** or equal to the product of the second and third arguments. The buffer
- ** must be aligned to an 8-byte boundary. ^If the second argument to
- ** SQLITE_DBCONFIG_LOOKASIDE is not a multiple of 8, it is internally
- ** rounded down to the next smaller multiple of 8. ^(The lookaside memory
- ** configuration for a database connection can only be changed when that
- ** connection is not currently using lookaside memory, or in other words
- ** when the "current value" returned by
- ** [sqlite3_db_status](D,[SQLITE_CONFIG_LOOKASIDE],...) is zero.
- ** Any attempt to change the lookaside memory configuration when lookaside
- ** memory is in use leaves the configuration unchanged and returns
- ** [SQLITE_BUSY].)^</dd>
- **
- ** <dt>SQLITE_DBCONFIG_ENABLE_FKEY</dt>
- ** <dd> ^This option is used to enable or disable the enforcement of
- ** [foreign key constraints]. There should be two additional arguments.
- ** The first argument is an integer which is 0 to disable FK enforcement,
- ** positive to enable FK enforcement or negative to leave FK enforcement
- ** unchanged. The second parameter is a pointer to an integer into which
- ** is written 0 or 1 to indicate whether FK enforcement is off or on
- ** following this call. The second parameter may be a NULL pointer, in
- ** which case the FK enforcement setting is not reported back. </dd>
- **
- ** <dt>SQLITE_DBCONFIG_ENABLE_TRIGGER</dt>
- ** <dd> ^This option is used to enable or disable [CREATE TRIGGER | triggers].
- ** There should be two additional arguments.
- ** The first argument is an integer which is 0 to disable triggers,
- ** positive to enable triggers or negative to leave the setting unchanged.
- ** The second parameter is a pointer to an integer into which
- ** is written 0 or 1 to indicate whether triggers are disabled or enabled
- ** following this call. The second parameter may be a NULL pointer, in
- ** which case the trigger setting is not reported back. </dd>
- **
- ** </dl>
- */
- #define SQLITE_DBCONFIG_LOOKASIDE 1001 /* void* int int */
- #define SQLITE_DBCONFIG_ENABLE_FKEY 1002 /* int int* */
- #define SQLITE_DBCONFIG_ENABLE_TRIGGER 1003 /* int int* */
- /*
- ** CAPI3REF: Enable Or Disable Extended Result Codes
- ** METHOD: sqlite3
- **
- ** ^The sqlite3_extended_result_codes() routine enables or disables the
- ** [extended result codes] feature of SQLite. ^The extended result
- ** codes are disabled by default for historical compatibility.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_extended_result_codes(sqlite3*, int onoff);
- /*
- ** CAPI3REF: Last Insert Rowid
- ** METHOD: sqlite3
- **
- ** ^Each entry in most SQLite tables (except for [WITHOUT ROWID] tables)
- ** has a unique 64-bit signed
- ** integer key called the [ROWID | "rowid"]. ^The rowid is always available
- ** as an undeclared column named ROWID, OID, or _ROWID_ as long as those
- ** names are not also used by explicitly declared columns. ^If
- ** the table has a column of type [INTEGER PRIMARY KEY] then that column
- ** is another alias for the rowid.
- **
- ** ^The sqlite3_last_insert_rowid(D) interface returns the [rowid] of the
- ** most recent successful [INSERT] into a rowid table or [virtual table]
- ** on database connection D.
- ** ^Inserts into [WITHOUT ROWID] tables are not recorded.
- ** ^If no successful [INSERT]s into rowid tables
- ** have ever occurred on the database connection D,
- ** then sqlite3_last_insert_rowid(D) returns zero.
- **
- ** ^(If an [INSERT] occurs within a trigger or within a [virtual table]
- ** method, then this routine will return the [rowid] of the inserted
- ** row as long as the trigger or virtual table method is running.
- ** But once the trigger or virtual table method ends, the value returned
- ** by this routine reverts to what it was before the trigger or virtual
- ** table method began.)^
- **
- ** ^An [INSERT] that fails due to a constraint violation is not a
- ** successful [INSERT] and does not change the value returned by this
- ** routine. ^Thus INSERT OR FAIL, INSERT OR IGNORE, INSERT OR ROLLBACK,
- ** and INSERT OR ABORT make no changes to the return value of this
- ** routine when their insertion fails. ^(When INSERT OR REPLACE
- ** encounters a constraint violation, it does not fail. The
- ** INSERT continues to completion after deleting rows that caused
- ** the constraint problem so INSERT OR REPLACE will always change
- ** the return value of this interface.)^
- **
- ** ^For the purposes of this routine, an [INSERT] is considered to
- ** be successful even if it is subsequently rolled back.
- **
- ** This function is accessible to SQL statements via the
- ** [last_insert_rowid() SQL function].
- **
- ** If a separate thread performs a new [INSERT] on the same
- ** database connection while the [sqlite3_last_insert_rowid()]
- ** function is running and thus changes the last insert [rowid],
- ** then the value returned by [sqlite3_last_insert_rowid()] is
- ** unpredictable and might not equal either the old or the new
- ** last insert [rowid].
- */
- SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_last_insert_rowid(sqlite3*);
- /*
- ** CAPI3REF: Count The Number Of Rows Modified
- ** METHOD: sqlite3
- **
- ** ^This function returns the number of rows modified, inserted or
- ** deleted by the most recently completed INSERT, UPDATE or DELETE
- ** statement on the database connection specified by the only parameter.
- ** ^Executing any other type of SQL statement does not modify the value
- ** returned by this function.
- **
- ** ^Only changes made directly by the INSERT, UPDATE or DELETE statement are
- ** considered - auxiliary changes caused by [CREATE TRIGGER | triggers],
- ** [foreign key actions] or [REPLACE] constraint resolution are not counted.
- **
- ** Changes to a view that are intercepted by
- ** [INSTEAD OF trigger | INSTEAD OF triggers] are not counted. ^The value
- ** returned by sqlite3_changes() immediately after an INSERT, UPDATE or
- ** DELETE statement run on a view is always zero. Only changes made to real
- ** tables are counted.
- **
- ** Things are more complicated if the sqlite3_changes() function is
- ** executed while a trigger program is running. This may happen if the
- ** program uses the [changes() SQL function], or if some other callback
- ** function invokes sqlite3_changes() directly. Essentially:
- **
- ** <ul>
- ** <li> ^(Before entering a trigger program the value returned by
- ** sqlite3_changes() function is saved. After the trigger program
- ** has finished, the original value is restored.)^
- **
- ** <li> ^(Within a trigger program each INSERT, UPDATE and DELETE
- ** statement sets the value returned by sqlite3_changes()
- ** upon completion as normal. Of course, this value will not include
- ** any changes performed by sub-triggers, as the sqlite3_changes()
- ** value will be saved and restored after each sub-trigger has run.)^
- ** </ul>
- **
- ** ^This means that if the changes() SQL function (or similar) is used
- ** by the first INSERT, UPDATE or DELETE statement within a trigger, it
- ** returns the value as set when the calling statement began executing.
- ** ^If it is used by the second or subsequent such statement within a trigger
- ** program, the value returned reflects the number of rows modified by the
- ** previous INSERT, UPDATE or DELETE statement within the same trigger.
- **
- ** See also the [sqlite3_total_changes()] interface, the
- ** [count_changes pragma], and the [changes() SQL function].
- **
- ** If a separate thread makes changes on the same database connection
- ** while [sqlite3_changes()] is running then the value returned
- ** is unpredictable and not meaningful.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_changes(sqlite3*);
- /*
- ** CAPI3REF: Total Number Of Rows Modified
- ** METHOD: sqlite3
- **
- ** ^This function returns the total number of rows inserted, modified or
- ** deleted by all [INSERT], [UPDATE] or [DELETE] statements completed
- ** since the database connection was opened, including those executed as
- ** part of trigger programs. ^Executing any other type of SQL statement
- ** does not affect the value returned by sqlite3_total_changes().
- **
- ** ^Changes made as part of [foreign key actions] are included in the
- ** count, but those made as part of REPLACE constraint resolution are
- ** not. ^Changes to a view that are intercepted by INSTEAD OF triggers
- ** are not counted.
- **
- ** See also the [sqlite3_changes()] interface, the
- ** [count_changes pragma], and the [total_changes() SQL function].
- **
- ** If a separate thread makes changes on the same database connection
- ** while [sqlite3_total_changes()] is running then the value
- ** returned is unpredictable and not meaningful.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_total_changes(sqlite3*);
- /*
- ** CAPI3REF: Interrupt A Long-Running Query
- ** METHOD: sqlite3
- **
- ** ^This function causes any pending database operation to abort and
- ** return at its earliest opportunity. This routine is typically
- ** called in response to a user action such as pressing "Cancel"
- ** or Ctrl-C where the user wants a long query operation to halt
- ** immediately.
- **
- ** ^It is safe to call this routine from a thread different from the
- ** thread that is currently running the database operation. But it
- ** is not safe to call this routine with a [database connection] that
- ** is closed or might close before sqlite3_interrupt() returns.
- **
- ** ^If an SQL operation is very nearly finished at the time when
- ** sqlite3_interrupt() is called, then it might not have an opportunity
- ** to be interrupted and might continue to completion.
- **
- ** ^An SQL operation that is interrupted will return [SQLITE_INTERRUPT].
- ** ^If the interrupted SQL operation is an INSERT, UPDATE, or DELETE
- ** that is inside an explicit transaction, then the entire transaction
- ** will be rolled back automatically.
- **
- ** ^The sqlite3_interrupt(D) call is in effect until all currently running
- ** SQL statements on [database connection] D complete. ^Any new SQL statements
- ** that are started after the sqlite3_interrupt() call and before the
- ** running statements reaches zero are interrupted as if they had been
- ** running prior to the sqlite3_interrupt() call. ^New SQL statements
- ** that are started after the running statement count reaches zero are
- ** not effected by the sqlite3_interrupt().
- ** ^A call to sqlite3_interrupt(D) that occurs when there are no running
- ** SQL statements is a no-op and has no effect on SQL statements
- ** that are started after the sqlite3_interrupt() call returns.
- **
- ** If the database connection closes while [sqlite3_interrupt()]
- ** is running then bad things will likely happen.
- */
- SQLITE_API void SQLITE_STDCALL sqlite3_interrupt(sqlite3*);
- /*
- ** CAPI3REF: Determine If An SQL Statement Is Complete
- **
- ** These routines are useful during command-line input to determine if the
- ** currently entered text seems to form a complete SQL statement or
- ** if additional input is needed before sending the text into
- ** SQLite for parsing. ^These routines return 1 if the input string
- ** appears to be a complete SQL statement. ^A statement is judged to be
- ** complete if it ends with a semicolon token and is not a prefix of a
- ** well-formed CREATE TRIGGER statement. ^Semicolons that are embedded within
- ** string literals or quoted identifier names or comments are not
- ** independent tokens (they are part of the token in which they are
- ** embedded) and thus do not count as a statement terminator. ^Whitespace
- ** and comments that follow the final semicolon are ignored.
- **
- ** ^These routines return 0 if the statement is incomplete. ^If a
- ** memory allocation fails, then SQLITE_NOMEM is returned.
- **
- ** ^These routines do not parse the SQL statements thus
- ** will not detect syntactically incorrect SQL.
- **
- ** ^(If SQLite has not been initialized using [sqlite3_initialize()] prior
- ** to invoking sqlite3_complete16() then sqlite3_initialize() is invoked
- ** automatically by sqlite3_complete16(). If that initialization fails,
- ** then the return value from sqlite3_complete16() will be non-zero
- ** regardless of whether or not the input SQL is complete.)^
- **
- ** The input to [sqlite3_complete()] must be a zero-terminated
- ** UTF-8 string.
- **
- ** The input to [sqlite3_complete16()] must be a zero-terminated
- ** UTF-16 string in native byte order.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_complete(const char *sql);
- SQLITE_API int SQLITE_STDCALL sqlite3_complete16(const void *sql);
- /*
- ** CAPI3REF: Register A Callback To Handle SQLITE_BUSY Errors
- ** KEYWORDS: {busy-handler callback} {busy handler}
- ** METHOD: sqlite3
- **
- ** ^The sqlite3_busy_handler(D,X,P) routine sets a callback function X
- ** that might be invoked with argument P whenever
- ** an attempt is made to access a database table associated with
- ** [database connection] D when another thread
- ** or process has the table locked.
- ** The sqlite3_busy_handler() interface is used to implement
- ** [sqlite3_busy_timeout()] and [PRAGMA busy_timeout].
- **
- ** ^If the busy callback is NULL, then [SQLITE_BUSY]
- ** is returned immediately upon encountering the lock. ^If the busy callback
- ** is not NULL, then the callback might be invoked with two arguments.
- **
- ** ^The first argument to the busy handler is a copy of the void* pointer which
- ** is the third argument to sqlite3_busy_handler(). ^The second argument to
- ** the busy handler callback is the number of times that the busy handler has
- ** been invoked previously for the same locking event. ^If the
- ** busy callback returns 0, then no additional attempts are made to
- ** access the database and [SQLITE_BUSY] is returned
- ** to the application.
- ** ^If the callback returns non-zero, then another attempt
- ** is made to access the database and the cycle repeats.
- **
- ** The presence of a busy handler does not guarantee that it will be invoked
- ** when there is lock contention. ^If SQLite determines that invoking the busy
- ** handler could result in a deadlock, it will go ahead and return [SQLITE_BUSY]
- ** to the application instead of invoking the
- ** busy handler.
- ** Consider a scenario where one process is holding a read lock that
- ** it is trying to promote to a reserved lock and
- ** a second process is holding a reserved lock that it is trying
- ** to promote to an exclusive lock. The first process cannot proceed
- ** because it is blocked by the second and the second process cannot
- ** proceed because it is blocked by the first. If both processes
- ** invoke the busy handlers, neither will make any progress. Therefore,
- ** SQLite returns [SQLITE_BUSY] for the first process, hoping that this
- ** will induce the first process to release its read lock and allow
- ** the second process to proceed.
- **
- ** ^The default busy callback is NULL.
- **
- ** ^(There can only be a single busy handler defined for each
- ** [database connection]. Setting a new busy handler clears any
- ** previously set handler.)^ ^Note that calling [sqlite3_busy_timeout()]
- ** or evaluating [PRAGMA busy_timeout=N] will change the
- ** busy handler and thus clear any previously set busy handler.
- **
- ** The busy callback should not take any actions which modify the
- ** database connection that invoked the busy handler. In other words,
- ** the busy handler is not reentrant. Any such actions
- ** result in undefined behavior.
- **
- ** A busy handler must not close the database connection
- ** or [prepared statement] that invoked the busy handler.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_busy_handler(sqlite3*, int(*)(void*,int), void*);
- /*
- ** CAPI3REF: Set A Busy Timeout
- ** METHOD: sqlite3
- **
- ** ^This routine sets a [sqlite3_busy_handler | busy handler] that sleeps
- ** for a specified amount of time when a table is locked. ^The handler
- ** will sleep multiple times until at least "ms" milliseconds of sleeping
- ** have accumulated. ^After at least "ms" milliseconds of sleeping,
- ** the handler returns 0 which causes [sqlite3_step()] to return
- ** [SQLITE_BUSY].
- **
- ** ^Calling this routine with an argument less than or equal to zero
- ** turns off all busy handlers.
- **
- ** ^(There can only be a single busy handler for a particular
- ** [database connection] at any given moment. If another busy handler
- ** was defined (using [sqlite3_busy_handler()]) prior to calling
- ** this routine, that other busy handler is cleared.)^
- **
- ** See also: [PRAGMA busy_timeout]
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_busy_timeout(sqlite3*, int ms);
- /*
- ** CAPI3REF: Convenience Routines For Running Queries
- ** METHOD: sqlite3
- **
- ** This is a legacy interface that is preserved for backwards compatibility.
- ** Use of this interface is not recommended.
- **
- ** Definition: A <b>result table</b> is memory data structure created by the
- ** [sqlite3_get_table()] interface. A result table records the
- ** complete query results from one or more queries.
- **
- ** The table conceptually has a number of rows and columns. But
- ** these numbers are not part of the result table itself. These
- ** numbers are obtained separately. Let N be the number of rows
- ** and M be the number of columns.
- **
- ** A result table is an array of pointers to zero-terminated UTF-8 strings.
- ** There are (N+1)*M elements in the array. The first M pointers point
- ** to zero-terminated strings that contain the names of the columns.
- ** The remaining entries all point to query results. NULL values result
- ** in NULL pointers. All other values are in their UTF-8 zero-terminated
- ** string representation as returned by [sqlite3_column_text()].
- **
- ** A result table might consist of one or more memory allocations.
- ** It is not safe to pass a result table directly to [sqlite3_free()].
- ** A result table should be deallocated using [sqlite3_free_table()].
- **
- ** ^(As an example of the result table format, suppose a query result
- ** is as follows:
- **
- ** <blockquote><pre>
- ** Name | Age
- ** -----------------------
- ** Alice | 43
- ** Bob | 28
- ** Cindy | 21
- ** </pre></blockquote>
- **
- ** There are two column (M==2) and three rows (N==3). Thus the
- ** result table has 8 entries. Suppose the result table is stored
- ** in an array names azResult. Then azResult holds this content:
- **
- ** <blockquote><pre>
- ** azResult[0] = "Name";
- ** azResult[1] = "Age";
- ** azResult[2] = "Alice";
- ** azResult[3] = "43";
- ** azResult[4] = "Bob";
- ** azResult[5] = "28";
- ** azResult[6] = "Cindy";
- ** azResult[7] = "21";
- ** </pre></blockquote>)^
- **
- ** ^The sqlite3_get_table() function evaluates one or more
- ** semicolon-separated SQL statements in the zero-terminated UTF-8
- ** string of its 2nd parameter and returns a result table to the
- ** pointer given in its 3rd parameter.
- **
- ** After the application has finished with the result from sqlite3_get_table(),
- ** it must pass the result table pointer to sqlite3_free_table() in order to
- ** release the memory that was malloced. Because of the way the
- ** [sqlite3_malloc()] happens within sqlite3_get_table(), the calling
- ** function must not try to call [sqlite3_free()] directly. Only
- ** [sqlite3_free_table()] is able to release the memory properly and safely.
- **
- ** The sqlite3_get_table() interface is implemented as a wrapper around
- ** [sqlite3_exec()]. The sqlite3_get_table() routine does not have access
- ** to any internal data structures of SQLite. It uses only the public
- ** interface defined here. As a consequence, errors that occur in the
- ** wrapper layer outside of the internal [sqlite3_exec()] call are not
- ** reflected in subsequent calls to [sqlite3_errcode()] or
- ** [sqlite3_errmsg()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_get_table(
- sqlite3 *db, /* An open database */
- const char *zSql, /* SQL to be evaluated */
- char ***pazResult, /* Results of the query */
- int *pnRow, /* Number of result rows written here */
- int *pnColumn, /* Number of result columns written here */
- char **pzErrmsg /* Error msg written here */
- );
- SQLITE_API void SQLITE_STDCALL sqlite3_free_table(char **result);
- /*
- ** CAPI3REF: Formatted String Printing Functions
- **
- ** These routines are work-alikes of the "printf()" family of functions
- ** from the standard C library.
- ** These routines understand most of the common K&R formatting options,
- ** plus some additional non-standard formats, detailed below.
- ** Note that some of the more obscure formatting options from recent
- ** C-library standards are omitted from this implementation.
- **
- ** ^The sqlite3_mprintf() and sqlite3_vmprintf() routines write their
- ** results into memory obtained from [sqlite3_malloc()].
- ** The strings returned by these two routines should be
- ** released by [sqlite3_free()]. ^Both routines return a
- ** NULL pointer if [sqlite3_malloc()] is unable to allocate enough
- ** memory to hold the resulting string.
- **
- ** ^(The sqlite3_snprintf() routine is similar to "snprintf()" from
- ** the standard C library. The result is written into the
- ** buffer supplied as the second parameter whose size is given by
- ** the first parameter. Note that the order of the
- ** first two parameters is reversed from snprintf().)^ This is an
- ** historical accident that cannot be fixed without breaking
- ** backwards compatibility. ^(Note also that sqlite3_snprintf()
- ** returns a pointer to its buffer instead of the number of
- ** characters actually written into the buffer.)^ We admit that
- ** the number of characters written would be a more useful return
- ** value but we cannot change the implementation of sqlite3_snprintf()
- ** now without breaking compatibility.
- **
- ** ^As long as the buffer size is greater than zero, sqlite3_snprintf()
- ** guarantees that the buffer is always zero-terminated. ^The first
- ** parameter "n" is the total size of the buffer, including space for
- ** the zero terminator. So the longest string that can be completely
- ** written will be n-1 characters.
- **
- ** ^The sqlite3_vsnprintf() routine is a varargs version of sqlite3_snprintf().
- **
- ** These routines all implement some additional formatting
- ** options that are useful for constructing SQL statements.
- ** All of the usual printf() formatting options apply. In addition, there
- ** is are "%q", "%Q", "%w" and "%z" options.
- **
- ** ^(The %q option works like %s in that it substitutes a nul-terminated
- ** string from the argument list. But %q also doubles every '\'' character.
- ** %q is designed for use inside a string literal.)^ By doubling each '\''
- ** character it escapes that character and allows it to be inserted into
- ** the string.
- **
- ** For example, assume the string variable zText contains text as follows:
- **
- ** <blockquote><pre>
- ** char *zText = "It's a happy day!";
- ** </pre></blockquote>
- **
- ** One can use this text in an SQL statement as follows:
- **
- ** <blockquote><pre>
- ** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES('%q')", zText);
- ** sqlite3_exec(db, zSQL, 0, 0, 0);
- ** sqlite3_free(zSQL);
- ** </pre></blockquote>
- **
- ** Because the %q format string is used, the '\'' character in zText
- ** is escaped and the SQL generated is as follows:
- **
- ** <blockquote><pre>
- ** INSERT INTO table1 VALUES('It''s a happy day!')
- ** </pre></blockquote>
- **
- ** This is correct. Had we used %s instead of %q, the generated SQL
- ** would have looked like this:
- **
- ** <blockquote><pre>
- ** INSERT INTO table1 VALUES('It's a happy day!');
- ** </pre></blockquote>
- **
- ** This second example is an SQL syntax error. As a general rule you should
- ** always use %q instead of %s when inserting text into a string literal.
- **
- ** ^(The %Q option works like %q except it also adds single quotes around
- ** the outside of the total string. Additionally, if the parameter in the
- ** argument list is a NULL pointer, %Q substitutes the text "NULL" (without
- ** single quotes).)^ So, for example, one could say:
- **
- ** <blockquote><pre>
- ** char *zSQL = sqlite3_mprintf("INSERT INTO table VALUES(%Q)", zText);
- ** sqlite3_exec(db, zSQL, 0, 0, 0);
- ** sqlite3_free(zSQL);
- ** </pre></blockquote>
- **
- ** The code above will render a correct SQL statement in the zSQL
- ** variable even if the zText variable is a NULL pointer.
- **
- ** ^(The "%w" formatting option is like "%q" except that it expects to
- ** be contained within double-quotes instead of single quotes, and it
- ** escapes the double-quote character instead of the single-quote
- ** character.)^ The "%w" formatting option is intended for safely inserting
- ** table and column names into a constructed SQL statement.
- **
- ** ^(The "%z" formatting option works like "%s" but with the
- ** addition that after the string has been read and copied into
- ** the result, [sqlite3_free()] is called on the input string.)^
- */
- SQLITE_API char *SQLITE_CDECL sqlite3_mprintf(const char*,...);
- SQLITE_API char *SQLITE_STDCALL sqlite3_vmprintf(const char*, va_list);
- SQLITE_API char *SQLITE_CDECL sqlite3_snprintf(int,char*,const char*, ...);
- SQLITE_API char *SQLITE_STDCALL sqlite3_vsnprintf(int,char*,const char*, va_list);
- /*
- ** CAPI3REF: Memory Allocation Subsystem
- **
- ** The SQLite core uses these three routines for all of its own
- ** internal memory allocation needs. "Core" in the previous sentence
- ** does not include operating-system specific VFS implementation. The
- ** Windows VFS uses native malloc() and free() for some operations.
- **
- ** ^The sqlite3_malloc() routine returns a pointer to a block
- ** of memory at least N bytes in length, where N is the parameter.
- ** ^If sqlite3_malloc() is unable to obtain sufficient free
- ** memory, it returns a NULL pointer. ^If the parameter N to
- ** sqlite3_malloc() is zero or negative then sqlite3_malloc() returns
- ** a NULL pointer.
- **
- ** ^The sqlite3_malloc64(N) routine works just like
- ** sqlite3_malloc(N) except that N is an unsigned 64-bit integer instead
- ** of a signed 32-bit integer.
- **
- ** ^Calling sqlite3_free() with a pointer previously returned
- ** by sqlite3_malloc() or sqlite3_realloc() releases that memory so
- ** that it might be reused. ^The sqlite3_free() routine is
- ** a no-op if is called with a NULL pointer. Passing a NULL pointer
- ** to sqlite3_free() is harmless. After being freed, memory
- ** should neither be read nor written. Even reading previously freed
- ** memory might result in a segmentation fault or other severe error.
- ** Memory corruption, a segmentation fault, or other severe error
- ** might result if sqlite3_free() is called with a non-NULL pointer that
- ** was not obtained from sqlite3_malloc() or sqlite3_realloc().
- **
- ** ^The sqlite3_realloc(X,N) interface attempts to resize a
- ** prior memory allocation X to be at least N bytes.
- ** ^If the X parameter to sqlite3_realloc(X,N)
- ** is a NULL pointer then its behavior is identical to calling
- ** sqlite3_malloc(N).
- ** ^If the N parameter to sqlite3_realloc(X,N) is zero or
- ** negative then the behavior is exactly the same as calling
- ** sqlite3_free(X).
- ** ^sqlite3_realloc(X,N) returns a pointer to a memory allocation
- ** of at least N bytes in size or NULL if insufficient memory is available.
- ** ^If M is the size of the prior allocation, then min(N,M) bytes
- ** of the prior allocation are copied into the beginning of buffer returned
- ** by sqlite3_realloc(X,N) and the prior allocation is freed.
- ** ^If sqlite3_realloc(X,N) returns NULL and N is positive, then the
- ** prior allocation is not freed.
- **
- ** ^The sqlite3_realloc64(X,N) interfaces works the same as
- ** sqlite3_realloc(X,N) except that N is a 64-bit unsigned integer instead
- ** of a 32-bit signed integer.
- **
- ** ^If X is a memory allocation previously obtained from sqlite3_malloc(),
- ** sqlite3_malloc64(), sqlite3_realloc(), or sqlite3_realloc64(), then
- ** sqlite3_msize(X) returns the size of that memory allocation in bytes.
- ** ^The value returned by sqlite3_msize(X) might be larger than the number
- ** of bytes requested when X was allocated. ^If X is a NULL pointer then
- ** sqlite3_msize(X) returns zero. If X points to something that is not
- ** the beginning of memory allocation, or if it points to a formerly
- ** valid memory allocation that has now been freed, then the behavior
- ** of sqlite3_msize(X) is undefined and possibly harmful.
- **
- ** ^The memory returned by sqlite3_malloc(), sqlite3_realloc(),
- ** sqlite3_malloc64(), and sqlite3_realloc64()
- ** is always aligned to at least an 8 byte boundary, or to a
- ** 4 byte boundary if the [SQLITE_4_BYTE_ALIGNED_MALLOC] compile-time
- ** option is used.
- **
- ** In SQLite version 3.5.0 and 3.5.1, it was possible to define
- ** the SQLITE_OMIT_MEMORY_ALLOCATION which would cause the built-in
- ** implementation of these routines to be omitted. That capability
- ** is no longer provided. Only built-in memory allocators can be used.
- **
- ** Prior to SQLite version 3.7.10, the Windows OS interface layer called
- ** the system malloc() and free() directly when converting
- ** filenames between the UTF-8 encoding used by SQLite
- ** and whatever filename encoding is used by the particular Windows
- ** installation. Memory allocation errors were detected, but
- ** they were reported back as [SQLITE_CANTOPEN] or
- ** [SQLITE_IOERR] rather than [SQLITE_NOMEM].
- **
- ** The pointer arguments to [sqlite3_free()] and [sqlite3_realloc()]
- ** must be either NULL or else pointers obtained from a prior
- ** invocation of [sqlite3_malloc()] or [sqlite3_realloc()] that have
- ** not yet been released.
- **
- ** The application must not read or write any part of
- ** a block of memory after it has been released using
- ** [sqlite3_free()] or [sqlite3_realloc()].
- */
- SQLITE_API void *SQLITE_STDCALL sqlite3_malloc(int);
- SQLITE_API void *SQLITE_STDCALL sqlite3_malloc64(sqlite3_uint64);
- SQLITE_API void *SQLITE_STDCALL sqlite3_realloc(void*, int);
- SQLITE_API void *SQLITE_STDCALL sqlite3_realloc64(void*, sqlite3_uint64);
- SQLITE_API void SQLITE_STDCALL sqlite3_free(void*);
- SQLITE_API sqlite3_uint64 SQLITE_STDCALL sqlite3_msize(void*);
- /*
- ** CAPI3REF: Memory Allocator Statistics
- **
- ** SQLite provides these two interfaces for reporting on the status
- ** of the [sqlite3_malloc()], [sqlite3_free()], and [sqlite3_realloc()]
- ** routines, which form the built-in memory allocation subsystem.
- **
- ** ^The [sqlite3_memory_used()] routine returns the number of bytes
- ** of memory currently outstanding (malloced but not freed).
- ** ^The [sqlite3_memory_highwater()] routine returns the maximum
- ** value of [sqlite3_memory_used()] since the high-water mark
- ** was last reset. ^The values returned by [sqlite3_memory_used()] and
- ** [sqlite3_memory_highwater()] include any overhead
- ** added by SQLite in its implementation of [sqlite3_malloc()],
- ** but not overhead added by the any underlying system library
- ** routines that [sqlite3_malloc()] may call.
- **
- ** ^The memory high-water mark is reset to the current value of
- ** [sqlite3_memory_used()] if and only if the parameter to
- ** [sqlite3_memory_highwater()] is true. ^The value returned
- ** by [sqlite3_memory_highwater(1)] is the high-water mark
- ** prior to the reset.
- */
- SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_memory_used(void);
- SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_memory_highwater(int resetFlag);
- /*
- ** CAPI3REF: Pseudo-Random Number Generator
- **
- ** SQLite contains a high-quality pseudo-random number generator (PRNG) used to
- ** select random [ROWID | ROWIDs] when inserting new records into a table that
- ** already uses the largest possible [ROWID]. The PRNG is also used for
- ** the build-in random() and randomblob() SQL functions. This interface allows
- ** applications to access the same PRNG for other purposes.
- **
- ** ^A call to this routine stores N bytes of randomness into buffer P.
- ** ^The P parameter can be a NULL pointer.
- **
- ** ^If this routine has not been previously called or if the previous
- ** call had N less than one or a NULL pointer for P, then the PRNG is
- ** seeded using randomness obtained from the xRandomness method of
- ** the default [sqlite3_vfs] object.
- ** ^If the previous call to this routine had an N of 1 or more and a
- ** non-NULL P then the pseudo-randomness is generated
- ** internally and without recourse to the [sqlite3_vfs] xRandomness
- ** method.
- */
- SQLITE_API void SQLITE_STDCALL sqlite3_randomness(int N, void *P);
- /*
- ** CAPI3REF: Compile-Time Authorization Callbacks
- ** METHOD: sqlite3
- **
- ** ^This routine registers an authorizer callback with a particular
- ** [database connection], supplied in the first argument.
- ** ^The authorizer callback is invoked as SQL statements are being compiled
- ** by [sqlite3_prepare()] or its variants [sqlite3_prepare_v2()],
- ** [sqlite3_prepare16()] and [sqlite3_prepare16_v2()]. ^At various
- ** points during the compilation process, as logic is being created
- ** to perform various actions, the authorizer callback is invoked to
- ** see if those actions are allowed. ^The authorizer callback should
- ** return [SQLITE_OK] to allow the action, [SQLITE_IGNORE] to disallow the
- ** specific action but allow the SQL statement to continue to be
- ** compiled, or [SQLITE_DENY] to cause the entire SQL statement to be
- ** rejected with an error. ^If the authorizer callback returns
- ** any value other than [SQLITE_IGNORE], [SQLITE_OK], or [SQLITE_DENY]
- ** then the [sqlite3_prepare_v2()] or equivalent call that triggered
- ** the authorizer will fail with an error message.
- **
- ** When the callback returns [SQLITE_OK], that means the operation
- ** requested is ok. ^When the callback returns [SQLITE_DENY], the
- ** [sqlite3_prepare_v2()] or equivalent call that triggered the
- ** authorizer will fail with an error message explaining that
- ** access is denied.
- **
- ** ^The first parameter to the authorizer callback is a copy of the third
- ** parameter to the sqlite3_set_authorizer() interface. ^The second parameter
- ** to the callback is an integer [SQLITE_COPY | action code] that specifies
- ** the particular action to be authorized. ^The third through sixth parameters
- ** to the callback are zero-terminated strings that contain additional
- ** details about the action to be authorized.
- **
- ** ^If the action code is [SQLITE_READ]
- ** and the callback returns [SQLITE_IGNORE] then the
- ** [prepared statement] statement is constructed to substitute
- ** a NULL value in place of the table column that would have
- ** been read if [SQLITE_OK] had been returned. The [SQLITE_IGNORE]
- ** return can be used to deny an untrusted user access to individual
- ** columns of a table.
- ** ^If the action code is [SQLITE_DELETE] and the callback returns
- ** [SQLITE_IGNORE] then the [DELETE] operation proceeds but the
- ** [truncate optimization] is disabled and all rows are deleted individually.
- **
- ** An authorizer is used when [sqlite3_prepare | preparing]
- ** SQL statements from an untrusted source, to ensure that the SQL statements
- ** do not try to access data they are not allowed to see, or that they do not
- ** try to execute malicious statements that damage the database. For
- ** example, an application may allow a user to enter arbitrary
- ** SQL queries for evaluation by a database. But the application does
- ** not want the user to be able to make arbitrary changes to the
- ** database. An authorizer could then be put in place while the
- ** user-entered SQL is being [sqlite3_prepare | prepared] that
- ** disallows everything except [SELECT] statements.
- **
- ** Applications that need to process SQL from untrusted sources
- ** might also consider lowering resource limits using [sqlite3_limit()]
- ** and limiting database size using the [max_page_count] [PRAGMA]
- ** in addition to using an authorizer.
- **
- ** ^(Only a single authorizer can be in place on a database connection
- ** at a time. Each call to sqlite3_set_authorizer overrides the
- ** previous call.)^ ^Disable the authorizer by installing a NULL callback.
- ** The authorizer is disabled by default.
- **
- ** The authorizer callback must not do anything that will modify
- ** the database connection that invoked the authorizer callback.
- ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
- ** database connections for the meaning of "modify" in this paragraph.
- **
- ** ^When [sqlite3_prepare_v2()] is used to prepare a statement, the
- ** statement might be re-prepared during [sqlite3_step()] due to a
- ** schema change. Hence, the application should ensure that the
- ** correct authorizer callback remains in place during the [sqlite3_step()].
- **
- ** ^Note that the authorizer callback is invoked only during
- ** [sqlite3_prepare()] or its variants. Authorization is not
- ** performed during statement evaluation in [sqlite3_step()], unless
- ** as stated in the previous paragraph, sqlite3_step() invokes
- ** sqlite3_prepare_v2() to reprepare a statement after a schema change.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_set_authorizer(
- sqlite3*,
- int (*xAuth)(void*,int,const char*,const char*,const char*,const char*),
- void *pUserData
- );
- /*
- ** CAPI3REF: Authorizer Return Codes
- **
- ** The [sqlite3_set_authorizer | authorizer callback function] must
- ** return either [SQLITE_OK] or one of these two constants in order
- ** to signal SQLite whether or not the action is permitted. See the
- ** [sqlite3_set_authorizer | authorizer documentation] for additional
- ** information.
- **
- ** Note that SQLITE_IGNORE is also used as a [conflict resolution mode]
- ** returned from the [sqlite3_vtab_on_conflict()] interface.
- */
- #define SQLITE_DENY 1 /* Abort the SQL statement with an error */
- #define SQLITE_IGNORE 2 /* Don't allow access, but don't generate an error */
- /*
- ** CAPI3REF: Authorizer Action Codes
- **
- ** The [sqlite3_set_authorizer()] interface registers a callback function
- ** that is invoked to authorize certain SQL statement actions. The
- ** second parameter to the callback is an integer code that specifies
- ** what action is being authorized. These are the integer action codes that
- ** the authorizer callback may be passed.
- **
- ** These action code values signify what kind of operation is to be
- ** authorized. The 3rd and 4th parameters to the authorization
- ** callback function will be parameters or NULL depending on which of these
- ** codes is used as the second parameter. ^(The 5th parameter to the
- ** authorizer callback is the name of the database ("main", "temp",
- ** etc.) if applicable.)^ ^The 6th parameter to the authorizer callback
- ** is the name of the inner-most trigger or view that is responsible for
- ** the access attempt or NULL if this access attempt is directly from
- ** top-level SQL code.
- */
- /******************************************* 3rd ************ 4th ***********/
- #define SQLITE_CREATE_INDEX 1 /* Index Name Table Name */
- #define SQLITE_CREATE_TABLE 2 /* Table Name NULL */
- #define SQLITE_CREATE_TEMP_INDEX 3 /* Index Name Table Name */
- #define SQLITE_CREATE_TEMP_TABLE 4 /* Table Name NULL */
- #define SQLITE_CREATE_TEMP_TRIGGER 5 /* Trigger Name Table Name */
- #define SQLITE_CREATE_TEMP_VIEW 6 /* View Name NULL */
- #define SQLITE_CREATE_TRIGGER 7 /* Trigger Name Table Name */
- #define SQLITE_CREATE_VIEW 8 /* View Name NULL */
- #define SQLITE_DELETE 9 /* Table Name NULL */
- #define SQLITE_DROP_INDEX 10 /* Index Name Table Name */
- #define SQLITE_DROP_TABLE 11 /* Table Name NULL */
- #define SQLITE_DROP_TEMP_INDEX 12 /* Index Name Table Name */
- #define SQLITE_DROP_TEMP_TABLE 13 /* Table Name NULL */
- #define SQLITE_DROP_TEMP_TRIGGER 14 /* Trigger Name Table Name */
- #define SQLITE_DROP_TEMP_VIEW 15 /* View Name NULL */
- #define SQLITE_DROP_TRIGGER 16 /* Trigger Name Table Name */
- #define SQLITE_DROP_VIEW 17 /* View Name NULL */
- #define SQLITE_INSERT 18 /* Table Name NULL */
- #define SQLITE_PRAGMA 19 /* Pragma Name 1st arg or NULL */
- #define SQLITE_READ 20 /* Table Name Column Name */
- #define SQLITE_SELECT 21 /* NULL NULL */
- #define SQLITE_TRANSACTION 22 /* Operation NULL */
- #define SQLITE_UPDATE 23 /* Table Name Column Name */
- #define SQLITE_ATTACH 24 /* Filename NULL */
- #define SQLITE_DETACH 25 /* Database Name NULL */
- #define SQLITE_ALTER_TABLE 26 /* Database Name Table Name */
- #define SQLITE_REINDEX 27 /* Index Name NULL */
- #define SQLITE_ANALYZE 28 /* Table Name NULL */
- #define SQLITE_CREATE_VTABLE 29 /* Table Name Module Name */
- #define SQLITE_DROP_VTABLE 30 /* Table Name Module Name */
- #define SQLITE_FUNCTION 31 /* NULL Function Name */
- #define SQLITE_SAVEPOINT 32 /* Operation Savepoint Name */
- #define SQLITE_COPY 0 /* No longer used */
- #define SQLITE_RECURSIVE 33 /* NULL NULL */
- /*
- ** CAPI3REF: Tracing And Profiling Functions
- ** METHOD: sqlite3
- **
- ** These routines register callback functions that can be used for
- ** tracing and profiling the execution of SQL statements.
- **
- ** ^The callback function registered by sqlite3_trace() is invoked at
- ** various times when an SQL statement is being run by [sqlite3_step()].
- ** ^The sqlite3_trace() callback is invoked with a UTF-8 rendering of the
- ** SQL statement text as the statement first begins executing.
- ** ^(Additional sqlite3_trace() callbacks might occur
- ** as each triggered subprogram is entered. The callbacks for triggers
- ** contain a UTF-8 SQL comment that identifies the trigger.)^
- **
- ** The [SQLITE_TRACE_SIZE_LIMIT] compile-time option can be used to limit
- ** the length of [bound parameter] expansion in the output of sqlite3_trace().
- **
- ** ^The callback function registered by sqlite3_profile() is invoked
- ** as each SQL statement finishes. ^The profile callback contains
- ** the original statement text and an estimate of wall-clock time
- ** of how long that statement took to run. ^The profile callback
- ** time is in units of nanoseconds, however the current implementation
- ** is only capable of millisecond resolution so the six least significant
- ** digits in the time are meaningless. Future versions of SQLite
- ** might provide greater resolution on the profiler callback. The
- ** sqlite3_profile() function is considered experimental and is
- ** subject to change in future versions of SQLite.
- */
- SQLITE_API void *SQLITE_STDCALL sqlite3_trace(sqlite3*, void(*xTrace)(void*,const char*), void*);
- SQLITE_API SQLITE_EXPERIMENTAL void *SQLITE_STDCALL sqlite3_profile(sqlite3*,
- void(*xProfile)(void*,const char*,sqlite3_uint64), void*);
- /*
- ** CAPI3REF: Query Progress Callbacks
- ** METHOD: sqlite3
- **
- ** ^The sqlite3_progress_handler(D,N,X,P) interface causes the callback
- ** function X to be invoked periodically during long running calls to
- ** [sqlite3_exec()], [sqlite3_step()] and [sqlite3_get_table()] for
- ** database connection D. An example use for this
- ** interface is to keep a GUI updated during a large query.
- **
- ** ^The parameter P is passed through as the only parameter to the
- ** callback function X. ^The parameter N is the approximate number of
- ** [virtual machine instructions] that are evaluated between successive
- ** invocations of the callback X. ^If N is less than one then the progress
- ** handler is disabled.
- **
- ** ^Only a single progress handler may be defined at one time per
- ** [database connection]; setting a new progress handler cancels the
- ** old one. ^Setting parameter X to NULL disables the progress handler.
- ** ^The progress handler is also disabled by setting N to a value less
- ** than 1.
- **
- ** ^If the progress callback returns non-zero, the operation is
- ** interrupted. This feature can be used to implement a
- ** "Cancel" button on a GUI progress dialog box.
- **
- ** The progress handler callback must not do anything that will modify
- ** the database connection that invoked the progress handler.
- ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
- ** database connections for the meaning of "modify" in this paragraph.
- **
- */
- SQLITE_API void SQLITE_STDCALL sqlite3_progress_handler(sqlite3*, int, int(*)(void*), void*);
- /*
- ** CAPI3REF: Opening A New Database Connection
- ** CONSTRUCTOR: sqlite3
- **
- ** ^These routines open an SQLite database file as specified by the
- ** filename argument. ^The filename argument is interpreted as UTF-8 for
- ** sqlite3_open() and sqlite3_open_v2() and as UTF-16 in the native byte
- ** order for sqlite3_open16(). ^(A [database connection] handle is usually
- ** returned in *ppDb, even if an error occurs. The only exception is that
- ** if SQLite is unable to allocate memory to hold the [sqlite3] object,
- ** a NULL will be written into *ppDb instead of a pointer to the [sqlite3]
- ** object.)^ ^(If the database is opened (and/or created) successfully, then
- ** [SQLITE_OK] is returned. Otherwise an [error code] is returned.)^ ^The
- ** [sqlite3_errmsg()] or [sqlite3_errmsg16()] routines can be used to obtain
- ** an English language description of the error following a failure of any
- ** of the sqlite3_open() routines.
- **
- ** ^The default encoding will be UTF-8 for databases created using
- ** sqlite3_open() or sqlite3_open_v2(). ^The default encoding for databases
- ** created using sqlite3_open16() will be UTF-16 in the native byte order.
- **
- ** Whether or not an error occurs when it is opened, resources
- ** associated with the [database connection] handle should be released by
- ** passing it to [sqlite3_close()] when it is no longer required.
- **
- ** The sqlite3_open_v2() interface works like sqlite3_open()
- ** except that it accepts two additional parameters for additional control
- ** over the new database connection. ^(The flags parameter to
- ** sqlite3_open_v2() can take one of
- ** the following three values, optionally combined with the
- ** [SQLITE_OPEN_NOMUTEX], [SQLITE_OPEN_FULLMUTEX], [SQLITE_OPEN_SHAREDCACHE],
- ** [SQLITE_OPEN_PRIVATECACHE], and/or [SQLITE_OPEN_URI] flags:)^
- **
- ** <dl>
- ** ^(<dt>[SQLITE_OPEN_READONLY]</dt>
- ** <dd>The database is opened in read-only mode. If the database does not
- ** already exist, an error is returned.</dd>)^
- **
- ** ^(<dt>[SQLITE_OPEN_READWRITE]</dt>
- ** <dd>The database is opened for reading and writing if possible, or reading
- ** only if the file is write protected by the operating system. In either
- ** case the database must already exist, otherwise an error is returned.</dd>)^
- **
- ** ^(<dt>[SQLITE_OPEN_READWRITE] | [SQLITE_OPEN_CREATE]</dt>
- ** <dd>The database is opened for reading and writing, and is created if
- ** it does not already exist. This is the behavior that is always used for
- ** sqlite3_open() and sqlite3_open16().</dd>)^
- ** </dl>
- **
- ** If the 3rd parameter to sqlite3_open_v2() is not one of the
- ** combinations shown above optionally combined with other
- ** [SQLITE_OPEN_READONLY | SQLITE_OPEN_* bits]
- ** then the behavior is undefined.
- **
- ** ^If the [SQLITE_OPEN_NOMUTEX] flag is set, then the database connection
- ** opens in the multi-thread [threading mode] as long as the single-thread
- ** mode has not been set at compile-time or start-time. ^If the
- ** [SQLITE_OPEN_FULLMUTEX] flag is set then the database connection opens
- ** in the serialized [threading mode] unless single-thread was
- ** previously selected at compile-time or start-time.
- ** ^The [SQLITE_OPEN_SHAREDCACHE] flag causes the database connection to be
- ** eligible to use [shared cache mode], regardless of whether or not shared
- ** cache is enabled using [sqlite3_enable_shared_cache()]. ^The
- ** [SQLITE_OPEN_PRIVATECACHE] flag causes the database connection to not
- ** participate in [shared cache mode] even if it is enabled.
- **
- ** ^The fourth parameter to sqlite3_open_v2() is the name of the
- ** [sqlite3_vfs] object that defines the operating system interface that
- ** the new database connection should use. ^If the fourth parameter is
- ** a NULL pointer then the default [sqlite3_vfs] object is used.
- **
- ** ^If the filename is ":memory:", then a private, temporary in-memory database
- ** is created for the connection. ^This in-memory database will vanish when
- ** the database connection is closed. Future versions of SQLite might
- ** make use of additional special filenames that begin with the ":" character.
- ** It is recommended that when a database filename actually does begin with
- ** a ":" character you should prefix the filename with a pathname such as
- ** "./" to avoid ambiguity.
- **
- ** ^If the filename is an empty string, then a private, temporary
- ** on-disk database will be created. ^This private database will be
- ** automatically deleted as soon as the database connection is closed.
- **
- ** [[URI filenames in sqlite3_open()]] <h3>URI Filenames</h3>
- **
- ** ^If [URI filename] interpretation is enabled, and the filename argument
- ** begins with "file:", then the filename is interpreted as a URI. ^URI
- ** filename interpretation is enabled if the [SQLITE_OPEN_URI] flag is
- ** set in the fourth argument to sqlite3_open_v2(), or if it has
- ** been enabled globally using the [SQLITE_CONFIG_URI] option with the
- ** [sqlite3_config()] method or by the [SQLITE_USE_URI] compile-time option.
- ** As of SQLite version 3.7.7, URI filename interpretation is turned off
- ** by default, but future releases of SQLite might enable URI filename
- ** interpretation by default. See "[URI filenames]" for additional
- ** information.
- **
- ** URI filenames are parsed according to RFC 3986. ^If the URI contains an
- ** authority, then it must be either an empty string or the string
- ** "localhost". ^If the authority is not an empty string or "localhost", an
- ** error is returned to the caller. ^The fragment component of a URI, if
- ** present, is ignored.
- **
- ** ^SQLite uses the path component of the URI as the name of the disk file
- ** which contains the database. ^If the path begins with a '/' character,
- ** then it is interpreted as an absolute path. ^If the path does not begin
- ** with a '/' (meaning that the authority section is omitted from the URI)
- ** then the path is interpreted as a relative path.
- ** ^(On windows, the first component of an absolute path
- ** is a drive specification (e.g. "C:").)^
- **
- ** [[core URI query parameters]]
- ** The query component of a URI may contain parameters that are interpreted
- ** either by SQLite itself, or by a [VFS | custom VFS implementation].
- ** SQLite and its built-in [VFSes] interpret the
- ** following query parameters:
- **
- ** <ul>
- ** <li> <b>vfs</b>: ^The "vfs" parameter may be used to specify the name of
- ** a VFS object that provides the operating system interface that should
- ** be used to access the database file on disk. ^If this option is set to
- ** an empty string the default VFS object is used. ^Specifying an unknown
- ** VFS is an error. ^If sqlite3_open_v2() is used and the vfs option is
- ** present, then the VFS specified by the option takes precedence over
- ** the value passed as the fourth parameter to sqlite3_open_v2().
- **
- ** <li> <b>mode</b>: ^(The mode parameter may be set to either "ro", "rw",
- ** "rwc", or "memory". Attempting to set it to any other value is
- ** an error)^.
- ** ^If "ro" is specified, then the database is opened for read-only
- ** access, just as if the [SQLITE_OPEN_READONLY] flag had been set in the
- ** third argument to sqlite3_open_v2(). ^If the mode option is set to
- ** "rw", then the database is opened for read-write (but not create)
- ** access, as if SQLITE_OPEN_READWRITE (but not SQLITE_OPEN_CREATE) had
- ** been set. ^Value "rwc" is equivalent to setting both
- ** SQLITE_OPEN_READWRITE and SQLITE_OPEN_CREATE. ^If the mode option is
- ** set to "memory" then a pure [in-memory database] that never reads
- ** or writes from disk is used. ^It is an error to specify a value for
- ** the mode parameter that is less restrictive than that specified by
- ** the flags passed in the third parameter to sqlite3_open_v2().
- **
- ** <li> <b>cache</b>: ^The cache parameter may be set to either "shared" or
- ** "private". ^Setting it to "shared" is equivalent to setting the
- ** SQLITE_OPEN_SHAREDCACHE bit in the flags argument passed to
- ** sqlite3_open_v2(). ^Setting the cache parameter to "private" is
- ** equivalent to setting the SQLITE_OPEN_PRIVATECACHE bit.
- ** ^If sqlite3_open_v2() is used and the "cache" parameter is present in
- ** a URI filename, its value overrides any behavior requested by setting
- ** SQLITE_OPEN_PRIVATECACHE or SQLITE_OPEN_SHAREDCACHE flag.
- **
- ** <li> <b>psow</b>: ^The psow parameter indicates whether or not the
- ** [powersafe overwrite] property does or does not apply to the
- ** storage media on which the database file resides.
- **
- ** <li> <b>nolock</b>: ^The nolock parameter is a boolean query parameter
- ** which if set disables file locking in rollback journal modes. This
- ** is useful for accessing a database on a filesystem that does not
- ** support locking. Caution: Database corruption might result if two
- ** or more processes write to the same database and any one of those
- ** processes uses nolock=1.
- **
- ** <li> <b>immutable</b>: ^The immutable parameter is a boolean query
- ** parameter that indicates that the database file is stored on
- ** read-only media. ^When immutable is set, SQLite assumes that the
- ** database file cannot be changed, even by a process with higher
- ** privilege, and so the database is opened read-only and all locking
- ** and change detection is disabled. Caution: Setting the immutable
- ** property on a database file that does in fact change can result
- ** in incorrect query results and/or [SQLITE_CORRUPT] errors.
- ** See also: [SQLITE_IOCAP_IMMUTABLE].
- **
- ** </ul>
- **
- ** ^Specifying an unknown parameter in the query component of a URI is not an
- ** error. Future versions of SQLite might understand additional query
- ** parameters. See "[query parameters with special meaning to SQLite]" for
- ** additional information.
- **
- ** [[URI filename examples]] <h3>URI filename examples</h3>
- **
- ** <table border="1" align=center cellpadding=5>
- ** <tr><th> URI filenames <th> Results
- ** <tr><td> file:data.db <td>
- ** Open the file "data.db" in the current directory.
- ** <tr><td> file:/home/fred/data.db<br>
- ** file:///home/fred/data.db <br>
- ** file://localhost/home/fred/data.db <br> <td>
- ** Open the database file "/home/fred/data.db".
- ** <tr><td> file://darkstar/home/fred/data.db <td>
- ** An error. "darkstar" is not a recognized authority.
- ** <tr><td style="white-space:nowrap">
- ** file:///C:/Documents%20and%20Settings/fred/Desktop/data.db
- ** <td> Windows only: Open the file "data.db" on fred's desktop on drive
- ** C:. Note that the %20 escaping in this example is not strictly
- ** necessary - space characters can be used literally
- ** in URI filenames.
- ** <tr><td> file:data.db?mode=ro&cache=private <td>
- ** Open file "data.db" in the current directory for read-only access.
- ** Regardless of whether or not shared-cache mode is enabled by
- ** default, use a private cache.
- ** <tr><td> file:/home/fred/data.db?vfs=unix-dotfile <td>
- ** Open file "/home/fred/data.db". Use the special VFS "unix-dotfile"
- ** that uses dot-files in place of posix advisory locking.
- ** <tr><td> file:data.db?mode=readonly <td>
- ** An error. "readonly" is not a valid option for the "mode" parameter.
- ** </table>
- **
- ** ^URI hexadecimal escape sequences (%HH) are supported within the path and
- ** query components of a URI. A hexadecimal escape sequence consists of a
- ** percent sign - "%" - followed by exactly two hexadecimal digits
- ** specifying an octet value. ^Before the path or query components of a
- ** URI filename are interpreted, they are encoded using UTF-8 and all
- ** hexadecimal escape sequences replaced by a single byte containing the
- ** corresponding octet. If this process generates an invalid UTF-8 encoding,
- ** the results are undefined.
- **
- ** <b>Note to Windows users:</b> The encoding used for the filename argument
- ** of sqlite3_open() and sqlite3_open_v2() must be UTF-8, not whatever
- ** codepage is currently defined. Filenames containing international
- ** characters must be converted to UTF-8 prior to passing them into
- ** sqlite3_open() or sqlite3_open_v2().
- **
- ** <b>Note to Windows Runtime users:</b> The temporary directory must be set
- ** prior to calling sqlite3_open() or sqlite3_open_v2(). Otherwise, various
- ** features that require the use of temporary files may fail.
- **
- ** See also: [sqlite3_temp_directory]
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_open(
- const char *filename, /* Database filename (UTF-8) */
- sqlite3 **ppDb /* OUT: SQLite db handle */
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_open16(
- const void *filename, /* Database filename (UTF-16) */
- sqlite3 **ppDb /* OUT: SQLite db handle */
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_open_v2(
- const char *filename, /* Database filename (UTF-8) */
- sqlite3 **ppDb, /* OUT: SQLite db handle */
- int flags, /* Flags */
- const char *zVfs /* Name of VFS module to use */
- );
- /*
- ** CAPI3REF: Obtain Values For URI Parameters
- **
- ** These are utility routines, useful to VFS implementations, that check
- ** to see if a database file was a URI that contained a specific query
- ** parameter, and if so obtains the value of that query parameter.
- **
- ** If F is the database filename pointer passed into the xOpen() method of
- ** a VFS implementation when the flags parameter to xOpen() has one or
- ** more of the [SQLITE_OPEN_URI] or [SQLITE_OPEN_MAIN_DB] bits set and
- ** P is the name of the query parameter, then
- ** sqlite3_uri_parameter(F,P) returns the value of the P
- ** parameter if it exists or a NULL pointer if P does not appear as a
- ** query parameter on F. If P is a query parameter of F
- ** has no explicit value, then sqlite3_uri_parameter(F,P) returns
- ** a pointer to an empty string.
- **
- ** The sqlite3_uri_boolean(F,P,B) routine assumes that P is a boolean
- ** parameter and returns true (1) or false (0) according to the value
- ** of P. The sqlite3_uri_boolean(F,P,B) routine returns true (1) if the
- ** value of query parameter P is one of "yes", "true", or "on" in any
- ** case or if the value begins with a non-zero number. The
- ** sqlite3_uri_boolean(F,P,B) routines returns false (0) if the value of
- ** query parameter P is one of "no", "false", or "off" in any case or
- ** if the value begins with a numeric zero. If P is not a query
- ** parameter on F or if the value of P is does not match any of the
- ** above, then sqlite3_uri_boolean(F,P,B) returns (B!=0).
- **
- ** The sqlite3_uri_int64(F,P,D) routine converts the value of P into a
- ** 64-bit signed integer and returns that integer, or D if P does not
- ** exist. If the value of P is something other than an integer, then
- ** zero is returned.
- **
- ** If F is a NULL pointer, then sqlite3_uri_parameter(F,P) returns NULL and
- ** sqlite3_uri_boolean(F,P,B) returns B. If F is not a NULL pointer and
- ** is not a database file pathname pointer that SQLite passed into the xOpen
- ** VFS method, then the behavior of this routine is undefined and probably
- ** undesirable.
- */
- SQLITE_API const char *SQLITE_STDCALL sqlite3_uri_parameter(const char *zFilename, const char *zParam);
- SQLITE_API int SQLITE_STDCALL sqlite3_uri_boolean(const char *zFile, const char *zParam, int bDefault);
- SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_uri_int64(const char*, const char*, sqlite3_int64);
- /*
- ** CAPI3REF: Error Codes And Messages
- ** METHOD: sqlite3
- **
- ** ^If the most recent sqlite3_* API call associated with
- ** [database connection] D failed, then the sqlite3_errcode(D) interface
- ** returns the numeric [result code] or [extended result code] for that
- ** API call.
- ** If the most recent API call was successful,
- ** then the return value from sqlite3_errcode() is undefined.
- ** ^The sqlite3_extended_errcode()
- ** interface is the same except that it always returns the
- ** [extended result code] even when extended result codes are
- ** disabled.
- **
- ** ^The sqlite3_errmsg() and sqlite3_errmsg16() return English-language
- ** text that describes the error, as either UTF-8 or UTF-16 respectively.
- ** ^(Memory to hold the error message string is managed internally.
- ** The application does not need to worry about freeing the result.
- ** However, the error string might be overwritten or deallocated by
- ** subsequent calls to other SQLite interface functions.)^
- **
- ** ^The sqlite3_errstr() interface returns the English-language text
- ** that describes the [result code], as UTF-8.
- ** ^(Memory to hold the error message string is managed internally
- ** and must not be freed by the application)^.
- **
- ** When the serialized [threading mode] is in use, it might be the
- ** case that a second error occurs on a separate thread in between
- ** the time of the first error and the call to these interfaces.
- ** When that happens, the second error will be reported since these
- ** interfaces always report the most recent result. To avoid
- ** this, each thread can obtain exclusive use of the [database connection] D
- ** by invoking [sqlite3_mutex_enter]([sqlite3_db_mutex](D)) before beginning
- ** to use D and invoking [sqlite3_mutex_leave]([sqlite3_db_mutex](D)) after
- ** all calls to the interfaces listed here are completed.
- **
- ** If an interface fails with SQLITE_MISUSE, that means the interface
- ** was invoked incorrectly by the application. In that case, the
- ** error code and message may or may not be set.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_errcode(sqlite3 *db);
- SQLITE_API int SQLITE_STDCALL sqlite3_extended_errcode(sqlite3 *db);
- SQLITE_API const char *SQLITE_STDCALL sqlite3_errmsg(sqlite3*);
- SQLITE_API const void *SQLITE_STDCALL sqlite3_errmsg16(sqlite3*);
- SQLITE_API const char *SQLITE_STDCALL sqlite3_errstr(int);
- /*
- ** CAPI3REF: Prepared Statement Object
- ** KEYWORDS: {prepared statement} {prepared statements}
- **
- ** An instance of this object represents a single SQL statement that
- ** has been compiled into binary form and is ready to be evaluated.
- **
- ** Think of each SQL statement as a separate computer program. The
- ** original SQL text is source code. A prepared statement object
- ** is the compiled object code. All SQL must be converted into a
- ** prepared statement before it can be run.
- **
- ** The life-cycle of a prepared statement object usually goes like this:
- **
- ** <ol>
- ** <li> Create the prepared statement object using [sqlite3_prepare_v2()].
- ** <li> Bind values to [parameters] using the sqlite3_bind_*()
- ** interfaces.
- ** <li> Run the SQL by calling [sqlite3_step()] one or more times.
- ** <li> Reset the prepared statement using [sqlite3_reset()] then go back
- ** to step 2. Do this zero or more times.
- ** <li> Destroy the object using [sqlite3_finalize()].
- ** </ol>
- */
- typedef struct sqlite3_stmt sqlite3_stmt;
- /*
- ** CAPI3REF: Run-time Limits
- ** METHOD: sqlite3
- **
- ** ^(This interface allows the size of various constructs to be limited
- ** on a connection by connection basis. The first parameter is the
- ** [database connection] whose limit is to be set or queried. The
- ** second parameter is one of the [limit categories] that define a
- ** class of constructs to be size limited. The third parameter is the
- ** new limit for that construct.)^
- **
- ** ^If the new limit is a negative number, the limit is unchanged.
- ** ^(For each limit category SQLITE_LIMIT_<i>NAME</i> there is a
- ** [limits | hard upper bound]
- ** set at compile-time by a C preprocessor macro called
- ** [limits | SQLITE_MAX_<i>NAME</i>].
- ** (The "_LIMIT_" in the name is changed to "_MAX_".))^
- ** ^Attempts to increase a limit above its hard upper bound are
- ** silently truncated to the hard upper bound.
- **
- ** ^Regardless of whether or not the limit was changed, the
- ** [sqlite3_limit()] interface returns the prior value of the limit.
- ** ^Hence, to find the current value of a limit without changing it,
- ** simply invoke this interface with the third parameter set to -1.
- **
- ** Run-time limits are intended for use in applications that manage
- ** both their own internal database and also databases that are controlled
- ** by untrusted external sources. An example application might be a
- ** web browser that has its own databases for storing history and
- ** separate databases controlled by JavaScript applications downloaded
- ** off the Internet. The internal databases can be given the
- ** large, default limits. Databases managed by external sources can
- ** be given much smaller limits designed to prevent a denial of service
- ** attack. Developers might also want to use the [sqlite3_set_authorizer()]
- ** interface to further control untrusted SQL. The size of the database
- ** created by an untrusted script can be contained using the
- ** [max_page_count] [PRAGMA].
- **
- ** New run-time limit categories may be added in future releases.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_limit(sqlite3*, int id, int newVal);
- /*
- ** CAPI3REF: Run-Time Limit Categories
- ** KEYWORDS: {limit category} {*limit categories}
- **
- ** These constants define various performance limits
- ** that can be lowered at run-time using [sqlite3_limit()].
- ** The synopsis of the meanings of the various limits is shown below.
- ** Additional information is available at [limits | Limits in SQLite].
- **
- ** <dl>
- ** [[SQLITE_LIMIT_LENGTH]] ^(<dt>SQLITE_LIMIT_LENGTH</dt>
- ** <dd>The maximum size of any string or BLOB or table row, in bytes.<dd>)^
- **
- ** [[SQLITE_LIMIT_SQL_LENGTH]] ^(<dt>SQLITE_LIMIT_SQL_LENGTH</dt>
- ** <dd>The maximum length of an SQL statement, in bytes.</dd>)^
- **
- ** [[SQLITE_LIMIT_COLUMN]] ^(<dt>SQLITE_LIMIT_COLUMN</dt>
- ** <dd>The maximum number of columns in a table definition or in the
- ** result set of a [SELECT] or the maximum number of columns in an index
- ** or in an ORDER BY or GROUP BY clause.</dd>)^
- **
- ** [[SQLITE_LIMIT_EXPR_DEPTH]] ^(<dt>SQLITE_LIMIT_EXPR_DEPTH</dt>
- ** <dd>The maximum depth of the parse tree on any expression.</dd>)^
- **
- ** [[SQLITE_LIMIT_COMPOUND_SELECT]] ^(<dt>SQLITE_LIMIT_COMPOUND_SELECT</dt>
- ** <dd>The maximum number of terms in a compound SELECT statement.</dd>)^
- **
- ** [[SQLITE_LIMIT_VDBE_OP]] ^(<dt>SQLITE_LIMIT_VDBE_OP</dt>
- ** <dd>The maximum number of instructions in a virtual machine program
- ** used to implement an SQL statement. This limit is not currently
- ** enforced, though that might be added in some future release of
- ** SQLite.</dd>)^
- **
- ** [[SQLITE_LIMIT_FUNCTION_ARG]] ^(<dt>SQLITE_LIMIT_FUNCTION_ARG</dt>
- ** <dd>The maximum number of arguments on a function.</dd>)^
- **
- ** [[SQLITE_LIMIT_ATTACHED]] ^(<dt>SQLITE_LIMIT_ATTACHED</dt>
- ** <dd>The maximum number of [ATTACH | attached databases].)^</dd>
- **
- ** [[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]]
- ** ^(<dt>SQLITE_LIMIT_LIKE_PATTERN_LENGTH</dt>
- ** <dd>The maximum length of the pattern argument to the [LIKE] or
- ** [GLOB] operators.</dd>)^
- **
- ** [[SQLITE_LIMIT_VARIABLE_NUMBER]]
- ** ^(<dt>SQLITE_LIMIT_VARIABLE_NUMBER</dt>
- ** <dd>The maximum index number of any [parameter] in an SQL statement.)^
- **
- ** [[SQLITE_LIMIT_TRIGGER_DEPTH]] ^(<dt>SQLITE_LIMIT_TRIGGER_DEPTH</dt>
- ** <dd>The maximum depth of recursion for triggers.</dd>)^
- **
- ** [[SQLITE_LIMIT_WORKER_THREADS]] ^(<dt>SQLITE_LIMIT_WORKER_THREADS</dt>
- ** <dd>The maximum number of auxiliary worker threads that a single
- ** [prepared statement] may start.</dd>)^
- ** </dl>
- */
- #define SQLITE_LIMIT_LENGTH 0
- #define SQLITE_LIMIT_SQL_LENGTH 1
- #define SQLITE_LIMIT_COLUMN 2
- #define SQLITE_LIMIT_EXPR_DEPTH 3
- #define SQLITE_LIMIT_COMPOUND_SELECT 4
- #define SQLITE_LIMIT_VDBE_OP 5
- #define SQLITE_LIMIT_FUNCTION_ARG 6
- #define SQLITE_LIMIT_ATTACHED 7
- #define SQLITE_LIMIT_LIKE_PATTERN_LENGTH 8
- #define SQLITE_LIMIT_VARIABLE_NUMBER 9
- #define SQLITE_LIMIT_TRIGGER_DEPTH 10
- #define SQLITE_LIMIT_WORKER_THREADS 11
- /*
- ** CAPI3REF: Compiling An SQL Statement
- ** KEYWORDS: {SQL statement compiler}
- ** METHOD: sqlite3
- ** CONSTRUCTOR: sqlite3_stmt
- **
- ** To execute an SQL query, it must first be compiled into a byte-code
- ** program using one of these routines.
- **
- ** The first argument, "db", is a [database connection] obtained from a
- ** prior successful call to [sqlite3_open()], [sqlite3_open_v2()] or
- ** [sqlite3_open16()]. The database connection must not have been closed.
- **
- ** The second argument, "zSql", is the statement to be compiled, encoded
- ** as either UTF-8 or UTF-16. The sqlite3_prepare() and sqlite3_prepare_v2()
- ** interfaces use UTF-8, and sqlite3_prepare16() and sqlite3_prepare16_v2()
- ** use UTF-16.
- **
- ** ^If the nByte argument is negative, then zSql is read up to the
- ** first zero terminator. ^If nByte is positive, then it is the
- ** number of bytes read from zSql. ^If nByte is zero, then no prepared
- ** statement is generated.
- ** If the caller knows that the supplied string is nul-terminated, then
- ** there is a small performance advantage to passing an nByte parameter that
- ** is the number of bytes in the input string <i>including</i>
- ** the nul-terminator.
- **
- ** ^If pzTail is not NULL then *pzTail is made to point to the first byte
- ** past the end of the first SQL statement in zSql. These routines only
- ** compile the first statement in zSql, so *pzTail is left pointing to
- ** what remains uncompiled.
- **
- ** ^*ppStmt is left pointing to a compiled [prepared statement] that can be
- ** executed using [sqlite3_step()]. ^If there is an error, *ppStmt is set
- ** to NULL. ^If the input text contains no SQL (if the input is an empty
- ** string or a comment) then *ppStmt is set to NULL.
- ** The calling procedure is responsible for deleting the compiled
- ** SQL statement using [sqlite3_finalize()] after it has finished with it.
- ** ppStmt may not be NULL.
- **
- ** ^On success, the sqlite3_prepare() family of routines return [SQLITE_OK];
- ** otherwise an [error code] is returned.
- **
- ** The sqlite3_prepare_v2() and sqlite3_prepare16_v2() interfaces are
- ** recommended for all new programs. The two older interfaces are retained
- ** for backwards compatibility, but their use is discouraged.
- ** ^In the "v2" interfaces, the prepared statement
- ** that is returned (the [sqlite3_stmt] object) contains a copy of the
- ** original SQL text. This causes the [sqlite3_step()] interface to
- ** behave differently in three ways:
- **
- ** <ol>
- ** <li>
- ** ^If the database schema changes, instead of returning [SQLITE_SCHEMA] as it
- ** always used to do, [sqlite3_step()] will automatically recompile the SQL
- ** statement and try to run it again. As many as [SQLITE_MAX_SCHEMA_RETRY]
- ** retries will occur before sqlite3_step() gives up and returns an error.
- ** </li>
- **
- ** <li>
- ** ^When an error occurs, [sqlite3_step()] will return one of the detailed
- ** [error codes] or [extended error codes]. ^The legacy behavior was that
- ** [sqlite3_step()] would only return a generic [SQLITE_ERROR] result code
- ** and the application would have to make a second call to [sqlite3_reset()]
- ** in order to find the underlying cause of the problem. With the "v2" prepare
- ** interfaces, the underlying reason for the error is returned immediately.
- ** </li>
- **
- ** <li>
- ** ^If the specific value bound to [parameter | host parameter] in the
- ** WHERE clause might influence the choice of query plan for a statement,
- ** then the statement will be automatically recompiled, as if there had been
- ** a schema change, on the first [sqlite3_step()] call following any change
- ** to the [sqlite3_bind_text | bindings] of that [parameter].
- ** ^The specific value of WHERE-clause [parameter] might influence the
- ** choice of query plan if the parameter is the left-hand side of a [LIKE]
- ** or [GLOB] operator or if the parameter is compared to an indexed column
- ** and the [SQLITE_ENABLE_STAT3] compile-time option is enabled.
- ** </li>
- ** </ol>
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_prepare(
- sqlite3 *db, /* Database handle */
- const char *zSql, /* SQL statement, UTF-8 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const char **pzTail /* OUT: Pointer to unused portion of zSql */
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_prepare_v2(
- sqlite3 *db, /* Database handle */
- const char *zSql, /* SQL statement, UTF-8 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const char **pzTail /* OUT: Pointer to unused portion of zSql */
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_prepare16(
- sqlite3 *db, /* Database handle */
- const void *zSql, /* SQL statement, UTF-16 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const void **pzTail /* OUT: Pointer to unused portion of zSql */
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_prepare16_v2(
- sqlite3 *db, /* Database handle */
- const void *zSql, /* SQL statement, UTF-16 encoded */
- int nByte, /* Maximum length of zSql in bytes. */
- sqlite3_stmt **ppStmt, /* OUT: Statement handle */
- const void **pzTail /* OUT: Pointer to unused portion of zSql */
- );
- /*
- ** CAPI3REF: Retrieving Statement SQL
- ** METHOD: sqlite3_stmt
- **
- ** ^This interface can be used to retrieve a saved copy of the original
- ** SQL text used to create a [prepared statement] if that statement was
- ** compiled using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()].
- */
- SQLITE_API const char *SQLITE_STDCALL sqlite3_sql(sqlite3_stmt *pStmt);
- /*
- ** CAPI3REF: Determine If An SQL Statement Writes The Database
- ** METHOD: sqlite3_stmt
- **
- ** ^The sqlite3_stmt_readonly(X) interface returns true (non-zero) if
- ** and only if the [prepared statement] X makes no direct changes to
- ** the content of the database file.
- **
- ** Note that [application-defined SQL functions] or
- ** [virtual tables] might change the database indirectly as a side effect.
- ** ^(For example, if an application defines a function "eval()" that
- ** calls [sqlite3_exec()], then the following SQL statement would
- ** change the database file through side-effects:
- **
- ** <blockquote><pre>
- ** SELECT eval('DELETE FROM t1') FROM t2;
- ** </pre></blockquote>
- **
- ** But because the [SELECT] statement does not change the database file
- ** directly, sqlite3_stmt_readonly() would still return true.)^
- **
- ** ^Transaction control statements such as [BEGIN], [COMMIT], [ROLLBACK],
- ** [SAVEPOINT], and [RELEASE] cause sqlite3_stmt_readonly() to return true,
- ** since the statements themselves do not actually modify the database but
- ** rather they control the timing of when other statements modify the
- ** database. ^The [ATTACH] and [DETACH] statements also cause
- ** sqlite3_stmt_readonly() to return true since, while those statements
- ** change the configuration of a database connection, they do not make
- ** changes to the content of the database files on disk.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_stmt_readonly(sqlite3_stmt *pStmt);
- /*
- ** CAPI3REF: Determine If A Prepared Statement Has Been Reset
- ** METHOD: sqlite3_stmt
- **
- ** ^The sqlite3_stmt_busy(S) interface returns true (non-zero) if the
- ** [prepared statement] S has been stepped at least once using
- ** [sqlite3_step(S)] but has not run to completion and/or has not
- ** been reset using [sqlite3_reset(S)]. ^The sqlite3_stmt_busy(S)
- ** interface returns false if S is a NULL pointer. If S is not a
- ** NULL pointer and is not a pointer to a valid [prepared statement]
- ** object, then the behavior is undefined and probably undesirable.
- **
- ** This interface can be used in combination [sqlite3_next_stmt()]
- ** to locate all prepared statements associated with a database
- ** connection that are in need of being reset. This can be used,
- ** for example, in diagnostic routines to search for prepared
- ** statements that are holding a transaction open.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_stmt_busy(sqlite3_stmt*);
- /*
- ** CAPI3REF: Dynamically Typed Value Object
- ** KEYWORDS: {protected sqlite3_value} {unprotected sqlite3_value}
- **
- ** SQLite uses the sqlite3_value object to represent all values
- ** that can be stored in a database table. SQLite uses dynamic typing
- ** for the values it stores. ^Values stored in sqlite3_value objects
- ** can be integers, floating point values, strings, BLOBs, or NULL.
- **
- ** An sqlite3_value object may be either "protected" or "unprotected".
- ** Some interfaces require a protected sqlite3_value. Other interfaces
- ** will accept either a protected or an unprotected sqlite3_value.
- ** Every interface that accepts sqlite3_value arguments specifies
- ** whether or not it requires a protected sqlite3_value. The
- ** [sqlite3_value_dup()] interface can be used to construct a new
- ** protected sqlite3_value from an unprotected sqlite3_value.
- **
- ** The terms "protected" and "unprotected" refer to whether or not
- ** a mutex is held. An internal mutex is held for a protected
- ** sqlite3_value object but no mutex is held for an unprotected
- ** sqlite3_value object. If SQLite is compiled to be single-threaded
- ** (with [SQLITE_THREADSAFE=0] and with [sqlite3_threadsafe()] returning 0)
- ** or if SQLite is run in one of reduced mutex modes
- ** [SQLITE_CONFIG_SINGLETHREAD] or [SQLITE_CONFIG_MULTITHREAD]
- ** then there is no distinction between protected and unprotected
- ** sqlite3_value objects and they can be used interchangeably. However,
- ** for maximum code portability it is recommended that applications
- ** still make the distinction between protected and unprotected
- ** sqlite3_value objects even when not strictly required.
- **
- ** ^The sqlite3_value objects that are passed as parameters into the
- ** implementation of [application-defined SQL functions] are protected.
- ** ^The sqlite3_value object returned by
- ** [sqlite3_column_value()] is unprotected.
- ** Unprotected sqlite3_value objects may only be used with
- ** [sqlite3_result_value()] and [sqlite3_bind_value()].
- ** The [sqlite3_value_blob | sqlite3_value_type()] family of
- ** interfaces require protected sqlite3_value objects.
- */
- typedef struct Mem sqlite3_value;
- /*
- ** CAPI3REF: SQL Function Context Object
- **
- ** The context in which an SQL function executes is stored in an
- ** sqlite3_context object. ^A pointer to an sqlite3_context object
- ** is always first parameter to [application-defined SQL functions].
- ** The application-defined SQL function implementation will pass this
- ** pointer through into calls to [sqlite3_result_int | sqlite3_result()],
- ** [sqlite3_aggregate_context()], [sqlite3_user_data()],
- ** [sqlite3_context_db_handle()], [sqlite3_get_auxdata()],
- ** and/or [sqlite3_set_auxdata()].
- */
- typedef struct sqlite3_context sqlite3_context;
- /*
- ** CAPI3REF: Binding Values To Prepared Statements
- ** KEYWORDS: {host parameter} {host parameters} {host parameter name}
- ** KEYWORDS: {SQL parameter} {SQL parameters} {parameter binding}
- ** METHOD: sqlite3_stmt
- **
- ** ^(In the SQL statement text input to [sqlite3_prepare_v2()] and its variants,
- ** literals may be replaced by a [parameter] that matches one of following
- ** templates:
- **
- ** <ul>
- ** <li> ?
- ** <li> ?NNN
- ** <li> :VVV
- ** <li> @VVV
- ** <li> $VVV
- ** </ul>
- **
- ** In the templates above, NNN represents an integer literal,
- ** and VVV represents an alphanumeric identifier.)^ ^The values of these
- ** parameters (also called "host parameter names" or "SQL parameters")
- ** can be set using the sqlite3_bind_*() routines defined here.
- **
- ** ^The first argument to the sqlite3_bind_*() routines is always
- ** a pointer to the [sqlite3_stmt] object returned from
- ** [sqlite3_prepare_v2()] or its variants.
- **
- ** ^The second argument is the index of the SQL parameter to be set.
- ** ^The leftmost SQL parameter has an index of 1. ^When the same named
- ** SQL parameter is used more than once, second and subsequent
- ** occurrences have the same index as the first occurrence.
- ** ^The index for named parameters can be looked up using the
- ** [sqlite3_bind_parameter_index()] API if desired. ^The index
- ** for "?NNN" parameters is the value of NNN.
- ** ^The NNN value must be between 1 and the [sqlite3_limit()]
- ** parameter [SQLITE_LIMIT_VARIABLE_NUMBER] (default value: 999).
- **
- ** ^The third argument is the value to bind to the parameter.
- ** ^If the third parameter to sqlite3_bind_text() or sqlite3_bind_text16()
- ** or sqlite3_bind_blob() is a NULL pointer then the fourth parameter
- ** is ignored and the end result is the same as sqlite3_bind_null().
- **
- ** ^(In those routines that have a fourth argument, its value is the
- ** number of bytes in the parameter. To be clear: the value is the
- ** number of <u>bytes</u> in the value, not the number of characters.)^
- ** ^If the fourth parameter to sqlite3_bind_text() or sqlite3_bind_text16()
- ** is negative, then the length of the string is
- ** the number of bytes up to the first zero terminator.
- ** If the fourth parameter to sqlite3_bind_blob() is negative, then
- ** the behavior is undefined.
- ** If a non-negative fourth parameter is provided to sqlite3_bind_text()
- ** or sqlite3_bind_text16() or sqlite3_bind_text64() then
- ** that parameter must be the byte offset
- ** where the NUL terminator would occur assuming the string were NUL
- ** terminated. If any NUL characters occur at byte offsets less than
- ** the value of the fourth parameter then the resulting string value will
- ** contain embedded NULs. The result of expressions involving strings
- ** with embedded NULs is undefined.
- **
- ** ^The fifth argument to the BLOB and string binding interfaces
- ** is a destructor used to dispose of the BLOB or
- ** string after SQLite has finished with it. ^The destructor is called
- ** to dispose of the BLOB or string even if the call to bind API fails.
- ** ^If the fifth argument is
- ** the special value [SQLITE_STATIC], then SQLite assumes that the
- ** information is in static, unmanaged space and does not need to be freed.
- ** ^If the fifth argument has the value [SQLITE_TRANSIENT], then
- ** SQLite makes its own private copy of the data immediately, before
- ** the sqlite3_bind_*() routine returns.
- **
- ** ^The sixth argument to sqlite3_bind_text64() must be one of
- ** [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE]
- ** to specify the encoding of the text in the third parameter. If
- ** the sixth argument to sqlite3_bind_text64() is not one of the
- ** allowed values shown above, or if the text encoding is different
- ** from the encoding specified by the sixth parameter, then the behavior
- ** is undefined.
- **
- ** ^The sqlite3_bind_zeroblob() routine binds a BLOB of length N that
- ** is filled with zeroes. ^A zeroblob uses a fixed amount of memory
- ** (just an integer to hold its size) while it is being processed.
- ** Zeroblobs are intended to serve as placeholders for BLOBs whose
- ** content is later written using
- ** [sqlite3_blob_open | incremental BLOB I/O] routines.
- ** ^A negative value for the zeroblob results in a zero-length BLOB.
- **
- ** ^If any of the sqlite3_bind_*() routines are called with a NULL pointer
- ** for the [prepared statement] or with a prepared statement for which
- ** [sqlite3_step()] has been called more recently than [sqlite3_reset()],
- ** then the call will return [SQLITE_MISUSE]. If any sqlite3_bind_()
- ** routine is passed a [prepared statement] that has been finalized, the
- ** result is undefined and probably harmful.
- **
- ** ^Bindings are not cleared by the [sqlite3_reset()] routine.
- ** ^Unbound parameters are interpreted as NULL.
- **
- ** ^The sqlite3_bind_* routines return [SQLITE_OK] on success or an
- ** [error code] if anything goes wrong.
- ** ^[SQLITE_TOOBIG] might be returned if the size of a string or BLOB
- ** exceeds limits imposed by [sqlite3_limit]([SQLITE_LIMIT_LENGTH]) or
- ** [SQLITE_MAX_LENGTH].
- ** ^[SQLITE_RANGE] is returned if the parameter
- ** index is out of range. ^[SQLITE_NOMEM] is returned if malloc() fails.
- **
- ** See also: [sqlite3_bind_parameter_count()],
- ** [sqlite3_bind_parameter_name()], and [sqlite3_bind_parameter_index()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_blob(sqlite3_stmt*, int, const void*, int n, void(*)(void*));
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_blob64(sqlite3_stmt*, int, const void*, sqlite3_uint64,
- void(*)(void*));
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_double(sqlite3_stmt*, int, double);
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_int(sqlite3_stmt*, int, int);
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_int64(sqlite3_stmt*, int, sqlite3_int64);
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_null(sqlite3_stmt*, int);
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_text(sqlite3_stmt*,int,const char*,int,void(*)(void*));
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_text16(sqlite3_stmt*, int, const void*, int, void(*)(void*));
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_text64(sqlite3_stmt*, int, const char*, sqlite3_uint64,
- void(*)(void*), unsigned char encoding);
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_value(sqlite3_stmt*, int, const sqlite3_value*);
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_zeroblob(sqlite3_stmt*, int, int n);
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_zeroblob64(sqlite3_stmt*, int, sqlite3_uint64);
- /*
- ** CAPI3REF: Number Of SQL Parameters
- ** METHOD: sqlite3_stmt
- **
- ** ^This routine can be used to find the number of [SQL parameters]
- ** in a [prepared statement]. SQL parameters are tokens of the
- ** form "?", "?NNN", ":AAA", "$AAA", or "@AAA" that serve as
- ** placeholders for values that are [sqlite3_bind_blob | bound]
- ** to the parameters at a later time.
- **
- ** ^(This routine actually returns the index of the largest (rightmost)
- ** parameter. For all forms except ?NNN, this will correspond to the
- ** number of unique parameters. If parameters of the ?NNN form are used,
- ** there may be gaps in the list.)^
- **
- ** See also: [sqlite3_bind_blob|sqlite3_bind()],
- ** [sqlite3_bind_parameter_name()], and
- ** [sqlite3_bind_parameter_index()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_parameter_count(sqlite3_stmt*);
- /*
- ** CAPI3REF: Name Of A Host Parameter
- ** METHOD: sqlite3_stmt
- **
- ** ^The sqlite3_bind_parameter_name(P,N) interface returns
- ** the name of the N-th [SQL parameter] in the [prepared statement] P.
- ** ^(SQL parameters of the form "?NNN" or ":AAA" or "@AAA" or "$AAA"
- ** have a name which is the string "?NNN" or ":AAA" or "@AAA" or "$AAA"
- ** respectively.
- ** In other words, the initial ":" or "$" or "@" or "?"
- ** is included as part of the name.)^
- ** ^Parameters of the form "?" without a following integer have no name
- ** and are referred to as "nameless" or "anonymous parameters".
- **
- ** ^The first host parameter has an index of 1, not 0.
- **
- ** ^If the value N is out of range or if the N-th parameter is
- ** nameless, then NULL is returned. ^The returned string is
- ** always in UTF-8 encoding even if the named parameter was
- ** originally specified as UTF-16 in [sqlite3_prepare16()] or
- ** [sqlite3_prepare16_v2()].
- **
- ** See also: [sqlite3_bind_blob|sqlite3_bind()],
- ** [sqlite3_bind_parameter_count()], and
- ** [sqlite3_bind_parameter_index()].
- */
- SQLITE_API const char *SQLITE_STDCALL sqlite3_bind_parameter_name(sqlite3_stmt*, int);
- /*
- ** CAPI3REF: Index Of A Parameter With A Given Name
- ** METHOD: sqlite3_stmt
- **
- ** ^Return the index of an SQL parameter given its name. ^The
- ** index value returned is suitable for use as the second
- ** parameter to [sqlite3_bind_blob|sqlite3_bind()]. ^A zero
- ** is returned if no matching parameter is found. ^The parameter
- ** name must be given in UTF-8 even if the original statement
- ** was prepared from UTF-16 text using [sqlite3_prepare16_v2()].
- **
- ** See also: [sqlite3_bind_blob|sqlite3_bind()],
- ** [sqlite3_bind_parameter_count()], and
- ** [sqlite3_bind_parameter_index()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_bind_parameter_index(sqlite3_stmt*, const char *zName);
- /*
- ** CAPI3REF: Reset All Bindings On A Prepared Statement
- ** METHOD: sqlite3_stmt
- **
- ** ^Contrary to the intuition of many, [sqlite3_reset()] does not reset
- ** the [sqlite3_bind_blob | bindings] on a [prepared statement].
- ** ^Use this routine to reset all host parameters to NULL.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_clear_bindings(sqlite3_stmt*);
- /*
- ** CAPI3REF: Number Of Columns In A Result Set
- ** METHOD: sqlite3_stmt
- **
- ** ^Return the number of columns in the result set returned by the
- ** [prepared statement]. ^This routine returns 0 if pStmt is an SQL
- ** statement that does not return data (for example an [UPDATE]).
- **
- ** See also: [sqlite3_data_count()]
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_column_count(sqlite3_stmt *pStmt);
- /*
- ** CAPI3REF: Column Names In A Result Set
- ** METHOD: sqlite3_stmt
- **
- ** ^These routines return the name assigned to a particular column
- ** in the result set of a [SELECT] statement. ^The sqlite3_column_name()
- ** interface returns a pointer to a zero-terminated UTF-8 string
- ** and sqlite3_column_name16() returns a pointer to a zero-terminated
- ** UTF-16 string. ^The first parameter is the [prepared statement]
- ** that implements the [SELECT] statement. ^The second parameter is the
- ** column number. ^The leftmost column is number 0.
- **
- ** ^The returned string pointer is valid until either the [prepared statement]
- ** is destroyed by [sqlite3_finalize()] or until the statement is automatically
- ** reprepared by the first call to [sqlite3_step()] for a particular run
- ** or until the next call to
- ** sqlite3_column_name() or sqlite3_column_name16() on the same column.
- **
- ** ^If sqlite3_malloc() fails during the processing of either routine
- ** (for example during a conversion from UTF-8 to UTF-16) then a
- ** NULL pointer is returned.
- **
- ** ^The name of a result column is the value of the "AS" clause for
- ** that column, if there is an AS clause. If there is no AS clause
- ** then the name of the column is unspecified and may change from
- ** one release of SQLite to the next.
- */
- SQLITE_API const char *SQLITE_STDCALL sqlite3_column_name(sqlite3_stmt*, int N);
- SQLITE_API const void *SQLITE_STDCALL sqlite3_column_name16(sqlite3_stmt*, int N);
- /*
- ** CAPI3REF: Source Of Data In A Query Result
- ** METHOD: sqlite3_stmt
- **
- ** ^These routines provide a means to determine the database, table, and
- ** table column that is the origin of a particular result column in
- ** [SELECT] statement.
- ** ^The name of the database or table or column can be returned as
- ** either a UTF-8 or UTF-16 string. ^The _database_ routines return
- ** the database name, the _table_ routines return the table name, and
- ** the origin_ routines return the column name.
- ** ^The returned string is valid until the [prepared statement] is destroyed
- ** using [sqlite3_finalize()] or until the statement is automatically
- ** reprepared by the first call to [sqlite3_step()] for a particular run
- ** or until the same information is requested
- ** again in a different encoding.
- **
- ** ^The names returned are the original un-aliased names of the
- ** database, table, and column.
- **
- ** ^The first argument to these interfaces is a [prepared statement].
- ** ^These functions return information about the Nth result column returned by
- ** the statement, where N is the second function argument.
- ** ^The left-most column is column 0 for these routines.
- **
- ** ^If the Nth column returned by the statement is an expression or
- ** subquery and is not a column value, then all of these functions return
- ** NULL. ^These routine might also return NULL if a memory allocation error
- ** occurs. ^Otherwise, they return the name of the attached database, table,
- ** or column that query result column was extracted from.
- **
- ** ^As with all other SQLite APIs, those whose names end with "16" return
- ** UTF-16 encoded strings and the other functions return UTF-8.
- **
- ** ^These APIs are only available if the library was compiled with the
- ** [SQLITE_ENABLE_COLUMN_METADATA] C-preprocessor symbol.
- **
- ** If two or more threads call one or more of these routines against the same
- ** prepared statement and column at the same time then the results are
- ** undefined.
- **
- ** If two or more threads call one or more
- ** [sqlite3_column_database_name | column metadata interfaces]
- ** for the same [prepared statement] and result column
- ** at the same time then the results are undefined.
- */
- SQLITE_API const char *SQLITE_STDCALL sqlite3_column_database_name(sqlite3_stmt*,int);
- SQLITE_API const void *SQLITE_STDCALL sqlite3_column_database_name16(sqlite3_stmt*,int);
- SQLITE_API const char *SQLITE_STDCALL sqlite3_column_table_name(sqlite3_stmt*,int);
- SQLITE_API const void *SQLITE_STDCALL sqlite3_column_table_name16(sqlite3_stmt*,int);
- SQLITE_API const char *SQLITE_STDCALL sqlite3_column_origin_name(sqlite3_stmt*,int);
- SQLITE_API const void *SQLITE_STDCALL sqlite3_column_origin_name16(sqlite3_stmt*,int);
- /*
- ** CAPI3REF: Declared Datatype Of A Query Result
- ** METHOD: sqlite3_stmt
- **
- ** ^(The first parameter is a [prepared statement].
- ** If this statement is a [SELECT] statement and the Nth column of the
- ** returned result set of that [SELECT] is a table column (not an
- ** expression or subquery) then the declared type of the table
- ** column is returned.)^ ^If the Nth column of the result set is an
- ** expression or subquery, then a NULL pointer is returned.
- ** ^The returned string is always UTF-8 encoded.
- **
- ** ^(For example, given the database schema:
- **
- ** CREATE TABLE t1(c1 VARIANT);
- **
- ** and the following statement to be compiled:
- **
- ** SELECT c1 + 1, c1 FROM t1;
- **
- ** this routine would return the string "VARIANT" for the second result
- ** column (i==1), and a NULL pointer for the first result column (i==0).)^
- **
- ** ^SQLite uses dynamic run-time typing. ^So just because a column
- ** is declared to contain a particular type does not mean that the
- ** data stored in that column is of the declared type. SQLite is
- ** strongly typed, but the typing is dynamic not static. ^Type
- ** is associated with individual values, not with the containers
- ** used to hold those values.
- */
- SQLITE_API const char *SQLITE_STDCALL sqlite3_column_decltype(sqlite3_stmt*,int);
- SQLITE_API const void *SQLITE_STDCALL sqlite3_column_decltype16(sqlite3_stmt*,int);
- /*
- ** CAPI3REF: Evaluate An SQL Statement
- ** METHOD: sqlite3_stmt
- **
- ** After a [prepared statement] has been prepared using either
- ** [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] or one of the legacy
- ** interfaces [sqlite3_prepare()] or [sqlite3_prepare16()], this function
- ** must be called one or more times to evaluate the statement.
- **
- ** The details of the behavior of the sqlite3_step() interface depend
- ** on whether the statement was prepared using the newer "v2" interface
- ** [sqlite3_prepare_v2()] and [sqlite3_prepare16_v2()] or the older legacy
- ** interface [sqlite3_prepare()] and [sqlite3_prepare16()]. The use of the
- ** new "v2" interface is recommended for new applications but the legacy
- ** interface will continue to be supported.
- **
- ** ^In the legacy interface, the return value will be either [SQLITE_BUSY],
- ** [SQLITE_DONE], [SQLITE_ROW], [SQLITE_ERROR], or [SQLITE_MISUSE].
- ** ^With the "v2" interface, any of the other [result codes] or
- ** [extended result codes] might be returned as well.
- **
- ** ^[SQLITE_BUSY] means that the database engine was unable to acquire the
- ** database locks it needs to do its job. ^If the statement is a [COMMIT]
- ** or occurs outside of an explicit transaction, then you can retry the
- ** statement. If the statement is not a [COMMIT] and occurs within an
- ** explicit transaction then you should rollback the transaction before
- ** continuing.
- **
- ** ^[SQLITE_DONE] means that the statement has finished executing
- ** successfully. sqlite3_step() should not be called again on this virtual
- ** machine without first calling [sqlite3_reset()] to reset the virtual
- ** machine back to its initial state.
- **
- ** ^If the SQL statement being executed returns any data, then [SQLITE_ROW]
- ** is returned each time a new row of data is ready for processing by the
- ** caller. The values may be accessed using the [column access functions].
- ** sqlite3_step() is called again to retrieve the next row of data.
- **
- ** ^[SQLITE_ERROR] means that a run-time error (such as a constraint
- ** violation) has occurred. sqlite3_step() should not be called again on
- ** the VM. More information may be found by calling [sqlite3_errmsg()].
- ** ^With the legacy interface, a more specific error code (for example,
- ** [SQLITE_INTERRUPT], [SQLITE_SCHEMA], [SQLITE_CORRUPT], and so forth)
- ** can be obtained by calling [sqlite3_reset()] on the
- ** [prepared statement]. ^In the "v2" interface,
- ** the more specific error code is returned directly by sqlite3_step().
- **
- ** [SQLITE_MISUSE] means that the this routine was called inappropriately.
- ** Perhaps it was called on a [prepared statement] that has
- ** already been [sqlite3_finalize | finalized] or on one that had
- ** previously returned [SQLITE_ERROR] or [SQLITE_DONE]. Or it could
- ** be the case that the same database connection is being used by two or
- ** more threads at the same moment in time.
- **
- ** For all versions of SQLite up to and including 3.6.23.1, a call to
- ** [sqlite3_reset()] was required after sqlite3_step() returned anything
- ** other than [SQLITE_ROW] before any subsequent invocation of
- ** sqlite3_step(). Failure to reset the prepared statement using
- ** [sqlite3_reset()] would result in an [SQLITE_MISUSE] return from
- ** sqlite3_step(). But after version 3.6.23.1, sqlite3_step() began
- ** calling [sqlite3_reset()] automatically in this circumstance rather
- ** than returning [SQLITE_MISUSE]. This is not considered a compatibility
- ** break because any application that ever receives an SQLITE_MISUSE error
- ** is broken by definition. The [SQLITE_OMIT_AUTORESET] compile-time option
- ** can be used to restore the legacy behavior.
- **
- ** <b>Goofy Interface Alert:</b> In the legacy interface, the sqlite3_step()
- ** API always returns a generic error code, [SQLITE_ERROR], following any
- ** error other than [SQLITE_BUSY] and [SQLITE_MISUSE]. You must call
- ** [sqlite3_reset()] or [sqlite3_finalize()] in order to find one of the
- ** specific [error codes] that better describes the error.
- ** We admit that this is a goofy design. The problem has been fixed
- ** with the "v2" interface. If you prepare all of your SQL statements
- ** using either [sqlite3_prepare_v2()] or [sqlite3_prepare16_v2()] instead
- ** of the legacy [sqlite3_prepare()] and [sqlite3_prepare16()] interfaces,
- ** then the more specific [error codes] are returned directly
- ** by sqlite3_step(). The use of the "v2" interface is recommended.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_step(sqlite3_stmt*);
- /*
- ** CAPI3REF: Number of columns in a result set
- ** METHOD: sqlite3_stmt
- **
- ** ^The sqlite3_data_count(P) interface returns the number of columns in the
- ** current row of the result set of [prepared statement] P.
- ** ^If prepared statement P does not have results ready to return
- ** (via calls to the [sqlite3_column_int | sqlite3_column_*()] of
- ** interfaces) then sqlite3_data_count(P) returns 0.
- ** ^The sqlite3_data_count(P) routine also returns 0 if P is a NULL pointer.
- ** ^The sqlite3_data_count(P) routine returns 0 if the previous call to
- ** [sqlite3_step](P) returned [SQLITE_DONE]. ^The sqlite3_data_count(P)
- ** will return non-zero if previous call to [sqlite3_step](P) returned
- ** [SQLITE_ROW], except in the case of the [PRAGMA incremental_vacuum]
- ** where it always returns zero since each step of that multi-step
- ** pragma returns 0 columns of data.
- **
- ** See also: [sqlite3_column_count()]
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_data_count(sqlite3_stmt *pStmt);
- /*
- ** CAPI3REF: Fundamental Datatypes
- ** KEYWORDS: SQLITE_TEXT
- **
- ** ^(Every value in SQLite has one of five fundamental datatypes:
- **
- ** <ul>
- ** <li> 64-bit signed integer
- ** <li> 64-bit IEEE floating point number
- ** <li> string
- ** <li> BLOB
- ** <li> NULL
- ** </ul>)^
- **
- ** These constants are codes for each of those types.
- **
- ** Note that the SQLITE_TEXT constant was also used in SQLite version 2
- ** for a completely different meaning. Software that links against both
- ** SQLite version 2 and SQLite version 3 should use SQLITE3_TEXT, not
- ** SQLITE_TEXT.
- */
- #define SQLITE_INTEGER 1
- #define SQLITE_FLOAT 2
- #define SQLITE_BLOB 4
- #define SQLITE_NULL 5
- #ifdef SQLITE_TEXT
- # undef SQLITE_TEXT
- #else
- # define SQLITE_TEXT 3
- #endif
- #define SQLITE3_TEXT 3
- /*
- ** CAPI3REF: Result Values From A Query
- ** KEYWORDS: {column access functions}
- ** METHOD: sqlite3_stmt
- **
- ** ^These routines return information about a single column of the current
- ** result row of a query. ^In every case the first argument is a pointer
- ** to the [prepared statement] that is being evaluated (the [sqlite3_stmt*]
- ** that was returned from [sqlite3_prepare_v2()] or one of its variants)
- ** and the second argument is the index of the column for which information
- ** should be returned. ^The leftmost column of the result set has the index 0.
- ** ^The number of columns in the result can be determined using
- ** [sqlite3_column_count()].
- **
- ** If the SQL statement does not currently point to a valid row, or if the
- ** column index is out of range, the result is undefined.
- ** These routines may only be called when the most recent call to
- ** [sqlite3_step()] has returned [SQLITE_ROW] and neither
- ** [sqlite3_reset()] nor [sqlite3_finalize()] have been called subsequently.
- ** If any of these routines are called after [sqlite3_reset()] or
- ** [sqlite3_finalize()] or after [sqlite3_step()] has returned
- ** something other than [SQLITE_ROW], the results are undefined.
- ** If [sqlite3_step()] or [sqlite3_reset()] or [sqlite3_finalize()]
- ** are called from a different thread while any of these routines
- ** are pending, then the results are undefined.
- **
- ** ^The sqlite3_column_type() routine returns the
- ** [SQLITE_INTEGER | datatype code] for the initial data type
- ** of the result column. ^The returned value is one of [SQLITE_INTEGER],
- ** [SQLITE_FLOAT], [SQLITE_TEXT], [SQLITE_BLOB], or [SQLITE_NULL]. The value
- ** returned by sqlite3_column_type() is only meaningful if no type
- ** conversions have occurred as described below. After a type conversion,
- ** the value returned by sqlite3_column_type() is undefined. Future
- ** versions of SQLite may change the behavior of sqlite3_column_type()
- ** following a type conversion.
- **
- ** ^If the result is a BLOB or UTF-8 string then the sqlite3_column_bytes()
- ** routine returns the number of bytes in that BLOB or string.
- ** ^If the result is a UTF-16 string, then sqlite3_column_bytes() converts
- ** the string to UTF-8 and then returns the number of bytes.
- ** ^If the result is a numeric value then sqlite3_column_bytes() uses
- ** [sqlite3_snprintf()] to convert that value to a UTF-8 string and returns
- ** the number of bytes in that string.
- ** ^If the result is NULL, then sqlite3_column_bytes() returns zero.
- **
- ** ^If the result is a BLOB or UTF-16 string then the sqlite3_column_bytes16()
- ** routine returns the number of bytes in that BLOB or string.
- ** ^If the result is a UTF-8 string, then sqlite3_column_bytes16() converts
- ** the string to UTF-16 and then returns the number of bytes.
- ** ^If the result is a numeric value then sqlite3_column_bytes16() uses
- ** [sqlite3_snprintf()] to convert that value to a UTF-16 string and returns
- ** the number of bytes in that string.
- ** ^If the result is NULL, then sqlite3_column_bytes16() returns zero.
- **
- ** ^The values returned by [sqlite3_column_bytes()] and
- ** [sqlite3_column_bytes16()] do not include the zero terminators at the end
- ** of the string. ^For clarity: the values returned by
- ** [sqlite3_column_bytes()] and [sqlite3_column_bytes16()] are the number of
- ** bytes in the string, not the number of characters.
- **
- ** ^Strings returned by sqlite3_column_text() and sqlite3_column_text16(),
- ** even empty strings, are always zero-terminated. ^The return
- ** value from sqlite3_column_blob() for a zero-length BLOB is a NULL pointer.
- **
- ** <b>Warning:</b> ^The object returned by [sqlite3_column_value()] is an
- ** [unprotected sqlite3_value] object. In a multithreaded environment,
- ** an unprotected sqlite3_value object may only be used safely with
- ** [sqlite3_bind_value()] and [sqlite3_result_value()].
- ** If the [unprotected sqlite3_value] object returned by
- ** [sqlite3_column_value()] is used in any other way, including calls
- ** to routines like [sqlite3_value_int()], [sqlite3_value_text()],
- ** or [sqlite3_value_bytes()], the behavior is not threadsafe.
- **
- ** These routines attempt to convert the value where appropriate. ^For
- ** example, if the internal representation is FLOAT and a text result
- ** is requested, [sqlite3_snprintf()] is used internally to perform the
- ** conversion automatically. ^(The following table details the conversions
- ** that are applied:
- **
- ** <blockquote>
- ** <table border="1">
- ** <tr><th> Internal<br>Type <th> Requested<br>Type <th> Conversion
- **
- ** <tr><td> NULL <td> INTEGER <td> Result is 0
- ** <tr><td> NULL <td> FLOAT <td> Result is 0.0
- ** <tr><td> NULL <td> TEXT <td> Result is a NULL pointer
- ** <tr><td> NULL <td> BLOB <td> Result is a NULL pointer
- ** <tr><td> INTEGER <td> FLOAT <td> Convert from integer to float
- ** <tr><td> INTEGER <td> TEXT <td> ASCII rendering of the integer
- ** <tr><td> INTEGER <td> BLOB <td> Same as INTEGER->TEXT
- ** <tr><td> FLOAT <td> INTEGER <td> [CAST] to INTEGER
- ** <tr><td> FLOAT <td> TEXT <td> ASCII rendering of the float
- ** <tr><td> FLOAT <td> BLOB <td> [CAST] to BLOB
- ** <tr><td> TEXT <td> INTEGER <td> [CAST] to INTEGER
- ** <tr><td> TEXT <td> FLOAT <td> [CAST] to REAL
- ** <tr><td> TEXT <td> BLOB <td> No change
- ** <tr><td> BLOB <td> INTEGER <td> [CAST] to INTEGER
- ** <tr><td> BLOB <td> FLOAT <td> [CAST] to REAL
- ** <tr><td> BLOB <td> TEXT <td> Add a zero terminator if needed
- ** </table>
- ** </blockquote>)^
- **
- ** Note that when type conversions occur, pointers returned by prior
- ** calls to sqlite3_column_blob(), sqlite3_column_text(), and/or
- ** sqlite3_column_text16() may be invalidated.
- ** Type conversions and pointer invalidations might occur
- ** in the following cases:
- **
- ** <ul>
- ** <li> The initial content is a BLOB and sqlite3_column_text() or
- ** sqlite3_column_text16() is called. A zero-terminator might
- ** need to be added to the string.</li>
- ** <li> The initial content is UTF-8 text and sqlite3_column_bytes16() or
- ** sqlite3_column_text16() is called. The content must be converted
- ** to UTF-16.</li>
- ** <li> The initial content is UTF-16 text and sqlite3_column_bytes() or
- ** sqlite3_column_text() is called. The content must be converted
- ** to UTF-8.</li>
- ** </ul>
- **
- ** ^Conversions between UTF-16be and UTF-16le are always done in place and do
- ** not invalidate a prior pointer, though of course the content of the buffer
- ** that the prior pointer references will have been modified. Other kinds
- ** of conversion are done in place when it is possible, but sometimes they
- ** are not possible and in those cases prior pointers are invalidated.
- **
- ** The safest policy is to invoke these routines
- ** in one of the following ways:
- **
- ** <ul>
- ** <li>sqlite3_column_text() followed by sqlite3_column_bytes()</li>
- ** <li>sqlite3_column_blob() followed by sqlite3_column_bytes()</li>
- ** <li>sqlite3_column_text16() followed by sqlite3_column_bytes16()</li>
- ** </ul>
- **
- ** In other words, you should call sqlite3_column_text(),
- ** sqlite3_column_blob(), or sqlite3_column_text16() first to force the result
- ** into the desired format, then invoke sqlite3_column_bytes() or
- ** sqlite3_column_bytes16() to find the size of the result. Do not mix calls
- ** to sqlite3_column_text() or sqlite3_column_blob() with calls to
- ** sqlite3_column_bytes16(), and do not mix calls to sqlite3_column_text16()
- ** with calls to sqlite3_column_bytes().
- **
- ** ^The pointers returned are valid until a type conversion occurs as
- ** described above, or until [sqlite3_step()] or [sqlite3_reset()] or
- ** [sqlite3_finalize()] is called. ^The memory space used to hold strings
- ** and BLOBs is freed automatically. Do <em>not</em> pass the pointers returned
- ** from [sqlite3_column_blob()], [sqlite3_column_text()], etc. into
- ** [sqlite3_free()].
- **
- ** ^(If a memory allocation error occurs during the evaluation of any
- ** of these routines, a default value is returned. The default value
- ** is either the integer 0, the floating point number 0.0, or a NULL
- ** pointer. Subsequent calls to [sqlite3_errcode()] will return
- ** [SQLITE_NOMEM].)^
- */
- SQLITE_API const void *SQLITE_STDCALL sqlite3_column_blob(sqlite3_stmt*, int iCol);
- SQLITE_API int SQLITE_STDCALL sqlite3_column_bytes(sqlite3_stmt*, int iCol);
- SQLITE_API int SQLITE_STDCALL sqlite3_column_bytes16(sqlite3_stmt*, int iCol);
- SQLITE_API double SQLITE_STDCALL sqlite3_column_double(sqlite3_stmt*, int iCol);
- SQLITE_API int SQLITE_STDCALL sqlite3_column_int(sqlite3_stmt*, int iCol);
- SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_column_int64(sqlite3_stmt*, int iCol);
- SQLITE_API const unsigned char *SQLITE_STDCALL sqlite3_column_text(sqlite3_stmt*, int iCol);
- SQLITE_API const void *SQLITE_STDCALL sqlite3_column_text16(sqlite3_stmt*, int iCol);
- SQLITE_API int SQLITE_STDCALL sqlite3_column_type(sqlite3_stmt*, int iCol);
- SQLITE_API sqlite3_value *SQLITE_STDCALL sqlite3_column_value(sqlite3_stmt*, int iCol);
- /*
- ** CAPI3REF: Destroy A Prepared Statement Object
- ** DESTRUCTOR: sqlite3_stmt
- **
- ** ^The sqlite3_finalize() function is called to delete a [prepared statement].
- ** ^If the most recent evaluation of the statement encountered no errors
- ** or if the statement is never been evaluated, then sqlite3_finalize() returns
- ** SQLITE_OK. ^If the most recent evaluation of statement S failed, then
- ** sqlite3_finalize(S) returns the appropriate [error code] or
- ** [extended error code].
- **
- ** ^The sqlite3_finalize(S) routine can be called at any point during
- ** the life cycle of [prepared statement] S:
- ** before statement S is ever evaluated, after
- ** one or more calls to [sqlite3_reset()], or after any call
- ** to [sqlite3_step()] regardless of whether or not the statement has
- ** completed execution.
- **
- ** ^Invoking sqlite3_finalize() on a NULL pointer is a harmless no-op.
- **
- ** The application must finalize every [prepared statement] in order to avoid
- ** resource leaks. It is a grievous error for the application to try to use
- ** a prepared statement after it has been finalized. Any use of a prepared
- ** statement after it has been finalized can result in undefined and
- ** undesirable behavior such as segfaults and heap corruption.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_finalize(sqlite3_stmt *pStmt);
- /*
- ** CAPI3REF: Reset A Prepared Statement Object
- ** METHOD: sqlite3_stmt
- **
- ** The sqlite3_reset() function is called to reset a [prepared statement]
- ** object back to its initial state, ready to be re-executed.
- ** ^Any SQL statement variables that had values bound to them using
- ** the [sqlite3_bind_blob | sqlite3_bind_*() API] retain their values.
- ** Use [sqlite3_clear_bindings()] to reset the bindings.
- **
- ** ^The [sqlite3_reset(S)] interface resets the [prepared statement] S
- ** back to the beginning of its program.
- **
- ** ^If the most recent call to [sqlite3_step(S)] for the
- ** [prepared statement] S returned [SQLITE_ROW] or [SQLITE_DONE],
- ** or if [sqlite3_step(S)] has never before been called on S,
- ** then [sqlite3_reset(S)] returns [SQLITE_OK].
- **
- ** ^If the most recent call to [sqlite3_step(S)] for the
- ** [prepared statement] S indicated an error, then
- ** [sqlite3_reset(S)] returns an appropriate [error code].
- **
- ** ^The [sqlite3_reset(S)] interface does not change the values
- ** of any [sqlite3_bind_blob|bindings] on the [prepared statement] S.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_reset(sqlite3_stmt *pStmt);
- /*
- ** CAPI3REF: Create Or Redefine SQL Functions
- ** KEYWORDS: {function creation routines}
- ** KEYWORDS: {application-defined SQL function}
- ** KEYWORDS: {application-defined SQL functions}
- ** METHOD: sqlite3
- **
- ** ^These functions (collectively known as "function creation routines")
- ** are used to add SQL functions or aggregates or to redefine the behavior
- ** of existing SQL functions or aggregates. The only differences between
- ** these routines are the text encoding expected for
- ** the second parameter (the name of the function being created)
- ** and the presence or absence of a destructor callback for
- ** the application data pointer.
- **
- ** ^The first parameter is the [database connection] to which the SQL
- ** function is to be added. ^If an application uses more than one database
- ** connection then application-defined SQL functions must be added
- ** to each database connection separately.
- **
- ** ^The second parameter is the name of the SQL function to be created or
- ** redefined. ^The length of the name is limited to 255 bytes in a UTF-8
- ** representation, exclusive of the zero-terminator. ^Note that the name
- ** length limit is in UTF-8 bytes, not characters nor UTF-16 bytes.
- ** ^Any attempt to create a function with a longer name
- ** will result in [SQLITE_MISUSE] being returned.
- **
- ** ^The third parameter (nArg)
- ** is the number of arguments that the SQL function or
- ** aggregate takes. ^If this parameter is -1, then the SQL function or
- ** aggregate may take any number of arguments between 0 and the limit
- ** set by [sqlite3_limit]([SQLITE_LIMIT_FUNCTION_ARG]). If the third
- ** parameter is less than -1 or greater than 127 then the behavior is
- ** undefined.
- **
- ** ^The fourth parameter, eTextRep, specifies what
- ** [SQLITE_UTF8 | text encoding] this SQL function prefers for
- ** its parameters. The application should set this parameter to
- ** [SQLITE_UTF16LE] if the function implementation invokes
- ** [sqlite3_value_text16le()] on an input, or [SQLITE_UTF16BE] if the
- ** implementation invokes [sqlite3_value_text16be()] on an input, or
- ** [SQLITE_UTF16] if [sqlite3_value_text16()] is used, or [SQLITE_UTF8]
- ** otherwise. ^The same SQL function may be registered multiple times using
- ** different preferred text encodings, with different implementations for
- ** each encoding.
- ** ^When multiple implementations of the same function are available, SQLite
- ** will pick the one that involves the least amount of data conversion.
- **
- ** ^The fourth parameter may optionally be ORed with [SQLITE_DETERMINISTIC]
- ** to signal that the function will always return the same result given
- ** the same inputs within a single SQL statement. Most SQL functions are
- ** deterministic. The built-in [random()] SQL function is an example of a
- ** function that is not deterministic. The SQLite query planner is able to
- ** perform additional optimizations on deterministic functions, so use
- ** of the [SQLITE_DETERMINISTIC] flag is recommended where possible.
- **
- ** ^(The fifth parameter is an arbitrary pointer. The implementation of the
- ** function can gain access to this pointer using [sqlite3_user_data()].)^
- **
- ** ^The sixth, seventh and eighth parameters, xFunc, xStep and xFinal, are
- ** pointers to C-language functions that implement the SQL function or
- ** aggregate. ^A scalar SQL function requires an implementation of the xFunc
- ** callback only; NULL pointers must be passed as the xStep and xFinal
- ** parameters. ^An aggregate SQL function requires an implementation of xStep
- ** and xFinal and NULL pointer must be passed for xFunc. ^To delete an existing
- ** SQL function or aggregate, pass NULL pointers for all three function
- ** callbacks.
- **
- ** ^(If the ninth parameter to sqlite3_create_function_v2() is not NULL,
- ** then it is destructor for the application data pointer.
- ** The destructor is invoked when the function is deleted, either by being
- ** overloaded or when the database connection closes.)^
- ** ^The destructor is also invoked if the call to
- ** sqlite3_create_function_v2() fails.
- ** ^When the destructor callback of the tenth parameter is invoked, it
- ** is passed a single argument which is a copy of the application data
- ** pointer which was the fifth parameter to sqlite3_create_function_v2().
- **
- ** ^It is permitted to register multiple implementations of the same
- ** functions with the same name but with either differing numbers of
- ** arguments or differing preferred text encodings. ^SQLite will use
- ** the implementation that most closely matches the way in which the
- ** SQL function is used. ^A function implementation with a non-negative
- ** nArg parameter is a better match than a function implementation with
- ** a negative nArg. ^A function where the preferred text encoding
- ** matches the database encoding is a better
- ** match than a function where the encoding is different.
- ** ^A function where the encoding difference is between UTF16le and UTF16be
- ** is a closer match than a function where the encoding difference is
- ** between UTF8 and UTF16.
- **
- ** ^Built-in functions may be overloaded by new application-defined functions.
- **
- ** ^An application-defined function is permitted to call other
- ** SQLite interfaces. However, such calls must not
- ** close the database connection nor finalize or reset the prepared
- ** statement in which the function is running.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_create_function(
- sqlite3 *db,
- const char *zFunctionName,
- int nArg,
- int eTextRep,
- void *pApp,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
- void (*xStep)(sqlite3_context*,int,sqlite3_value**),
- void (*xFinal)(sqlite3_context*)
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_create_function16(
- sqlite3 *db,
- const void *zFunctionName,
- int nArg,
- int eTextRep,
- void *pApp,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
- void (*xStep)(sqlite3_context*,int,sqlite3_value**),
- void (*xFinal)(sqlite3_context*)
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_create_function_v2(
- sqlite3 *db,
- const char *zFunctionName,
- int nArg,
- int eTextRep,
- void *pApp,
- void (*xFunc)(sqlite3_context*,int,sqlite3_value**),
- void (*xStep)(sqlite3_context*,int,sqlite3_value**),
- void (*xFinal)(sqlite3_context*),
- void(*xDestroy)(void*)
- );
- /*
- ** CAPI3REF: Text Encodings
- **
- ** These constant define integer codes that represent the various
- ** text encodings supported by SQLite.
- */
- #define SQLITE_UTF8 1 /* IMP: R-37514-35566 */
- #define SQLITE_UTF16LE 2 /* IMP: R-03371-37637 */
- #define SQLITE_UTF16BE 3 /* IMP: R-51971-34154 */
- #define SQLITE_UTF16 4 /* Use native byte order */
- #define SQLITE_ANY 5 /* Deprecated */
- #define SQLITE_UTF16_ALIGNED 8 /* sqlite3_create_collation only */
- /*
- ** CAPI3REF: Function Flags
- **
- ** These constants may be ORed together with the
- ** [SQLITE_UTF8 | preferred text encoding] as the fourth argument
- ** to [sqlite3_create_function()], [sqlite3_create_function16()], or
- ** [sqlite3_create_function_v2()].
- */
- #define SQLITE_DETERMINISTIC 0x800
- /*
- ** CAPI3REF: Deprecated Functions
- ** DEPRECATED
- **
- ** These functions are [deprecated]. In order to maintain
- ** backwards compatibility with older code, these functions continue
- ** to be supported. However, new applications should avoid
- ** the use of these functions. To encourage programmers to avoid
- ** these functions, we will not explain what they do.
- */
- #ifndef SQLITE_OMIT_DEPRECATED
- SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_aggregate_count(sqlite3_context*);
- SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_expired(sqlite3_stmt*);
- SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_transfer_bindings(sqlite3_stmt*, sqlite3_stmt*);
- SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_global_recover(void);
- SQLITE_API SQLITE_DEPRECATED void SQLITE_STDCALL sqlite3_thread_cleanup(void);
- SQLITE_API SQLITE_DEPRECATED int SQLITE_STDCALL sqlite3_memory_alarm(void(*)(void*,sqlite3_int64,int),
- void*,sqlite3_int64);
- #endif
- /*
- ** CAPI3REF: Obtaining SQL Values
- ** METHOD: sqlite3_value
- **
- ** The C-language implementation of SQL functions and aggregates uses
- ** this set of interface routines to access the parameter values on
- ** the function or aggregate.
- **
- ** The xFunc (for scalar functions) or xStep (for aggregates) parameters
- ** to [sqlite3_create_function()] and [sqlite3_create_function16()]
- ** define callbacks that implement the SQL functions and aggregates.
- ** The 3rd parameter to these callbacks is an array of pointers to
- ** [protected sqlite3_value] objects. There is one [sqlite3_value] object for
- ** each parameter to the SQL function. These routines are used to
- ** extract values from the [sqlite3_value] objects.
- **
- ** These routines work only with [protected sqlite3_value] objects.
- ** Any attempt to use these routines on an [unprotected sqlite3_value]
- ** object results in undefined behavior.
- **
- ** ^These routines work just like the corresponding [column access functions]
- ** except that these routines take a single [protected sqlite3_value] object
- ** pointer instead of a [sqlite3_stmt*] pointer and an integer column number.
- **
- ** ^The sqlite3_value_text16() interface extracts a UTF-16 string
- ** in the native byte-order of the host machine. ^The
- ** sqlite3_value_text16be() and sqlite3_value_text16le() interfaces
- ** extract UTF-16 strings as big-endian and little-endian respectively.
- **
- ** ^(The sqlite3_value_numeric_type() interface attempts to apply
- ** numeric affinity to the value. This means that an attempt is
- ** made to convert the value to an integer or floating point. If
- ** such a conversion is possible without loss of information (in other
- ** words, if the value is a string that looks like a number)
- ** then the conversion is performed. Otherwise no conversion occurs.
- ** The [SQLITE_INTEGER | datatype] after conversion is returned.)^
- **
- ** Please pay particular attention to the fact that the pointer returned
- ** from [sqlite3_value_blob()], [sqlite3_value_text()], or
- ** [sqlite3_value_text16()] can be invalidated by a subsequent call to
- ** [sqlite3_value_bytes()], [sqlite3_value_bytes16()], [sqlite3_value_text()],
- ** or [sqlite3_value_text16()].
- **
- ** These routines must be called from the same thread as
- ** the SQL function that supplied the [sqlite3_value*] parameters.
- */
- SQLITE_API const void *SQLITE_STDCALL sqlite3_value_blob(sqlite3_value*);
- SQLITE_API int SQLITE_STDCALL sqlite3_value_bytes(sqlite3_value*);
- SQLITE_API int SQLITE_STDCALL sqlite3_value_bytes16(sqlite3_value*);
- SQLITE_API double SQLITE_STDCALL sqlite3_value_double(sqlite3_value*);
- SQLITE_API int SQLITE_STDCALL sqlite3_value_int(sqlite3_value*);
- SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_value_int64(sqlite3_value*);
- SQLITE_API const unsigned char *SQLITE_STDCALL sqlite3_value_text(sqlite3_value*);
- SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16(sqlite3_value*);
- SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16le(sqlite3_value*);
- SQLITE_API const void *SQLITE_STDCALL sqlite3_value_text16be(sqlite3_value*);
- SQLITE_API int SQLITE_STDCALL sqlite3_value_type(sqlite3_value*);
- SQLITE_API int SQLITE_STDCALL sqlite3_value_numeric_type(sqlite3_value*);
- /*
- ** CAPI3REF: Copy And Free SQL Values
- ** METHOD: sqlite3_value
- **
- ** ^The sqlite3_value_dup(V) interface makes a copy of the [sqlite3_value]
- ** object D and returns a pointer to that copy. ^The [sqlite3_value] returned
- ** is a [protected sqlite3_value] object even if the input is not.
- ** ^The sqlite3_value_dup(V) interface returns NULL if V is NULL or if a
- ** memory allocation fails.
- **
- ** ^The sqlite3_value_free(V) interface frees an [sqlite3_value] object
- ** previously obtained from [sqlite3_value_dup()]. ^If V is a NULL pointer
- ** then sqlite3_value_free(V) is a harmless no-op.
- */
- SQLITE_API SQLITE_EXPERIMENTAL sqlite3_value *SQLITE_STDCALL sqlite3_value_dup(const sqlite3_value*);
- SQLITE_API SQLITE_EXPERIMENTAL void SQLITE_STDCALL sqlite3_value_free(sqlite3_value*);
- /*
- ** CAPI3REF: Obtain Aggregate Function Context
- ** METHOD: sqlite3_context
- **
- ** Implementations of aggregate SQL functions use this
- ** routine to allocate memory for storing their state.
- **
- ** ^The first time the sqlite3_aggregate_context(C,N) routine is called
- ** for a particular aggregate function, SQLite
- ** allocates N of memory, zeroes out that memory, and returns a pointer
- ** to the new memory. ^On second and subsequent calls to
- ** sqlite3_aggregate_context() for the same aggregate function instance,
- ** the same buffer is returned. Sqlite3_aggregate_context() is normally
- ** called once for each invocation of the xStep callback and then one
- ** last time when the xFinal callback is invoked. ^(When no rows match
- ** an aggregate query, the xStep() callback of the aggregate function
- ** implementation is never called and xFinal() is called exactly once.
- ** In those cases, sqlite3_aggregate_context() might be called for the
- ** first time from within xFinal().)^
- **
- ** ^The sqlite3_aggregate_context(C,N) routine returns a NULL pointer
- ** when first called if N is less than or equal to zero or if a memory
- ** allocate error occurs.
- **
- ** ^(The amount of space allocated by sqlite3_aggregate_context(C,N) is
- ** determined by the N parameter on first successful call. Changing the
- ** value of N in subsequent call to sqlite3_aggregate_context() within
- ** the same aggregate function instance will not resize the memory
- ** allocation.)^ Within the xFinal callback, it is customary to set
- ** N=0 in calls to sqlite3_aggregate_context(C,N) so that no
- ** pointless memory allocations occur.
- **
- ** ^SQLite automatically frees the memory allocated by
- ** sqlite3_aggregate_context() when the aggregate query concludes.
- **
- ** The first parameter must be a copy of the
- ** [sqlite3_context | SQL function context] that is the first parameter
- ** to the xStep or xFinal callback routine that implements the aggregate
- ** function.
- **
- ** This routine must be called from the same thread in which
- ** the aggregate SQL function is running.
- */
- SQLITE_API void *SQLITE_STDCALL sqlite3_aggregate_context(sqlite3_context*, int nBytes);
- /*
- ** CAPI3REF: User Data For Functions
- ** METHOD: sqlite3_context
- **
- ** ^The sqlite3_user_data() interface returns a copy of
- ** the pointer that was the pUserData parameter (the 5th parameter)
- ** of the [sqlite3_create_function()]
- ** and [sqlite3_create_function16()] routines that originally
- ** registered the application defined function.
- **
- ** This routine must be called from the same thread in which
- ** the application-defined function is running.
- */
- SQLITE_API void *SQLITE_STDCALL sqlite3_user_data(sqlite3_context*);
- /*
- ** CAPI3REF: Database Connection For Functions
- ** METHOD: sqlite3_context
- **
- ** ^The sqlite3_context_db_handle() interface returns a copy of
- ** the pointer to the [database connection] (the 1st parameter)
- ** of the [sqlite3_create_function()]
- ** and [sqlite3_create_function16()] routines that originally
- ** registered the application defined function.
- */
- SQLITE_API sqlite3 *SQLITE_STDCALL sqlite3_context_db_handle(sqlite3_context*);
- /*
- ** CAPI3REF: Function Auxiliary Data
- ** METHOD: sqlite3_context
- **
- ** These functions may be used by (non-aggregate) SQL functions to
- ** associate metadata with argument values. If the same value is passed to
- ** multiple invocations of the same SQL function during query execution, under
- ** some circumstances the associated metadata may be preserved. An example
- ** of where this might be useful is in a regular-expression matching
- ** function. The compiled version of the regular expression can be stored as
- ** metadata associated with the pattern string.
- ** Then as long as the pattern string remains the same,
- ** the compiled regular expression can be reused on multiple
- ** invocations of the same function.
- **
- ** ^The sqlite3_get_auxdata() interface returns a pointer to the metadata
- ** associated by the sqlite3_set_auxdata() function with the Nth argument
- ** value to the application-defined function. ^If there is no metadata
- ** associated with the function argument, this sqlite3_get_auxdata() interface
- ** returns a NULL pointer.
- **
- ** ^The sqlite3_set_auxdata(C,N,P,X) interface saves P as metadata for the N-th
- ** argument of the application-defined function. ^Subsequent
- ** calls to sqlite3_get_auxdata(C,N) return P from the most recent
- ** sqlite3_set_auxdata(C,N,P,X) call if the metadata is still valid or
- ** NULL if the metadata has been discarded.
- ** ^After each call to sqlite3_set_auxdata(C,N,P,X) where X is not NULL,
- ** SQLite will invoke the destructor function X with parameter P exactly
- ** once, when the metadata is discarded.
- ** SQLite is free to discard the metadata at any time, including: <ul>
- ** <li> when the corresponding function parameter changes, or
- ** <li> when [sqlite3_reset()] or [sqlite3_finalize()] is called for the
- ** SQL statement, or
- ** <li> when sqlite3_set_auxdata() is invoked again on the same parameter, or
- ** <li> during the original sqlite3_set_auxdata() call when a memory
- ** allocation error occurs. </ul>)^
- **
- ** Note the last bullet in particular. The destructor X in
- ** sqlite3_set_auxdata(C,N,P,X) might be called immediately, before the
- ** sqlite3_set_auxdata() interface even returns. Hence sqlite3_set_auxdata()
- ** should be called near the end of the function implementation and the
- ** function implementation should not make any use of P after
- ** sqlite3_set_auxdata() has been called.
- **
- ** ^(In practice, metadata is preserved between function calls for
- ** function parameters that are compile-time constants, including literal
- ** values and [parameters] and expressions composed from the same.)^
- **
- ** These routines must be called from the same thread in which
- ** the SQL function is running.
- */
- SQLITE_API void *SQLITE_STDCALL sqlite3_get_auxdata(sqlite3_context*, int N);
- SQLITE_API void SQLITE_STDCALL sqlite3_set_auxdata(sqlite3_context*, int N, void*, void (*)(void*));
- /*
- ** CAPI3REF: Constants Defining Special Destructor Behavior
- **
- ** These are special values for the destructor that is passed in as the
- ** final argument to routines like [sqlite3_result_blob()]. ^If the destructor
- ** argument is SQLITE_STATIC, it means that the content pointer is constant
- ** and will never change. It does not need to be destroyed. ^The
- ** SQLITE_TRANSIENT value means that the content will likely change in
- ** the near future and that SQLite should make its own private copy of
- ** the content before returning.
- **
- ** The typedef is necessary to work around problems in certain
- ** C++ compilers.
- */
- typedef void (*sqlite3_destructor_type)(void*);
- #define SQLITE_STATIC ((sqlite3_destructor_type)0)
- #define SQLITE_TRANSIENT ((sqlite3_destructor_type)-1)
- /*
- ** CAPI3REF: Setting The Result Of An SQL Function
- ** METHOD: sqlite3_context
- **
- ** These routines are used by the xFunc or xFinal callbacks that
- ** implement SQL functions and aggregates. See
- ** [sqlite3_create_function()] and [sqlite3_create_function16()]
- ** for additional information.
- **
- ** These functions work very much like the [parameter binding] family of
- ** functions used to bind values to host parameters in prepared statements.
- ** Refer to the [SQL parameter] documentation for additional information.
- **
- ** ^The sqlite3_result_blob() interface sets the result from
- ** an application-defined function to be the BLOB whose content is pointed
- ** to by the second parameter and which is N bytes long where N is the
- ** third parameter.
- **
- ** ^The sqlite3_result_zeroblob(C,N) and sqlite3_result_zeroblob64(C,N)
- ** interfaces set the result of the application-defined function to be
- ** a BLOB containing all zero bytes and N bytes in size.
- **
- ** ^The sqlite3_result_double() interface sets the result from
- ** an application-defined function to be a floating point value specified
- ** by its 2nd argument.
- **
- ** ^The sqlite3_result_error() and sqlite3_result_error16() functions
- ** cause the implemented SQL function to throw an exception.
- ** ^SQLite uses the string pointed to by the
- ** 2nd parameter of sqlite3_result_error() or sqlite3_result_error16()
- ** as the text of an error message. ^SQLite interprets the error
- ** message string from sqlite3_result_error() as UTF-8. ^SQLite
- ** interprets the string from sqlite3_result_error16() as UTF-16 in native
- ** byte order. ^If the third parameter to sqlite3_result_error()
- ** or sqlite3_result_error16() is negative then SQLite takes as the error
- ** message all text up through the first zero character.
- ** ^If the third parameter to sqlite3_result_error() or
- ** sqlite3_result_error16() is non-negative then SQLite takes that many
- ** bytes (not characters) from the 2nd parameter as the error message.
- ** ^The sqlite3_result_error() and sqlite3_result_error16()
- ** routines make a private copy of the error message text before
- ** they return. Hence, the calling function can deallocate or
- ** modify the text after they return without harm.
- ** ^The sqlite3_result_error_code() function changes the error code
- ** returned by SQLite as a result of an error in a function. ^By default,
- ** the error code is SQLITE_ERROR. ^A subsequent call to sqlite3_result_error()
- ** or sqlite3_result_error16() resets the error code to SQLITE_ERROR.
- **
- ** ^The sqlite3_result_error_toobig() interface causes SQLite to throw an
- ** error indicating that a string or BLOB is too long to represent.
- **
- ** ^The sqlite3_result_error_nomem() interface causes SQLite to throw an
- ** error indicating that a memory allocation failed.
- **
- ** ^The sqlite3_result_int() interface sets the return value
- ** of the application-defined function to be the 32-bit signed integer
- ** value given in the 2nd argument.
- ** ^The sqlite3_result_int64() interface sets the return value
- ** of the application-defined function to be the 64-bit signed integer
- ** value given in the 2nd argument.
- **
- ** ^The sqlite3_result_null() interface sets the return value
- ** of the application-defined function to be NULL.
- **
- ** ^The sqlite3_result_text(), sqlite3_result_text16(),
- ** sqlite3_result_text16le(), and sqlite3_result_text16be() interfaces
- ** set the return value of the application-defined function to be
- ** a text string which is represented as UTF-8, UTF-16 native byte order,
- ** UTF-16 little endian, or UTF-16 big endian, respectively.
- ** ^The sqlite3_result_text64() interface sets the return value of an
- ** application-defined function to be a text string in an encoding
- ** specified by the fifth (and last) parameter, which must be one
- ** of [SQLITE_UTF8], [SQLITE_UTF16], [SQLITE_UTF16BE], or [SQLITE_UTF16LE].
- ** ^SQLite takes the text result from the application from
- ** the 2nd parameter of the sqlite3_result_text* interfaces.
- ** ^If the 3rd parameter to the sqlite3_result_text* interfaces
- ** is negative, then SQLite takes result text from the 2nd parameter
- ** through the first zero character.
- ** ^If the 3rd parameter to the sqlite3_result_text* interfaces
- ** is non-negative, then as many bytes (not characters) of the text
- ** pointed to by the 2nd parameter are taken as the application-defined
- ** function result. If the 3rd parameter is non-negative, then it
- ** must be the byte offset into the string where the NUL terminator would
- ** appear if the string where NUL terminated. If any NUL characters occur
- ** in the string at a byte offset that is less than the value of the 3rd
- ** parameter, then the resulting string will contain embedded NULs and the
- ** result of expressions operating on strings with embedded NULs is undefined.
- ** ^If the 4th parameter to the sqlite3_result_text* interfaces
- ** or sqlite3_result_blob is a non-NULL pointer, then SQLite calls that
- ** function as the destructor on the text or BLOB result when it has
- ** finished using that result.
- ** ^If the 4th parameter to the sqlite3_result_text* interfaces or to
- ** sqlite3_result_blob is the special constant SQLITE_STATIC, then SQLite
- ** assumes that the text or BLOB result is in constant space and does not
- ** copy the content of the parameter nor call a destructor on the content
- ** when it has finished using that result.
- ** ^If the 4th parameter to the sqlite3_result_text* interfaces
- ** or sqlite3_result_blob is the special constant SQLITE_TRANSIENT
- ** then SQLite makes a copy of the result into space obtained from
- ** from [sqlite3_malloc()] before it returns.
- **
- ** ^The sqlite3_result_value() interface sets the result of
- ** the application-defined function to be a copy of the
- ** [unprotected sqlite3_value] object specified by the 2nd parameter. ^The
- ** sqlite3_result_value() interface makes a copy of the [sqlite3_value]
- ** so that the [sqlite3_value] specified in the parameter may change or
- ** be deallocated after sqlite3_result_value() returns without harm.
- ** ^A [protected sqlite3_value] object may always be used where an
- ** [unprotected sqlite3_value] object is required, so either
- ** kind of [sqlite3_value] object can be used with this interface.
- **
- ** If these routines are called from within the different thread
- ** than the one containing the application-defined function that received
- ** the [sqlite3_context] pointer, the results are undefined.
- */
- SQLITE_API void SQLITE_STDCALL sqlite3_result_blob(sqlite3_context*, const void*, int, void(*)(void*));
- SQLITE_API void SQLITE_STDCALL sqlite3_result_blob64(sqlite3_context*,const void*,
- sqlite3_uint64,void(*)(void*));
- SQLITE_API void SQLITE_STDCALL sqlite3_result_double(sqlite3_context*, double);
- SQLITE_API void SQLITE_STDCALL sqlite3_result_error(sqlite3_context*, const char*, int);
- SQLITE_API void SQLITE_STDCALL sqlite3_result_error16(sqlite3_context*, const void*, int);
- SQLITE_API void SQLITE_STDCALL sqlite3_result_error_toobig(sqlite3_context*);
- SQLITE_API void SQLITE_STDCALL sqlite3_result_error_nomem(sqlite3_context*);
- SQLITE_API void SQLITE_STDCALL sqlite3_result_error_code(sqlite3_context*, int);
- SQLITE_API void SQLITE_STDCALL sqlite3_result_int(sqlite3_context*, int);
- SQLITE_API void SQLITE_STDCALL sqlite3_result_int64(sqlite3_context*, sqlite3_int64);
- SQLITE_API void SQLITE_STDCALL sqlite3_result_null(sqlite3_context*);
- SQLITE_API void SQLITE_STDCALL sqlite3_result_text(sqlite3_context*, const char*, int, void(*)(void*));
- SQLITE_API void SQLITE_STDCALL sqlite3_result_text64(sqlite3_context*, const char*,sqlite3_uint64,
- void(*)(void*), unsigned char encoding);
- SQLITE_API void SQLITE_STDCALL sqlite3_result_text16(sqlite3_context*, const void*, int, void(*)(void*));
- SQLITE_API void SQLITE_STDCALL sqlite3_result_text16le(sqlite3_context*, const void*, int,void(*)(void*));
- SQLITE_API void SQLITE_STDCALL sqlite3_result_text16be(sqlite3_context*, const void*, int,void(*)(void*));
- SQLITE_API void SQLITE_STDCALL sqlite3_result_value(sqlite3_context*, sqlite3_value*);
- SQLITE_API void SQLITE_STDCALL sqlite3_result_zeroblob(sqlite3_context*, int n);
- SQLITE_API int SQLITE_STDCALL sqlite3_result_zeroblob64(sqlite3_context*, sqlite3_uint64 n);
- /*
- ** CAPI3REF: Define New Collating Sequences
- ** METHOD: sqlite3
- **
- ** ^These functions add, remove, or modify a [collation] associated
- ** with the [database connection] specified as the first argument.
- **
- ** ^The name of the collation is a UTF-8 string
- ** for sqlite3_create_collation() and sqlite3_create_collation_v2()
- ** and a UTF-16 string in native byte order for sqlite3_create_collation16().
- ** ^Collation names that compare equal according to [sqlite3_strnicmp()] are
- ** considered to be the same name.
- **
- ** ^(The third argument (eTextRep) must be one of the constants:
- ** <ul>
- ** <li> [SQLITE_UTF8],
- ** <li> [SQLITE_UTF16LE],
- ** <li> [SQLITE_UTF16BE],
- ** <li> [SQLITE_UTF16], or
- ** <li> [SQLITE_UTF16_ALIGNED].
- ** </ul>)^
- ** ^The eTextRep argument determines the encoding of strings passed
- ** to the collating function callback, xCallback.
- ** ^The [SQLITE_UTF16] and [SQLITE_UTF16_ALIGNED] values for eTextRep
- ** force strings to be UTF16 with native byte order.
- ** ^The [SQLITE_UTF16_ALIGNED] value for eTextRep forces strings to begin
- ** on an even byte address.
- **
- ** ^The fourth argument, pArg, is an application data pointer that is passed
- ** through as the first argument to the collating function callback.
- **
- ** ^The fifth argument, xCallback, is a pointer to the collating function.
- ** ^Multiple collating functions can be registered using the same name but
- ** with different eTextRep parameters and SQLite will use whichever
- ** function requires the least amount of data transformation.
- ** ^If the xCallback argument is NULL then the collating function is
- ** deleted. ^When all collating functions having the same name are deleted,
- ** that collation is no longer usable.
- **
- ** ^The collating function callback is invoked with a copy of the pArg
- ** application data pointer and with two strings in the encoding specified
- ** by the eTextRep argument. The collating function must return an
- ** integer that is negative, zero, or positive
- ** if the first string is less than, equal to, or greater than the second,
- ** respectively. A collating function must always return the same answer
- ** given the same inputs. If two or more collating functions are registered
- ** to the same collation name (using different eTextRep values) then all
- ** must give an equivalent answer when invoked with equivalent strings.
- ** The collating function must obey the following properties for all
- ** strings A, B, and C:
- **
- ** <ol>
- ** <li> If A==B then B==A.
- ** <li> If A==B and B==C then A==C.
- ** <li> If A<B THEN B>A.
- ** <li> If A<B and B<C then A<C.
- ** </ol>
- **
- ** If a collating function fails any of the above constraints and that
- ** collating function is registered and used, then the behavior of SQLite
- ** is undefined.
- **
- ** ^The sqlite3_create_collation_v2() works like sqlite3_create_collation()
- ** with the addition that the xDestroy callback is invoked on pArg when
- ** the collating function is deleted.
- ** ^Collating functions are deleted when they are overridden by later
- ** calls to the collation creation functions or when the
- ** [database connection] is closed using [sqlite3_close()].
- **
- ** ^The xDestroy callback is <u>not</u> called if the
- ** sqlite3_create_collation_v2() function fails. Applications that invoke
- ** sqlite3_create_collation_v2() with a non-NULL xDestroy argument should
- ** check the return code and dispose of the application data pointer
- ** themselves rather than expecting SQLite to deal with it for them.
- ** This is different from every other SQLite interface. The inconsistency
- ** is unfortunate but cannot be changed without breaking backwards
- ** compatibility.
- **
- ** See also: [sqlite3_collation_needed()] and [sqlite3_collation_needed16()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_create_collation(
- sqlite3*,
- const char *zName,
- int eTextRep,
- void *pArg,
- int(*xCompare)(void*,int,const void*,int,const void*)
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_create_collation_v2(
- sqlite3*,
- const char *zName,
- int eTextRep,
- void *pArg,
- int(*xCompare)(void*,int,const void*,int,const void*),
- void(*xDestroy)(void*)
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_create_collation16(
- sqlite3*,
- const void *zName,
- int eTextRep,
- void *pArg,
- int(*xCompare)(void*,int,const void*,int,const void*)
- );
- /*
- ** CAPI3REF: Collation Needed Callbacks
- ** METHOD: sqlite3
- **
- ** ^To avoid having to register all collation sequences before a database
- ** can be used, a single callback function may be registered with the
- ** [database connection] to be invoked whenever an undefined collation
- ** sequence is required.
- **
- ** ^If the function is registered using the sqlite3_collation_needed() API,
- ** then it is passed the names of undefined collation sequences as strings
- ** encoded in UTF-8. ^If sqlite3_collation_needed16() is used,
- ** the names are passed as UTF-16 in machine native byte order.
- ** ^A call to either function replaces the existing collation-needed callback.
- **
- ** ^(When the callback is invoked, the first argument passed is a copy
- ** of the second argument to sqlite3_collation_needed() or
- ** sqlite3_collation_needed16(). The second argument is the database
- ** connection. The third argument is one of [SQLITE_UTF8], [SQLITE_UTF16BE],
- ** or [SQLITE_UTF16LE], indicating the most desirable form of the collation
- ** sequence function required. The fourth parameter is the name of the
- ** required collation sequence.)^
- **
- ** The callback function should register the desired collation using
- ** [sqlite3_create_collation()], [sqlite3_create_collation16()], or
- ** [sqlite3_create_collation_v2()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_collation_needed(
- sqlite3*,
- void*,
- void(*)(void*,sqlite3*,int eTextRep,const char*)
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_collation_needed16(
- sqlite3*,
- void*,
- void(*)(void*,sqlite3*,int eTextRep,const void*)
- );
- #ifdef SQLITE_HAS_CODEC
- /*
- ** Specify the key for an encrypted database. This routine should be
- ** called right after sqlite3_open().
- **
- ** The code to implement this API is not available in the public release
- ** of SQLite.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_key(
- sqlite3 *db, /* Database to be rekeyed */
- const void *pKey, int nKey /* The key */
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_key_v2(
- sqlite3 *db, /* Database to be rekeyed */
- const char *zDbName, /* Name of the database */
- const void *pKey, int nKey /* The key */
- );
- /*
- ** Change the key on an open database. If the current database is not
- ** encrypted, this routine will encrypt it. If pNew==0 or nNew==0, the
- ** database is decrypted.
- **
- ** The code to implement this API is not available in the public release
- ** of SQLite.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_rekey(
- sqlite3 *db, /* Database to be rekeyed */
- const void *pKey, int nKey /* The new key */
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_rekey_v2(
- sqlite3 *db, /* Database to be rekeyed */
- const char *zDbName, /* Name of the database */
- const void *pKey, int nKey /* The new key */
- );
- /*
- ** Specify the activation key for a SEE database. Unless
- ** activated, none of the SEE routines will work.
- */
- SQLITE_API void SQLITE_STDCALL sqlite3_activate_see(
- const char *zPassPhrase /* Activation phrase */
- );
- #endif
- #ifdef SQLITE_ENABLE_CEROD
- /*
- ** Specify the activation key for a CEROD database. Unless
- ** activated, none of the CEROD routines will work.
- */
- SQLITE_API void SQLITE_STDCALL sqlite3_activate_cerod(
- const char *zPassPhrase /* Activation phrase */
- );
- #endif
- /*
- ** CAPI3REF: Suspend Execution For A Short Time
- **
- ** The sqlite3_sleep() function causes the current thread to suspend execution
- ** for at least a number of milliseconds specified in its parameter.
- **
- ** If the operating system does not support sleep requests with
- ** millisecond time resolution, then the time will be rounded up to
- ** the nearest second. The number of milliseconds of sleep actually
- ** requested from the operating system is returned.
- **
- ** ^SQLite implements this interface by calling the xSleep()
- ** method of the default [sqlite3_vfs] object. If the xSleep() method
- ** of the default VFS is not implemented correctly, or not implemented at
- ** all, then the behavior of sqlite3_sleep() may deviate from the description
- ** in the previous paragraphs.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_sleep(int);
- /*
- ** CAPI3REF: Name Of The Folder Holding Temporary Files
- **
- ** ^(If this global variable is made to point to a string which is
- ** the name of a folder (a.k.a. directory), then all temporary files
- ** created by SQLite when using a built-in [sqlite3_vfs | VFS]
- ** will be placed in that directory.)^ ^If this variable
- ** is a NULL pointer, then SQLite performs a search for an appropriate
- ** temporary file directory.
- **
- ** Applications are strongly discouraged from using this global variable.
- ** It is required to set a temporary folder on Windows Runtime (WinRT).
- ** But for all other platforms, it is highly recommended that applications
- ** neither read nor write this variable. This global variable is a relic
- ** that exists for backwards compatibility of legacy applications and should
- ** be avoided in new projects.
- **
- ** It is not safe to read or modify this variable in more than one
- ** thread at a time. It is not safe to read or modify this variable
- ** if a [database connection] is being used at the same time in a separate
- ** thread.
- ** It is intended that this variable be set once
- ** as part of process initialization and before any SQLite interface
- ** routines have been called and that this variable remain unchanged
- ** thereafter.
- **
- ** ^The [temp_store_directory pragma] may modify this variable and cause
- ** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
- ** the [temp_store_directory pragma] always assumes that any string
- ** that this variable points to is held in memory obtained from
- ** [sqlite3_malloc] and the pragma may attempt to free that memory
- ** using [sqlite3_free].
- ** Hence, if this variable is modified directly, either it should be
- ** made NULL or made to point to memory obtained from [sqlite3_malloc]
- ** or else the use of the [temp_store_directory pragma] should be avoided.
- ** Except when requested by the [temp_store_directory pragma], SQLite
- ** does not free the memory that sqlite3_temp_directory points to. If
- ** the application wants that memory to be freed, it must do
- ** so itself, taking care to only do so after all [database connection]
- ** objects have been destroyed.
- **
- ** <b>Note to Windows Runtime users:</b> The temporary directory must be set
- ** prior to calling [sqlite3_open] or [sqlite3_open_v2]. Otherwise, various
- ** features that require the use of temporary files may fail. Here is an
- ** example of how to do this using C++ with the Windows Runtime:
- **
- ** <blockquote><pre>
- ** LPCWSTR zPath = Windows::Storage::ApplicationData::Current->
- ** TemporaryFolder->Path->Data();
- ** char zPathBuf[MAX_PATH + 1];
- ** memset(zPathBuf, 0, sizeof(zPathBuf));
- ** WideCharToMultiByte(CP_UTF8, 0, zPath, -1, zPathBuf, sizeof(zPathBuf),
- ** NULL, NULL);
- ** sqlite3_temp_directory = sqlite3_mprintf("%s", zPathBuf);
- ** </pre></blockquote>
- */
- SQLITE_API SQLITE_EXTERN char *sqlite3_temp_directory;
- /*
- ** CAPI3REF: Name Of The Folder Holding Database Files
- **
- ** ^(If this global variable is made to point to a string which is
- ** the name of a folder (a.k.a. directory), then all database files
- ** specified with a relative pathname and created or accessed by
- ** SQLite when using a built-in windows [sqlite3_vfs | VFS] will be assumed
- ** to be relative to that directory.)^ ^If this variable is a NULL
- ** pointer, then SQLite assumes that all database files specified
- ** with a relative pathname are relative to the current directory
- ** for the process. Only the windows VFS makes use of this global
- ** variable; it is ignored by the unix VFS.
- **
- ** Changing the value of this variable while a database connection is
- ** open can result in a corrupt database.
- **
- ** It is not safe to read or modify this variable in more than one
- ** thread at a time. It is not safe to read or modify this variable
- ** if a [database connection] is being used at the same time in a separate
- ** thread.
- ** It is intended that this variable be set once
- ** as part of process initialization and before any SQLite interface
- ** routines have been called and that this variable remain unchanged
- ** thereafter.
- **
- ** ^The [data_store_directory pragma] may modify this variable and cause
- ** it to point to memory obtained from [sqlite3_malloc]. ^Furthermore,
- ** the [data_store_directory pragma] always assumes that any string
- ** that this variable points to is held in memory obtained from
- ** [sqlite3_malloc] and the pragma may attempt to free that memory
- ** using [sqlite3_free].
- ** Hence, if this variable is modified directly, either it should be
- ** made NULL or made to point to memory obtained from [sqlite3_malloc]
- ** or else the use of the [data_store_directory pragma] should be avoided.
- */
- SQLITE_API SQLITE_EXTERN char *sqlite3_data_directory;
- /*
- ** CAPI3REF: Test For Auto-Commit Mode
- ** KEYWORDS: {autocommit mode}
- ** METHOD: sqlite3
- **
- ** ^The sqlite3_get_autocommit() interface returns non-zero or
- ** zero if the given database connection is or is not in autocommit mode,
- ** respectively. ^Autocommit mode is on by default.
- ** ^Autocommit mode is disabled by a [BEGIN] statement.
- ** ^Autocommit mode is re-enabled by a [COMMIT] or [ROLLBACK].
- **
- ** If certain kinds of errors occur on a statement within a multi-statement
- ** transaction (errors including [SQLITE_FULL], [SQLITE_IOERR],
- ** [SQLITE_NOMEM], [SQLITE_BUSY], and [SQLITE_INTERRUPT]) then the
- ** transaction might be rolled back automatically. The only way to
- ** find out whether SQLite automatically rolled back the transaction after
- ** an error is to use this function.
- **
- ** If another thread changes the autocommit status of the database
- ** connection while this routine is running, then the return value
- ** is undefined.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_get_autocommit(sqlite3*);
- /*
- ** CAPI3REF: Find The Database Handle Of A Prepared Statement
- ** METHOD: sqlite3_stmt
- **
- ** ^The sqlite3_db_handle interface returns the [database connection] handle
- ** to which a [prepared statement] belongs. ^The [database connection]
- ** returned by sqlite3_db_handle is the same [database connection]
- ** that was the first argument
- ** to the [sqlite3_prepare_v2()] call (or its variants) that was used to
- ** create the statement in the first place.
- */
- SQLITE_API sqlite3 *SQLITE_STDCALL sqlite3_db_handle(sqlite3_stmt*);
- /*
- ** CAPI3REF: Return The Filename For A Database Connection
- ** METHOD: sqlite3
- **
- ** ^The sqlite3_db_filename(D,N) interface returns a pointer to a filename
- ** associated with database N of connection D. ^The main database file
- ** has the name "main". If there is no attached database N on the database
- ** connection D, or if database N is a temporary or in-memory database, then
- ** a NULL pointer is returned.
- **
- ** ^The filename returned by this function is the output of the
- ** xFullPathname method of the [VFS]. ^In other words, the filename
- ** will be an absolute pathname, even if the filename used
- ** to open the database originally was a URI or relative pathname.
- */
- SQLITE_API const char *SQLITE_STDCALL sqlite3_db_filename(sqlite3 *db, const char *zDbName);
- /*
- ** CAPI3REF: Determine if a database is read-only
- ** METHOD: sqlite3
- **
- ** ^The sqlite3_db_readonly(D,N) interface returns 1 if the database N
- ** of connection D is read-only, 0 if it is read/write, or -1 if N is not
- ** the name of a database on connection D.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_db_readonly(sqlite3 *db, const char *zDbName);
- /*
- ** CAPI3REF: Find the next prepared statement
- ** METHOD: sqlite3
- **
- ** ^This interface returns a pointer to the next [prepared statement] after
- ** pStmt associated with the [database connection] pDb. ^If pStmt is NULL
- ** then this interface returns a pointer to the first prepared statement
- ** associated with the database connection pDb. ^If no prepared statement
- ** satisfies the conditions of this routine, it returns NULL.
- **
- ** The [database connection] pointer D in a call to
- ** [sqlite3_next_stmt(D,S)] must refer to an open database
- ** connection and in particular must not be a NULL pointer.
- */
- SQLITE_API sqlite3_stmt *SQLITE_STDCALL sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt);
- /*
- ** CAPI3REF: Commit And Rollback Notification Callbacks
- ** METHOD: sqlite3
- **
- ** ^The sqlite3_commit_hook() interface registers a callback
- ** function to be invoked whenever a transaction is [COMMIT | committed].
- ** ^Any callback set by a previous call to sqlite3_commit_hook()
- ** for the same database connection is overridden.
- ** ^The sqlite3_rollback_hook() interface registers a callback
- ** function to be invoked whenever a transaction is [ROLLBACK | rolled back].
- ** ^Any callback set by a previous call to sqlite3_rollback_hook()
- ** for the same database connection is overridden.
- ** ^The pArg argument is passed through to the callback.
- ** ^If the callback on a commit hook function returns non-zero,
- ** then the commit is converted into a rollback.
- **
- ** ^The sqlite3_commit_hook(D,C,P) and sqlite3_rollback_hook(D,C,P) functions
- ** return the P argument from the previous call of the same function
- ** on the same [database connection] D, or NULL for
- ** the first call for each function on D.
- **
- ** The commit and rollback hook callbacks are not reentrant.
- ** The callback implementation must not do anything that will modify
- ** the database connection that invoked the callback. Any actions
- ** to modify the database connection must be deferred until after the
- ** completion of the [sqlite3_step()] call that triggered the commit
- ** or rollback hook in the first place.
- ** Note that running any other SQL statements, including SELECT statements,
- ** or merely calling [sqlite3_prepare_v2()] and [sqlite3_step()] will modify
- ** the database connections for the meaning of "modify" in this paragraph.
- **
- ** ^Registering a NULL function disables the callback.
- **
- ** ^When the commit hook callback routine returns zero, the [COMMIT]
- ** operation is allowed to continue normally. ^If the commit hook
- ** returns non-zero, then the [COMMIT] is converted into a [ROLLBACK].
- ** ^The rollback hook is invoked on a rollback that results from a commit
- ** hook returning non-zero, just as it would be with any other rollback.
- **
- ** ^For the purposes of this API, a transaction is said to have been
- ** rolled back if an explicit "ROLLBACK" statement is executed, or
- ** an error or constraint causes an implicit rollback to occur.
- ** ^The rollback callback is not invoked if a transaction is
- ** automatically rolled back because the database connection is closed.
- **
- ** See also the [sqlite3_update_hook()] interface.
- */
- SQLITE_API void *SQLITE_STDCALL sqlite3_commit_hook(sqlite3*, int(*)(void*), void*);
- SQLITE_API void *SQLITE_STDCALL sqlite3_rollback_hook(sqlite3*, void(*)(void *), void*);
- /*
- ** CAPI3REF: Data Change Notification Callbacks
- ** METHOD: sqlite3
- **
- ** ^The sqlite3_update_hook() interface registers a callback function
- ** with the [database connection] identified by the first argument
- ** to be invoked whenever a row is updated, inserted or deleted in
- ** a rowid table.
- ** ^Any callback set by a previous call to this function
- ** for the same database connection is overridden.
- **
- ** ^The second argument is a pointer to the function to invoke when a
- ** row is updated, inserted or deleted in a rowid table.
- ** ^The first argument to the callback is a copy of the third argument
- ** to sqlite3_update_hook().
- ** ^The second callback argument is one of [SQLITE_INSERT], [SQLITE_DELETE],
- ** or [SQLITE_UPDATE], depending on the operation that caused the callback
- ** to be invoked.
- ** ^The third and fourth arguments to the callback contain pointers to the
- ** database and table name containing the affected row.
- ** ^The final callback parameter is the [rowid] of the row.
- ** ^In the case of an update, this is the [rowid] after the update takes place.
- **
- ** ^(The update hook is not invoked when internal system tables are
- ** modified (i.e. sqlite_master and sqlite_sequence).)^
- ** ^The update hook is not invoked when [WITHOUT ROWID] tables are modified.
- **
- ** ^In the current implementation, the update hook
- ** is not invoked when duplication rows are deleted because of an
- ** [ON CONFLICT | ON CONFLICT REPLACE] clause. ^Nor is the update hook
- ** invoked when rows are deleted using the [truncate optimization].
- ** The exceptions defined in this paragraph might change in a future
- ** release of SQLite.
- **
- ** The update hook implementation must not do anything that will modify
- ** the database connection that invoked the update hook. Any actions
- ** to modify the database connection must be deferred until after the
- ** completion of the [sqlite3_step()] call that triggered the update hook.
- ** Note that [sqlite3_prepare_v2()] and [sqlite3_step()] both modify their
- ** database connections for the meaning of "modify" in this paragraph.
- **
- ** ^The sqlite3_update_hook(D,C,P) function
- ** returns the P argument from the previous call
- ** on the same [database connection] D, or NULL for
- ** the first call on D.
- **
- ** See also the [sqlite3_commit_hook()] and [sqlite3_rollback_hook()]
- ** interfaces.
- */
- SQLITE_API void *SQLITE_STDCALL sqlite3_update_hook(
- sqlite3*,
- void(*)(void *,int ,char const *,char const *,sqlite3_int64),
- void*
- );
- /*
- ** CAPI3REF: Enable Or Disable Shared Pager Cache
- **
- ** ^(This routine enables or disables the sharing of the database cache
- ** and schema data structures between [database connection | connections]
- ** to the same database. Sharing is enabled if the argument is true
- ** and disabled if the argument is false.)^
- **
- ** ^Cache sharing is enabled and disabled for an entire process.
- ** This is a change as of SQLite version 3.5.0. In prior versions of SQLite,
- ** sharing was enabled or disabled for each thread separately.
- **
- ** ^(The cache sharing mode set by this interface effects all subsequent
- ** calls to [sqlite3_open()], [sqlite3_open_v2()], and [sqlite3_open16()].
- ** Existing database connections continue use the sharing mode
- ** that was in effect at the time they were opened.)^
- **
- ** ^(This routine returns [SQLITE_OK] if shared cache was enabled or disabled
- ** successfully. An [error code] is returned otherwise.)^
- **
- ** ^Shared cache is disabled by default. But this might change in
- ** future releases of SQLite. Applications that care about shared
- ** cache setting should set it explicitly.
- **
- ** Note: This method is disabled on MacOS X 10.7 and iOS version 5.0
- ** and will always return SQLITE_MISUSE. On those systems,
- ** shared cache mode should be enabled per-database connection via
- ** [sqlite3_open_v2()] with [SQLITE_OPEN_SHAREDCACHE].
- **
- ** This interface is threadsafe on processors where writing a
- ** 32-bit integer is atomic.
- **
- ** See Also: [SQLite Shared-Cache Mode]
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_enable_shared_cache(int);
- /*
- ** CAPI3REF: Attempt To Free Heap Memory
- **
- ** ^The sqlite3_release_memory() interface attempts to free N bytes
- ** of heap memory by deallocating non-essential memory allocations
- ** held by the database library. Memory used to cache database
- ** pages to improve performance is an example of non-essential memory.
- ** ^sqlite3_release_memory() returns the number of bytes actually freed,
- ** which might be more or less than the amount requested.
- ** ^The sqlite3_release_memory() routine is a no-op returning zero
- ** if SQLite is not compiled with [SQLITE_ENABLE_MEMORY_MANAGEMENT].
- **
- ** See also: [sqlite3_db_release_memory()]
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_release_memory(int);
- /*
- ** CAPI3REF: Free Memory Used By A Database Connection
- ** METHOD: sqlite3
- **
- ** ^The sqlite3_db_release_memory(D) interface attempts to free as much heap
- ** memory as possible from database connection D. Unlike the
- ** [sqlite3_release_memory()] interface, this interface is in effect even
- ** when the [SQLITE_ENABLE_MEMORY_MANAGEMENT] compile-time option is
- ** omitted.
- **
- ** See also: [sqlite3_release_memory()]
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_db_release_memory(sqlite3*);
- /*
- ** CAPI3REF: Impose A Limit On Heap Size
- **
- ** ^The sqlite3_soft_heap_limit64() interface sets and/or queries the
- ** soft limit on the amount of heap memory that may be allocated by SQLite.
- ** ^SQLite strives to keep heap memory utilization below the soft heap
- ** limit by reducing the number of pages held in the page cache
- ** as heap memory usages approaches the limit.
- ** ^The soft heap limit is "soft" because even though SQLite strives to stay
- ** below the limit, it will exceed the limit rather than generate
- ** an [SQLITE_NOMEM] error. In other words, the soft heap limit
- ** is advisory only.
- **
- ** ^The return value from sqlite3_soft_heap_limit64() is the size of
- ** the soft heap limit prior to the call, or negative in the case of an
- ** error. ^If the argument N is negative
- ** then no change is made to the soft heap limit. Hence, the current
- ** size of the soft heap limit can be determined by invoking
- ** sqlite3_soft_heap_limit64() with a negative argument.
- **
- ** ^If the argument N is zero then the soft heap limit is disabled.
- **
- ** ^(The soft heap limit is not enforced in the current implementation
- ** if one or more of following conditions are true:
- **
- ** <ul>
- ** <li> The soft heap limit is set to zero.
- ** <li> Memory accounting is disabled using a combination of the
- ** [sqlite3_config]([SQLITE_CONFIG_MEMSTATUS],...) start-time option and
- ** the [SQLITE_DEFAULT_MEMSTATUS] compile-time option.
- ** <li> An alternative page cache implementation is specified using
- ** [sqlite3_config]([SQLITE_CONFIG_PCACHE2],...).
- ** <li> The page cache allocates from its own memory pool supplied
- ** by [sqlite3_config]([SQLITE_CONFIG_PAGECACHE],...) rather than
- ** from the heap.
- ** </ul>)^
- **
- ** Beginning with SQLite version 3.7.3, the soft heap limit is enforced
- ** regardless of whether or not the [SQLITE_ENABLE_MEMORY_MANAGEMENT]
- ** compile-time option is invoked. With [SQLITE_ENABLE_MEMORY_MANAGEMENT],
- ** the soft heap limit is enforced on every memory allocation. Without
- ** [SQLITE_ENABLE_MEMORY_MANAGEMENT], the soft heap limit is only enforced
- ** when memory is allocated by the page cache. Testing suggests that because
- ** the page cache is the predominate memory user in SQLite, most
- ** applications will achieve adequate soft heap limit enforcement without
- ** the use of [SQLITE_ENABLE_MEMORY_MANAGEMENT].
- **
- ** The circumstances under which SQLite will enforce the soft heap limit may
- ** changes in future releases of SQLite.
- */
- SQLITE_API sqlite3_int64 SQLITE_STDCALL sqlite3_soft_heap_limit64(sqlite3_int64 N);
- /*
- ** CAPI3REF: Deprecated Soft Heap Limit Interface
- ** DEPRECATED
- **
- ** This is a deprecated version of the [sqlite3_soft_heap_limit64()]
- ** interface. This routine is provided for historical compatibility
- ** only. All new applications should use the
- ** [sqlite3_soft_heap_limit64()] interface rather than this one.
- */
- SQLITE_API SQLITE_DEPRECATED void SQLITE_STDCALL sqlite3_soft_heap_limit(int N);
- /*
- ** CAPI3REF: Extract Metadata About A Column Of A Table
- ** METHOD: sqlite3
- **
- ** ^(The sqlite3_table_column_metadata(X,D,T,C,....) routine returns
- ** information about column C of table T in database D
- ** on [database connection] X.)^ ^The sqlite3_table_column_metadata()
- ** interface returns SQLITE_OK and fills in the non-NULL pointers in
- ** the final five arguments with appropriate values if the specified
- ** column exists. ^The sqlite3_table_column_metadata() interface returns
- ** SQLITE_ERROR and if the specified column does not exist.
- ** ^If the column-name parameter to sqlite3_table_column_metadata() is a
- ** NULL pointer, then this routine simply checks for the existance of the
- ** table and returns SQLITE_OK if the table exists and SQLITE_ERROR if it
- ** does not.
- **
- ** ^The column is identified by the second, third and fourth parameters to
- ** this function. ^(The second parameter is either the name of the database
- ** (i.e. "main", "temp", or an attached database) containing the specified
- ** table or NULL.)^ ^If it is NULL, then all attached databases are searched
- ** for the table using the same algorithm used by the database engine to
- ** resolve unqualified table references.
- **
- ** ^The third and fourth parameters to this function are the table and column
- ** name of the desired column, respectively.
- **
- ** ^Metadata is returned by writing to the memory locations passed as the 5th
- ** and subsequent parameters to this function. ^Any of these arguments may be
- ** NULL, in which case the corresponding element of metadata is omitted.
- **
- ** ^(<blockquote>
- ** <table border="1">
- ** <tr><th> Parameter <th> Output<br>Type <th> Description
- **
- ** <tr><td> 5th <td> const char* <td> Data type
- ** <tr><td> 6th <td> const char* <td> Name of default collation sequence
- ** <tr><td> 7th <td> int <td> True if column has a NOT NULL constraint
- ** <tr><td> 8th <td> int <td> True if column is part of the PRIMARY KEY
- ** <tr><td> 9th <td> int <td> True if column is [AUTOINCREMENT]
- ** </table>
- ** </blockquote>)^
- **
- ** ^The memory pointed to by the character pointers returned for the
- ** declaration type and collation sequence is valid until the next
- ** call to any SQLite API function.
- **
- ** ^If the specified table is actually a view, an [error code] is returned.
- **
- ** ^If the specified column is "rowid", "oid" or "_rowid_" and the table
- ** is not a [WITHOUT ROWID] table and an
- ** [INTEGER PRIMARY KEY] column has been explicitly declared, then the output
- ** parameters are set for the explicitly declared column. ^(If there is no
- ** [INTEGER PRIMARY KEY] column, then the outputs
- ** for the [rowid] are set as follows:
- **
- ** <pre>
- ** data type: "INTEGER"
- ** collation sequence: "BINARY"
- ** not null: 0
- ** primary key: 1
- ** auto increment: 0
- ** </pre>)^
- **
- ** ^This function causes all database schemas to be read from disk and
- ** parsed, if that has not already been done, and returns an error if
- ** any errors are encountered while loading the schema.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_table_column_metadata(
- sqlite3 *db, /* Connection handle */
- const char *zDbName, /* Database name or NULL */
- const char *zTableName, /* Table name */
- const char *zColumnName, /* Column name */
- char const **pzDataType, /* OUTPUT: Declared data type */
- char const **pzCollSeq, /* OUTPUT: Collation sequence name */
- int *pNotNull, /* OUTPUT: True if NOT NULL constraint exists */
- int *pPrimaryKey, /* OUTPUT: True if column part of PK */
- int *pAutoinc /* OUTPUT: True if column is auto-increment */
- );
- /*
- ** CAPI3REF: Load An Extension
- ** METHOD: sqlite3
- **
- ** ^This interface loads an SQLite extension library from the named file.
- **
- ** ^The sqlite3_load_extension() interface attempts to load an
- ** [SQLite extension] library contained in the file zFile. If
- ** the file cannot be loaded directly, attempts are made to load
- ** with various operating-system specific extensions added.
- ** So for example, if "samplelib" cannot be loaded, then names like
- ** "samplelib.so" or "samplelib.dylib" or "samplelib.dll" might
- ** be tried also.
- **
- ** ^The entry point is zProc.
- ** ^(zProc may be 0, in which case SQLite will try to come up with an
- ** entry point name on its own. It first tries "sqlite3_extension_init".
- ** If that does not work, it constructs a name "sqlite3_X_init" where the
- ** X is consists of the lower-case equivalent of all ASCII alphabetic
- ** characters in the filename from the last "/" to the first following
- ** "." and omitting any initial "lib".)^
- ** ^The sqlite3_load_extension() interface returns
- ** [SQLITE_OK] on success and [SQLITE_ERROR] if something goes wrong.
- ** ^If an error occurs and pzErrMsg is not 0, then the
- ** [sqlite3_load_extension()] interface shall attempt to
- ** fill *pzErrMsg with error message text stored in memory
- ** obtained from [sqlite3_malloc()]. The calling function
- ** should free this memory by calling [sqlite3_free()].
- **
- ** ^Extension loading must be enabled using
- ** [sqlite3_enable_load_extension()] prior to calling this API,
- ** otherwise an error will be returned.
- **
- ** See also the [load_extension() SQL function].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_load_extension(
- sqlite3 *db, /* Load the extension into this database connection */
- const char *zFile, /* Name of the shared library containing extension */
- const char *zProc, /* Entry point. Derived from zFile if 0 */
- char **pzErrMsg /* Put error message here if not 0 */
- );
- /*
- ** CAPI3REF: Enable Or Disable Extension Loading
- ** METHOD: sqlite3
- **
- ** ^So as not to open security holes in older applications that are
- ** unprepared to deal with [extension loading], and as a means of disabling
- ** [extension loading] while evaluating user-entered SQL, the following API
- ** is provided to turn the [sqlite3_load_extension()] mechanism on and off.
- **
- ** ^Extension loading is off by default.
- ** ^Call the sqlite3_enable_load_extension() routine with onoff==1
- ** to turn extension loading on and call it with onoff==0 to turn
- ** it back off again.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_enable_load_extension(sqlite3 *db, int onoff);
- /*
- ** CAPI3REF: Automatically Load Statically Linked Extensions
- **
- ** ^This interface causes the xEntryPoint() function to be invoked for
- ** each new [database connection] that is created. The idea here is that
- ** xEntryPoint() is the entry point for a statically linked [SQLite extension]
- ** that is to be automatically loaded into all new database connections.
- **
- ** ^(Even though the function prototype shows that xEntryPoint() takes
- ** no arguments and returns void, SQLite invokes xEntryPoint() with three
- ** arguments and expects and integer result as if the signature of the
- ** entry point where as follows:
- **
- ** <blockquote><pre>
- ** int xEntryPoint(
- ** sqlite3 *db,
- ** const char **pzErrMsg,
- ** const struct sqlite3_api_routines *pThunk
- ** );
- ** </pre></blockquote>)^
- **
- ** If the xEntryPoint routine encounters an error, it should make *pzErrMsg
- ** point to an appropriate error message (obtained from [sqlite3_mprintf()])
- ** and return an appropriate [error code]. ^SQLite ensures that *pzErrMsg
- ** is NULL before calling the xEntryPoint(). ^SQLite will invoke
- ** [sqlite3_free()] on *pzErrMsg after xEntryPoint() returns. ^If any
- ** xEntryPoint() returns an error, the [sqlite3_open()], [sqlite3_open16()],
- ** or [sqlite3_open_v2()] call that provoked the xEntryPoint() will fail.
- **
- ** ^Calling sqlite3_auto_extension(X) with an entry point X that is already
- ** on the list of automatic extensions is a harmless no-op. ^No entry point
- ** will be called more than once for each database connection that is opened.
- **
- ** See also: [sqlite3_reset_auto_extension()]
- ** and [sqlite3_cancel_auto_extension()]
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_auto_extension(void (*xEntryPoint)(void));
- /*
- ** CAPI3REF: Cancel Automatic Extension Loading
- **
- ** ^The [sqlite3_cancel_auto_extension(X)] interface unregisters the
- ** initialization routine X that was registered using a prior call to
- ** [sqlite3_auto_extension(X)]. ^The [sqlite3_cancel_auto_extension(X)]
- ** routine returns 1 if initialization routine X was successfully
- ** unregistered and it returns 0 if X was not on the list of initialization
- ** routines.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_cancel_auto_extension(void (*xEntryPoint)(void));
- /*
- ** CAPI3REF: Reset Automatic Extension Loading
- **
- ** ^This interface disables all automatic extensions previously
- ** registered using [sqlite3_auto_extension()].
- */
- SQLITE_API void SQLITE_STDCALL sqlite3_reset_auto_extension(void);
- /*
- ** The interface to the virtual-table mechanism is currently considered
- ** to be experimental. The interface might change in incompatible ways.
- ** If this is a problem for you, do not use the interface at this time.
- **
- ** When the virtual-table mechanism stabilizes, we will declare the
- ** interface fixed, support it indefinitely, and remove this comment.
- */
- /*
- ** Structures used by the virtual table interface
- */
- typedef struct sqlite3_vtab sqlite3_vtab;
- typedef struct sqlite3_index_info sqlite3_index_info;
- typedef struct sqlite3_vtab_cursor sqlite3_vtab_cursor;
- typedef struct sqlite3_module sqlite3_module;
- /*
- ** CAPI3REF: Virtual Table Object
- ** KEYWORDS: sqlite3_module {virtual table module}
- **
- ** This structure, sometimes called a "virtual table module",
- ** defines the implementation of a [virtual tables].
- ** This structure consists mostly of methods for the module.
- **
- ** ^A virtual table module is created by filling in a persistent
- ** instance of this structure and passing a pointer to that instance
- ** to [sqlite3_create_module()] or [sqlite3_create_module_v2()].
- ** ^The registration remains valid until it is replaced by a different
- ** module or until the [database connection] closes. The content
- ** of this structure must not change while it is registered with
- ** any database connection.
- */
- struct sqlite3_module {
- int iVersion;
- int (*xCreate)(sqlite3*, void *pAux,
- int argc, const char *const*argv,
- sqlite3_vtab **ppVTab, char**);
- int (*xConnect)(sqlite3*, void *pAux,
- int argc, const char *const*argv,
- sqlite3_vtab **ppVTab, char**);
- int (*xBestIndex)(sqlite3_vtab *pVTab, sqlite3_index_info*);
- int (*xDisconnect)(sqlite3_vtab *pVTab);
- int (*xDestroy)(sqlite3_vtab *pVTab);
- int (*xOpen)(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor);
- int (*xClose)(sqlite3_vtab_cursor*);
- int (*xFilter)(sqlite3_vtab_cursor*, int idxNum, const char *idxStr,
- int argc, sqlite3_value **argv);
- int (*xNext)(sqlite3_vtab_cursor*);
- int (*xEof)(sqlite3_vtab_cursor*);
- int (*xColumn)(sqlite3_vtab_cursor*, sqlite3_context*, int);
- int (*xRowid)(sqlite3_vtab_cursor*, sqlite3_int64 *pRowid);
- int (*xUpdate)(sqlite3_vtab *, int, sqlite3_value **, sqlite3_int64 *);
- int (*xBegin)(sqlite3_vtab *pVTab);
- int (*xSync)(sqlite3_vtab *pVTab);
- int (*xCommit)(sqlite3_vtab *pVTab);
- int (*xRollback)(sqlite3_vtab *pVTab);
- int (*xFindFunction)(sqlite3_vtab *pVtab, int nArg, const char *zName,
- void (**pxFunc)(sqlite3_context*,int,sqlite3_value**),
- void **ppArg);
- int (*xRename)(sqlite3_vtab *pVtab, const char *zNew);
- /* The methods above are in version 1 of the sqlite_module object. Those
- ** below are for version 2 and greater. */
- int (*xSavepoint)(sqlite3_vtab *pVTab, int);
- int (*xRelease)(sqlite3_vtab *pVTab, int);
- int (*xRollbackTo)(sqlite3_vtab *pVTab, int);
- };
- /*
- ** CAPI3REF: Virtual Table Indexing Information
- ** KEYWORDS: sqlite3_index_info
- **
- ** The sqlite3_index_info structure and its substructures is used as part
- ** of the [virtual table] interface to
- ** pass information into and receive the reply from the [xBestIndex]
- ** method of a [virtual table module]. The fields under **Inputs** are the
- ** inputs to xBestIndex and are read-only. xBestIndex inserts its
- ** results into the **Outputs** fields.
- **
- ** ^(The aConstraint[] array records WHERE clause constraints of the form:
- **
- ** <blockquote>column OP expr</blockquote>
- **
- ** where OP is =, <, <=, >, or >=.)^ ^(The particular operator is
- ** stored in aConstraint[].op using one of the
- ** [SQLITE_INDEX_CONSTRAINT_EQ | SQLITE_INDEX_CONSTRAINT_ values].)^
- ** ^(The index of the column is stored in
- ** aConstraint[].iColumn.)^ ^(aConstraint[].usable is TRUE if the
- ** expr on the right-hand side can be evaluated (and thus the constraint
- ** is usable) and false if it cannot.)^
- **
- ** ^The optimizer automatically inverts terms of the form "expr OP column"
- ** and makes other simplifications to the WHERE clause in an attempt to
- ** get as many WHERE clause terms into the form shown above as possible.
- ** ^The aConstraint[] array only reports WHERE clause terms that are
- ** relevant to the particular virtual table being queried.
- **
- ** ^Information about the ORDER BY clause is stored in aOrderBy[].
- ** ^Each term of aOrderBy records a column of the ORDER BY clause.
- **
- ** The [xBestIndex] method must fill aConstraintUsage[] with information
- ** about what parameters to pass to xFilter. ^If argvIndex>0 then
- ** the right-hand side of the corresponding aConstraint[] is evaluated
- ** and becomes the argvIndex-th entry in argv. ^(If aConstraintUsage[].omit
- ** is true, then the constraint is assumed to be fully handled by the
- ** virtual table and is not checked again by SQLite.)^
- **
- ** ^The idxNum and idxPtr values are recorded and passed into the
- ** [xFilter] method.
- ** ^[sqlite3_free()] is used to free idxPtr if and only if
- ** needToFreeIdxPtr is true.
- **
- ** ^The orderByConsumed means that output from [xFilter]/[xNext] will occur in
- ** the correct order to satisfy the ORDER BY clause so that no separate
- ** sorting step is required.
- **
- ** ^The estimatedCost value is an estimate of the cost of a particular
- ** strategy. A cost of N indicates that the cost of the strategy is similar
- ** to a linear scan of an SQLite table with N rows. A cost of log(N)
- ** indicates that the expense of the operation is similar to that of a
- ** binary search on a unique indexed field of an SQLite table with N rows.
- **
- ** ^The estimatedRows value is an estimate of the number of rows that
- ** will be returned by the strategy.
- **
- ** IMPORTANT: The estimatedRows field was added to the sqlite3_index_info
- ** structure for SQLite version 3.8.2. If a virtual table extension is
- ** used with an SQLite version earlier than 3.8.2, the results of attempting
- ** to read or write the estimatedRows field are undefined (but are likely
- ** to included crashing the application). The estimatedRows field should
- ** therefore only be used if [sqlite3_libversion_number()] returns a
- ** value greater than or equal to 3008002.
- */
- struct sqlite3_index_info {
- /* Inputs */
- int nConstraint; /* Number of entries in aConstraint */
- struct sqlite3_index_constraint {
- int iColumn; /* Column on left-hand side of constraint */
- unsigned char op; /* Constraint operator */
- unsigned char usable; /* True if this constraint is usable */
- int iTermOffset; /* Used internally - xBestIndex should ignore */
- } *aConstraint; /* Table of WHERE clause constraints */
- int nOrderBy; /* Number of terms in the ORDER BY clause */
- struct sqlite3_index_orderby {
- int iColumn; /* Column number */
- unsigned char desc; /* True for DESC. False for ASC. */
- } *aOrderBy; /* The ORDER BY clause */
- /* Outputs */
- struct sqlite3_index_constraint_usage {
- int argvIndex; /* if >0, constraint is part of argv to xFilter */
- unsigned char omit; /* Do not code a test for this constraint */
- } *aConstraintUsage;
- int idxNum; /* Number used to identify the index */
- char *idxStr; /* String, possibly obtained from sqlite3_malloc */
- int needToFreeIdxStr; /* Free idxStr using sqlite3_free() if true */
- int orderByConsumed; /* True if output is already ordered */
- double estimatedCost; /* Estimated cost of using this index */
- /* Fields below are only available in SQLite 3.8.2 and later */
- sqlite3_int64 estimatedRows; /* Estimated number of rows returned */
- };
- /*
- ** CAPI3REF: Virtual Table Constraint Operator Codes
- **
- ** These macros defined the allowed values for the
- ** [sqlite3_index_info].aConstraint[].op field. Each value represents
- ** an operator that is part of a constraint term in the wHERE clause of
- ** a query that uses a [virtual table].
- */
- #define SQLITE_INDEX_CONSTRAINT_EQ 2
- #define SQLITE_INDEX_CONSTRAINT_GT 4
- #define SQLITE_INDEX_CONSTRAINT_LE 8
- #define SQLITE_INDEX_CONSTRAINT_LT 16
- #define SQLITE_INDEX_CONSTRAINT_GE 32
- #define SQLITE_INDEX_CONSTRAINT_MATCH 64
- /*
- ** CAPI3REF: Register A Virtual Table Implementation
- ** METHOD: sqlite3
- **
- ** ^These routines are used to register a new [virtual table module] name.
- ** ^Module names must be registered before
- ** creating a new [virtual table] using the module and before using a
- ** preexisting [virtual table] for the module.
- **
- ** ^The module name is registered on the [database connection] specified
- ** by the first parameter. ^The name of the module is given by the
- ** second parameter. ^The third parameter is a pointer to
- ** the implementation of the [virtual table module]. ^The fourth
- ** parameter is an arbitrary client data pointer that is passed through
- ** into the [xCreate] and [xConnect] methods of the virtual table module
- ** when a new virtual table is be being created or reinitialized.
- **
- ** ^The sqlite3_create_module_v2() interface has a fifth parameter which
- ** is a pointer to a destructor for the pClientData. ^SQLite will
- ** invoke the destructor function (if it is not NULL) when SQLite
- ** no longer needs the pClientData pointer. ^The destructor will also
- ** be invoked if the call to sqlite3_create_module_v2() fails.
- ** ^The sqlite3_create_module()
- ** interface is equivalent to sqlite3_create_module_v2() with a NULL
- ** destructor.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_create_module(
- sqlite3 *db, /* SQLite connection to register module with */
- const char *zName, /* Name of the module */
- const sqlite3_module *p, /* Methods for the module */
- void *pClientData /* Client data for xCreate/xConnect */
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_create_module_v2(
- sqlite3 *db, /* SQLite connection to register module with */
- const char *zName, /* Name of the module */
- const sqlite3_module *p, /* Methods for the module */
- void *pClientData, /* Client data for xCreate/xConnect */
- void(*xDestroy)(void*) /* Module destructor function */
- );
- /*
- ** CAPI3REF: Virtual Table Instance Object
- ** KEYWORDS: sqlite3_vtab
- **
- ** Every [virtual table module] implementation uses a subclass
- ** of this object to describe a particular instance
- ** of the [virtual table]. Each subclass will
- ** be tailored to the specific needs of the module implementation.
- ** The purpose of this superclass is to define certain fields that are
- ** common to all module implementations.
- **
- ** ^Virtual tables methods can set an error message by assigning a
- ** string obtained from [sqlite3_mprintf()] to zErrMsg. The method should
- ** take care that any prior string is freed by a call to [sqlite3_free()]
- ** prior to assigning a new string to zErrMsg. ^After the error message
- ** is delivered up to the client application, the string will be automatically
- ** freed by sqlite3_free() and the zErrMsg field will be zeroed.
- */
- struct sqlite3_vtab {
- const sqlite3_module *pModule; /* The module for this virtual table */
- int nRef; /* Number of open cursors */
- char *zErrMsg; /* Error message from sqlite3_mprintf() */
- /* Virtual table implementations will typically add additional fields */
- };
- /*
- ** CAPI3REF: Virtual Table Cursor Object
- ** KEYWORDS: sqlite3_vtab_cursor {virtual table cursor}
- **
- ** Every [virtual table module] implementation uses a subclass of the
- ** following structure to describe cursors that point into the
- ** [virtual table] and are used
- ** to loop through the virtual table. Cursors are created using the
- ** [sqlite3_module.xOpen | xOpen] method of the module and are destroyed
- ** by the [sqlite3_module.xClose | xClose] method. Cursors are used
- ** by the [xFilter], [xNext], [xEof], [xColumn], and [xRowid] methods
- ** of the module. Each module implementation will define
- ** the content of a cursor structure to suit its own needs.
- **
- ** This superclass exists in order to define fields of the cursor that
- ** are common to all implementations.
- */
- struct sqlite3_vtab_cursor {
- sqlite3_vtab *pVtab; /* Virtual table of this cursor */
- /* Virtual table implementations will typically add additional fields */
- };
- /*
- ** CAPI3REF: Declare The Schema Of A Virtual Table
- **
- ** ^The [xCreate] and [xConnect] methods of a
- ** [virtual table module] call this interface
- ** to declare the format (the names and datatypes of the columns) of
- ** the virtual tables they implement.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_declare_vtab(sqlite3*, const char *zSQL);
- /*
- ** CAPI3REF: Overload A Function For A Virtual Table
- ** METHOD: sqlite3
- **
- ** ^(Virtual tables can provide alternative implementations of functions
- ** using the [xFindFunction] method of the [virtual table module].
- ** But global versions of those functions
- ** must exist in order to be overloaded.)^
- **
- ** ^(This API makes sure a global version of a function with a particular
- ** name and number of parameters exists. If no such function exists
- ** before this API is called, a new function is created.)^ ^The implementation
- ** of the new function always causes an exception to be thrown. So
- ** the new function is not good for anything by itself. Its only
- ** purpose is to be a placeholder function that can be overloaded
- ** by a [virtual table].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_overload_function(sqlite3*, const char *zFuncName, int nArg);
- /*
- ** The interface to the virtual-table mechanism defined above (back up
- ** to a comment remarkably similar to this one) is currently considered
- ** to be experimental. The interface might change in incompatible ways.
- ** If this is a problem for you, do not use the interface at this time.
- **
- ** When the virtual-table mechanism stabilizes, we will declare the
- ** interface fixed, support it indefinitely, and remove this comment.
- */
- /*
- ** CAPI3REF: A Handle To An Open BLOB
- ** KEYWORDS: {BLOB handle} {BLOB handles}
- **
- ** An instance of this object represents an open BLOB on which
- ** [sqlite3_blob_open | incremental BLOB I/O] can be performed.
- ** ^Objects of this type are created by [sqlite3_blob_open()]
- ** and destroyed by [sqlite3_blob_close()].
- ** ^The [sqlite3_blob_read()] and [sqlite3_blob_write()] interfaces
- ** can be used to read or write small subsections of the BLOB.
- ** ^The [sqlite3_blob_bytes()] interface returns the size of the BLOB in bytes.
- */
- typedef struct sqlite3_blob sqlite3_blob;
- /*
- ** CAPI3REF: Open A BLOB For Incremental I/O
- ** METHOD: sqlite3
- ** CONSTRUCTOR: sqlite3_blob
- **
- ** ^(This interfaces opens a [BLOB handle | handle] to the BLOB located
- ** in row iRow, column zColumn, table zTable in database zDb;
- ** in other words, the same BLOB that would be selected by:
- **
- ** <pre>
- ** SELECT zColumn FROM zDb.zTable WHERE [rowid] = iRow;
- ** </pre>)^
- **
- ** ^(Parameter zDb is not the filename that contains the database, but
- ** rather the symbolic name of the database. For attached databases, this is
- ** the name that appears after the AS keyword in the [ATTACH] statement.
- ** For the main database file, the database name is "main". For TEMP
- ** tables, the database name is "temp".)^
- **
- ** ^If the flags parameter is non-zero, then the BLOB is opened for read
- ** and write access. ^If the flags parameter is zero, the BLOB is opened for
- ** read-only access.
- **
- ** ^(On success, [SQLITE_OK] is returned and the new [BLOB handle] is stored
- ** in *ppBlob. Otherwise an [error code] is returned and, unless the error
- ** code is SQLITE_MISUSE, *ppBlob is set to NULL.)^ ^This means that, provided
- ** the API is not misused, it is always safe to call [sqlite3_blob_close()]
- ** on *ppBlob after this function it returns.
- **
- ** This function fails with SQLITE_ERROR if any of the following are true:
- ** <ul>
- ** <li> ^(Database zDb does not exist)^,
- ** <li> ^(Table zTable does not exist within database zDb)^,
- ** <li> ^(Table zTable is a WITHOUT ROWID table)^,
- ** <li> ^(Column zColumn does not exist)^,
- ** <li> ^(Row iRow is not present in the table)^,
- ** <li> ^(The specified column of row iRow contains a value that is not
- ** a TEXT or BLOB value)^,
- ** <li> ^(Column zColumn is part of an index, PRIMARY KEY or UNIQUE
- ** constraint and the blob is being opened for read/write access)^,
- ** <li> ^([foreign key constraints | Foreign key constraints] are enabled,
- ** column zColumn is part of a [child key] definition and the blob is
- ** being opened for read/write access)^.
- ** </ul>
- **
- ** ^Unless it returns SQLITE_MISUSE, this function sets the
- ** [database connection] error code and message accessible via
- ** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
- **
- **
- ** ^(If the row that a BLOB handle points to is modified by an
- ** [UPDATE], [DELETE], or by [ON CONFLICT] side-effects
- ** then the BLOB handle is marked as "expired".
- ** This is true if any column of the row is changed, even a column
- ** other than the one the BLOB handle is open on.)^
- ** ^Calls to [sqlite3_blob_read()] and [sqlite3_blob_write()] for
- ** an expired BLOB handle fail with a return code of [SQLITE_ABORT].
- ** ^(Changes written into a BLOB prior to the BLOB expiring are not
- ** rolled back by the expiration of the BLOB. Such changes will eventually
- ** commit if the transaction continues to completion.)^
- **
- ** ^Use the [sqlite3_blob_bytes()] interface to determine the size of
- ** the opened blob. ^The size of a blob may not be changed by this
- ** interface. Use the [UPDATE] SQL command to change the size of a
- ** blob.
- **
- ** ^The [sqlite3_bind_zeroblob()] and [sqlite3_result_zeroblob()] interfaces
- ** and the built-in [zeroblob] SQL function may be used to create a
- ** zero-filled blob to read or write using the incremental-blob interface.
- **
- ** To avoid a resource leak, every open [BLOB handle] should eventually
- ** be released by a call to [sqlite3_blob_close()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_blob_open(
- sqlite3*,
- const char *zDb,
- const char *zTable,
- const char *zColumn,
- sqlite3_int64 iRow,
- int flags,
- sqlite3_blob **ppBlob
- );
- /*
- ** CAPI3REF: Move a BLOB Handle to a New Row
- ** METHOD: sqlite3_blob
- **
- ** ^This function is used to move an existing blob handle so that it points
- ** to a different row of the same database table. ^The new row is identified
- ** by the rowid value passed as the second argument. Only the row can be
- ** changed. ^The database, table and column on which the blob handle is open
- ** remain the same. Moving an existing blob handle to a new row can be
- ** faster than closing the existing handle and opening a new one.
- **
- ** ^(The new row must meet the same criteria as for [sqlite3_blob_open()] -
- ** it must exist and there must be either a blob or text value stored in
- ** the nominated column.)^ ^If the new row is not present in the table, or if
- ** it does not contain a blob or text value, or if another error occurs, an
- ** SQLite error code is returned and the blob handle is considered aborted.
- ** ^All subsequent calls to [sqlite3_blob_read()], [sqlite3_blob_write()] or
- ** [sqlite3_blob_reopen()] on an aborted blob handle immediately return
- ** SQLITE_ABORT. ^Calling [sqlite3_blob_bytes()] on an aborted blob handle
- ** always returns zero.
- **
- ** ^This function sets the database handle error code and message.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_blob_reopen(sqlite3_blob *, sqlite3_int64);
- /*
- ** CAPI3REF: Close A BLOB Handle
- ** DESTRUCTOR: sqlite3_blob
- **
- ** ^This function closes an open [BLOB handle]. ^(The BLOB handle is closed
- ** unconditionally. Even if this routine returns an error code, the
- ** handle is still closed.)^
- **
- ** ^If the blob handle being closed was opened for read-write access, and if
- ** the database is in auto-commit mode and there are no other open read-write
- ** blob handles or active write statements, the current transaction is
- ** committed. ^If an error occurs while committing the transaction, an error
- ** code is returned and the transaction rolled back.
- **
- ** Calling this function with an argument that is not a NULL pointer or an
- ** open blob handle results in undefined behaviour. ^Calling this routine
- ** with a null pointer (such as would be returned by a failed call to
- ** [sqlite3_blob_open()]) is a harmless no-op. ^Otherwise, if this function
- ** is passed a valid open blob handle, the values returned by the
- ** sqlite3_errcode() and sqlite3_errmsg() functions are set before returning.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_blob_close(sqlite3_blob *);
- /*
- ** CAPI3REF: Return The Size Of An Open BLOB
- ** METHOD: sqlite3_blob
- **
- ** ^Returns the size in bytes of the BLOB accessible via the
- ** successfully opened [BLOB handle] in its only argument. ^The
- ** incremental blob I/O routines can only read or overwriting existing
- ** blob content; they cannot change the size of a blob.
- **
- ** This routine only works on a [BLOB handle] which has been created
- ** by a prior successful call to [sqlite3_blob_open()] and which has not
- ** been closed by [sqlite3_blob_close()]. Passing any other pointer in
- ** to this routine results in undefined and probably undesirable behavior.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_blob_bytes(sqlite3_blob *);
- /*
- ** CAPI3REF: Read Data From A BLOB Incrementally
- ** METHOD: sqlite3_blob
- **
- ** ^(This function is used to read data from an open [BLOB handle] into a
- ** caller-supplied buffer. N bytes of data are copied into buffer Z
- ** from the open BLOB, starting at offset iOffset.)^
- **
- ** ^If offset iOffset is less than N bytes from the end of the BLOB,
- ** [SQLITE_ERROR] is returned and no data is read. ^If N or iOffset is
- ** less than zero, [SQLITE_ERROR] is returned and no data is read.
- ** ^The size of the blob (and hence the maximum value of N+iOffset)
- ** can be determined using the [sqlite3_blob_bytes()] interface.
- **
- ** ^An attempt to read from an expired [BLOB handle] fails with an
- ** error code of [SQLITE_ABORT].
- **
- ** ^(On success, sqlite3_blob_read() returns SQLITE_OK.
- ** Otherwise, an [error code] or an [extended error code] is returned.)^
- **
- ** This routine only works on a [BLOB handle] which has been created
- ** by a prior successful call to [sqlite3_blob_open()] and which has not
- ** been closed by [sqlite3_blob_close()]. Passing any other pointer in
- ** to this routine results in undefined and probably undesirable behavior.
- **
- ** See also: [sqlite3_blob_write()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_blob_read(sqlite3_blob *, void *Z, int N, int iOffset);
- /*
- ** CAPI3REF: Write Data Into A BLOB Incrementally
- ** METHOD: sqlite3_blob
- **
- ** ^(This function is used to write data into an open [BLOB handle] from a
- ** caller-supplied buffer. N bytes of data are copied from the buffer Z
- ** into the open BLOB, starting at offset iOffset.)^
- **
- ** ^(On success, sqlite3_blob_write() returns SQLITE_OK.
- ** Otherwise, an [error code] or an [extended error code] is returned.)^
- ** ^Unless SQLITE_MISUSE is returned, this function sets the
- ** [database connection] error code and message accessible via
- ** [sqlite3_errcode()] and [sqlite3_errmsg()] and related functions.
- **
- ** ^If the [BLOB handle] passed as the first argument was not opened for
- ** writing (the flags parameter to [sqlite3_blob_open()] was zero),
- ** this function returns [SQLITE_READONLY].
- **
- ** This function may only modify the contents of the BLOB; it is
- ** not possible to increase the size of a BLOB using this API.
- ** ^If offset iOffset is less than N bytes from the end of the BLOB,
- ** [SQLITE_ERROR] is returned and no data is written. The size of the
- ** BLOB (and hence the maximum value of N+iOffset) can be determined
- ** using the [sqlite3_blob_bytes()] interface. ^If N or iOffset are less
- ** than zero [SQLITE_ERROR] is returned and no data is written.
- **
- ** ^An attempt to write to an expired [BLOB handle] fails with an
- ** error code of [SQLITE_ABORT]. ^Writes to the BLOB that occurred
- ** before the [BLOB handle] expired are not rolled back by the
- ** expiration of the handle, though of course those changes might
- ** have been overwritten by the statement that expired the BLOB handle
- ** or by other independent statements.
- **
- ** This routine only works on a [BLOB handle] which has been created
- ** by a prior successful call to [sqlite3_blob_open()] and which has not
- ** been closed by [sqlite3_blob_close()]. Passing any other pointer in
- ** to this routine results in undefined and probably undesirable behavior.
- **
- ** See also: [sqlite3_blob_read()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_blob_write(sqlite3_blob *, const void *z, int n, int iOffset);
- /*
- ** CAPI3REF: Virtual File System Objects
- **
- ** A virtual filesystem (VFS) is an [sqlite3_vfs] object
- ** that SQLite uses to interact
- ** with the underlying operating system. Most SQLite builds come with a
- ** single default VFS that is appropriate for the host computer.
- ** New VFSes can be registered and existing VFSes can be unregistered.
- ** The following interfaces are provided.
- **
- ** ^The sqlite3_vfs_find() interface returns a pointer to a VFS given its name.
- ** ^Names are case sensitive.
- ** ^Names are zero-terminated UTF-8 strings.
- ** ^If there is no match, a NULL pointer is returned.
- ** ^If zVfsName is NULL then the default VFS is returned.
- **
- ** ^New VFSes are registered with sqlite3_vfs_register().
- ** ^Each new VFS becomes the default VFS if the makeDflt flag is set.
- ** ^The same VFS can be registered multiple times without injury.
- ** ^To make an existing VFS into the default VFS, register it again
- ** with the makeDflt flag set. If two different VFSes with the
- ** same name are registered, the behavior is undefined. If a
- ** VFS is registered with a name that is NULL or an empty string,
- ** then the behavior is undefined.
- **
- ** ^Unregister a VFS with the sqlite3_vfs_unregister() interface.
- ** ^(If the default VFS is unregistered, another VFS is chosen as
- ** the default. The choice for the new VFS is arbitrary.)^
- */
- SQLITE_API sqlite3_vfs *SQLITE_STDCALL sqlite3_vfs_find(const char *zVfsName);
- SQLITE_API int SQLITE_STDCALL sqlite3_vfs_register(sqlite3_vfs*, int makeDflt);
- SQLITE_API int SQLITE_STDCALL sqlite3_vfs_unregister(sqlite3_vfs*);
- /*
- ** CAPI3REF: Mutexes
- **
- ** The SQLite core uses these routines for thread
- ** synchronization. Though they are intended for internal
- ** use by SQLite, code that links against SQLite is
- ** permitted to use any of these routines.
- **
- ** The SQLite source code contains multiple implementations
- ** of these mutex routines. An appropriate implementation
- ** is selected automatically at compile-time. The following
- ** implementations are available in the SQLite core:
- **
- ** <ul>
- ** <li> SQLITE_MUTEX_PTHREADS
- ** <li> SQLITE_MUTEX_W32
- ** <li> SQLITE_MUTEX_NOOP
- ** </ul>
- **
- ** The SQLITE_MUTEX_NOOP implementation is a set of routines
- ** that does no real locking and is appropriate for use in
- ** a single-threaded application. The SQLITE_MUTEX_PTHREADS and
- ** SQLITE_MUTEX_W32 implementations are appropriate for use on Unix
- ** and Windows.
- **
- ** If SQLite is compiled with the SQLITE_MUTEX_APPDEF preprocessor
- ** macro defined (with "-DSQLITE_MUTEX_APPDEF=1"), then no mutex
- ** implementation is included with the library. In this case the
- ** application must supply a custom mutex implementation using the
- ** [SQLITE_CONFIG_MUTEX] option of the sqlite3_config() function
- ** before calling sqlite3_initialize() or any other public sqlite3_
- ** function that calls sqlite3_initialize().
- **
- ** ^The sqlite3_mutex_alloc() routine allocates a new
- ** mutex and returns a pointer to it. ^The sqlite3_mutex_alloc()
- ** routine returns NULL if it is unable to allocate the requested
- ** mutex. The argument to sqlite3_mutex_alloc() must one of these
- ** integer constants:
- **
- ** <ul>
- ** <li> SQLITE_MUTEX_FAST
- ** <li> SQLITE_MUTEX_RECURSIVE
- ** <li> SQLITE_MUTEX_STATIC_MASTER
- ** <li> SQLITE_MUTEX_STATIC_MEM
- ** <li> SQLITE_MUTEX_STATIC_OPEN
- ** <li> SQLITE_MUTEX_STATIC_PRNG
- ** <li> SQLITE_MUTEX_STATIC_LRU
- ** <li> SQLITE_MUTEX_STATIC_PMEM
- ** <li> SQLITE_MUTEX_STATIC_APP1
- ** <li> SQLITE_MUTEX_STATIC_APP2
- ** <li> SQLITE_MUTEX_STATIC_APP3
- ** </ul>
- **
- ** ^The first two constants (SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE)
- ** cause sqlite3_mutex_alloc() to create
- ** a new mutex. ^The new mutex is recursive when SQLITE_MUTEX_RECURSIVE
- ** is used but not necessarily so when SQLITE_MUTEX_FAST is used.
- ** The mutex implementation does not need to make a distinction
- ** between SQLITE_MUTEX_RECURSIVE and SQLITE_MUTEX_FAST if it does
- ** not want to. SQLite will only request a recursive mutex in
- ** cases where it really needs one. If a faster non-recursive mutex
- ** implementation is available on the host platform, the mutex subsystem
- ** might return such a mutex in response to SQLITE_MUTEX_FAST.
- **
- ** ^The other allowed parameters to sqlite3_mutex_alloc() (anything other
- ** than SQLITE_MUTEX_FAST and SQLITE_MUTEX_RECURSIVE) each return
- ** a pointer to a static preexisting mutex. ^Nine static mutexes are
- ** used by the current version of SQLite. Future versions of SQLite
- ** may add additional static mutexes. Static mutexes are for internal
- ** use by SQLite only. Applications that use SQLite mutexes should
- ** use only the dynamic mutexes returned by SQLITE_MUTEX_FAST or
- ** SQLITE_MUTEX_RECURSIVE.
- **
- ** ^Note that if one of the dynamic mutex parameters (SQLITE_MUTEX_FAST
- ** or SQLITE_MUTEX_RECURSIVE) is used then sqlite3_mutex_alloc()
- ** returns a different mutex on every call. ^For the static
- ** mutex types, the same mutex is returned on every call that has
- ** the same type number.
- **
- ** ^The sqlite3_mutex_free() routine deallocates a previously
- ** allocated dynamic mutex. Attempting to deallocate a static
- ** mutex results in undefined behavior.
- **
- ** ^The sqlite3_mutex_enter() and sqlite3_mutex_try() routines attempt
- ** to enter a mutex. ^If another thread is already within the mutex,
- ** sqlite3_mutex_enter() will block and sqlite3_mutex_try() will return
- ** SQLITE_BUSY. ^The sqlite3_mutex_try() interface returns [SQLITE_OK]
- ** upon successful entry. ^(Mutexes created using
- ** SQLITE_MUTEX_RECURSIVE can be entered multiple times by the same thread.
- ** In such cases, the
- ** mutex must be exited an equal number of times before another thread
- ** can enter.)^ If the same thread tries to enter any mutex other
- ** than an SQLITE_MUTEX_RECURSIVE more than once, the behavior is undefined.
- **
- ** ^(Some systems (for example, Windows 95) do not support the operation
- ** implemented by sqlite3_mutex_try(). On those systems, sqlite3_mutex_try()
- ** will always return SQLITE_BUSY. The SQLite core only ever uses
- ** sqlite3_mutex_try() as an optimization so this is acceptable
- ** behavior.)^
- **
- ** ^The sqlite3_mutex_leave() routine exits a mutex that was
- ** previously entered by the same thread. The behavior
- ** is undefined if the mutex is not currently entered by the
- ** calling thread or is not currently allocated.
- **
- ** ^If the argument to sqlite3_mutex_enter(), sqlite3_mutex_try(), or
- ** sqlite3_mutex_leave() is a NULL pointer, then all three routines
- ** behave as no-ops.
- **
- ** See also: [sqlite3_mutex_held()] and [sqlite3_mutex_notheld()].
- */
- SQLITE_API sqlite3_mutex *SQLITE_STDCALL sqlite3_mutex_alloc(int);
- SQLITE_API void SQLITE_STDCALL sqlite3_mutex_free(sqlite3_mutex*);
- SQLITE_API void SQLITE_STDCALL sqlite3_mutex_enter(sqlite3_mutex*);
- SQLITE_API int SQLITE_STDCALL sqlite3_mutex_try(sqlite3_mutex*);
- SQLITE_API void SQLITE_STDCALL sqlite3_mutex_leave(sqlite3_mutex*);
- /*
- ** CAPI3REF: Mutex Methods Object
- **
- ** An instance of this structure defines the low-level routines
- ** used to allocate and use mutexes.
- **
- ** Usually, the default mutex implementations provided by SQLite are
- ** sufficient, however the application has the option of substituting a custom
- ** implementation for specialized deployments or systems for which SQLite
- ** does not provide a suitable implementation. In this case, the application
- ** creates and populates an instance of this structure to pass
- ** to sqlite3_config() along with the [SQLITE_CONFIG_MUTEX] option.
- ** Additionally, an instance of this structure can be used as an
- ** output variable when querying the system for the current mutex
- ** implementation, using the [SQLITE_CONFIG_GETMUTEX] option.
- **
- ** ^The xMutexInit method defined by this structure is invoked as
- ** part of system initialization by the sqlite3_initialize() function.
- ** ^The xMutexInit routine is called by SQLite exactly once for each
- ** effective call to [sqlite3_initialize()].
- **
- ** ^The xMutexEnd method defined by this structure is invoked as
- ** part of system shutdown by the sqlite3_shutdown() function. The
- ** implementation of this method is expected to release all outstanding
- ** resources obtained by the mutex methods implementation, especially
- ** those obtained by the xMutexInit method. ^The xMutexEnd()
- ** interface is invoked exactly once for each call to [sqlite3_shutdown()].
- **
- ** ^(The remaining seven methods defined by this structure (xMutexAlloc,
- ** xMutexFree, xMutexEnter, xMutexTry, xMutexLeave, xMutexHeld and
- ** xMutexNotheld) implement the following interfaces (respectively):
- **
- ** <ul>
- ** <li> [sqlite3_mutex_alloc()] </li>
- ** <li> [sqlite3_mutex_free()] </li>
- ** <li> [sqlite3_mutex_enter()] </li>
- ** <li> [sqlite3_mutex_try()] </li>
- ** <li> [sqlite3_mutex_leave()] </li>
- ** <li> [sqlite3_mutex_held()] </li>
- ** <li> [sqlite3_mutex_notheld()] </li>
- ** </ul>)^
- **
- ** The only difference is that the public sqlite3_XXX functions enumerated
- ** above silently ignore any invocations that pass a NULL pointer instead
- ** of a valid mutex handle. The implementations of the methods defined
- ** by this structure are not required to handle this case, the results
- ** of passing a NULL pointer instead of a valid mutex handle are undefined
- ** (i.e. it is acceptable to provide an implementation that segfaults if
- ** it is passed a NULL pointer).
- **
- ** The xMutexInit() method must be threadsafe. It must be harmless to
- ** invoke xMutexInit() multiple times within the same process and without
- ** intervening calls to xMutexEnd(). Second and subsequent calls to
- ** xMutexInit() must be no-ops.
- **
- ** xMutexInit() must not use SQLite memory allocation ([sqlite3_malloc()]
- ** and its associates). Similarly, xMutexAlloc() must not use SQLite memory
- ** allocation for a static mutex. ^However xMutexAlloc() may use SQLite
- ** memory allocation for a fast or recursive mutex.
- **
- ** ^SQLite will invoke the xMutexEnd() method when [sqlite3_shutdown()] is
- ** called, but only if the prior call to xMutexInit returned SQLITE_OK.
- ** If xMutexInit fails in any way, it is expected to clean up after itself
- ** prior to returning.
- */
- typedef struct sqlite3_mutex_methods sqlite3_mutex_methods;
- struct sqlite3_mutex_methods {
- int (*xMutexInit)(void);
- int (*xMutexEnd)(void);
- sqlite3_mutex *(*xMutexAlloc)(int);
- void (*xMutexFree)(sqlite3_mutex *);
- void (*xMutexEnter)(sqlite3_mutex *);
- int (*xMutexTry)(sqlite3_mutex *);
- void (*xMutexLeave)(sqlite3_mutex *);
- int (*xMutexHeld)(sqlite3_mutex *);
- int (*xMutexNotheld)(sqlite3_mutex *);
- };
- /*
- ** CAPI3REF: Mutex Verification Routines
- **
- ** The sqlite3_mutex_held() and sqlite3_mutex_notheld() routines
- ** are intended for use inside assert() statements. The SQLite core
- ** never uses these routines except inside an assert() and applications
- ** are advised to follow the lead of the core. The SQLite core only
- ** provides implementations for these routines when it is compiled
- ** with the SQLITE_DEBUG flag. External mutex implementations
- ** are only required to provide these routines if SQLITE_DEBUG is
- ** defined and if NDEBUG is not defined.
- **
- ** These routines should return true if the mutex in their argument
- ** is held or not held, respectively, by the calling thread.
- **
- ** The implementation is not required to provide versions of these
- ** routines that actually work. If the implementation does not provide working
- ** versions of these routines, it should at least provide stubs that always
- ** return true so that one does not get spurious assertion failures.
- **
- ** If the argument to sqlite3_mutex_held() is a NULL pointer then
- ** the routine should return 1. This seems counter-intuitive since
- ** clearly the mutex cannot be held if it does not exist. But
- ** the reason the mutex does not exist is because the build is not
- ** using mutexes. And we do not want the assert() containing the
- ** call to sqlite3_mutex_held() to fail, so a non-zero return is
- ** the appropriate thing to do. The sqlite3_mutex_notheld()
- ** interface should also return 1 when given a NULL pointer.
- */
- #ifndef NDEBUG
- SQLITE_API int SQLITE_STDCALL sqlite3_mutex_held(sqlite3_mutex*);
- SQLITE_API int SQLITE_STDCALL sqlite3_mutex_notheld(sqlite3_mutex*);
- #endif
- /*
- ** CAPI3REF: Mutex Types
- **
- ** The [sqlite3_mutex_alloc()] interface takes a single argument
- ** which is one of these integer constants.
- **
- ** The set of static mutexes may change from one SQLite release to the
- ** next. Applications that override the built-in mutex logic must be
- ** prepared to accommodate additional static mutexes.
- */
- #define SQLITE_MUTEX_FAST 0
- #define SQLITE_MUTEX_RECURSIVE 1
- #define SQLITE_MUTEX_STATIC_MASTER 2
- #define SQLITE_MUTEX_STATIC_MEM 3 /* sqlite3_malloc() */
- #define SQLITE_MUTEX_STATIC_MEM2 4 /* NOT USED */
- #define SQLITE_MUTEX_STATIC_OPEN 4 /* sqlite3BtreeOpen() */
- #define SQLITE_MUTEX_STATIC_PRNG 5 /* sqlite3_random() */
- #define SQLITE_MUTEX_STATIC_LRU 6 /* lru page list */
- #define SQLITE_MUTEX_STATIC_LRU2 7 /* NOT USED */
- #define SQLITE_MUTEX_STATIC_PMEM 7 /* sqlite3PageMalloc() */
- #define SQLITE_MUTEX_STATIC_APP1 8 /* For use by application */
- #define SQLITE_MUTEX_STATIC_APP2 9 /* For use by application */
- #define SQLITE_MUTEX_STATIC_APP3 10 /* For use by application */
- #define SQLITE_MUTEX_STATIC_VFS1 11 /* For use by built-in VFS */
- #define SQLITE_MUTEX_STATIC_VFS2 12 /* For use by extension VFS */
- #define SQLITE_MUTEX_STATIC_VFS3 13 /* For use by application VFS */
- /*
- ** CAPI3REF: Retrieve the mutex for a database connection
- ** METHOD: sqlite3
- **
- ** ^This interface returns a pointer the [sqlite3_mutex] object that
- ** serializes access to the [database connection] given in the argument
- ** when the [threading mode] is Serialized.
- ** ^If the [threading mode] is Single-thread or Multi-thread then this
- ** routine returns a NULL pointer.
- */
- SQLITE_API sqlite3_mutex *SQLITE_STDCALL sqlite3_db_mutex(sqlite3*);
- /*
- ** CAPI3REF: Low-Level Control Of Database Files
- ** METHOD: sqlite3
- **
- ** ^The [sqlite3_file_control()] interface makes a direct call to the
- ** xFileControl method for the [sqlite3_io_methods] object associated
- ** with a particular database identified by the second argument. ^The
- ** name of the database is "main" for the main database or "temp" for the
- ** TEMP database, or the name that appears after the AS keyword for
- ** databases that are added using the [ATTACH] SQL command.
- ** ^A NULL pointer can be used in place of "main" to refer to the
- ** main database file.
- ** ^The third and fourth parameters to this routine
- ** are passed directly through to the second and third parameters of
- ** the xFileControl method. ^The return value of the xFileControl
- ** method becomes the return value of this routine.
- **
- ** ^The SQLITE_FCNTL_FILE_POINTER value for the op parameter causes
- ** a pointer to the underlying [sqlite3_file] object to be written into
- ** the space pointed to by the 4th parameter. ^The SQLITE_FCNTL_FILE_POINTER
- ** case is a short-circuit path which does not actually invoke the
- ** underlying sqlite3_io_methods.xFileControl method.
- **
- ** ^If the second parameter (zDbName) does not match the name of any
- ** open database file, then SQLITE_ERROR is returned. ^This error
- ** code is not remembered and will not be recalled by [sqlite3_errcode()]
- ** or [sqlite3_errmsg()]. The underlying xFileControl method might
- ** also return SQLITE_ERROR. There is no way to distinguish between
- ** an incorrect zDbName and an SQLITE_ERROR return from the underlying
- ** xFileControl method.
- **
- ** See also: [SQLITE_FCNTL_LOCKSTATE]
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_file_control(sqlite3*, const char *zDbName, int op, void*);
- /*
- ** CAPI3REF: Testing Interface
- **
- ** ^The sqlite3_test_control() interface is used to read out internal
- ** state of SQLite and to inject faults into SQLite for testing
- ** purposes. ^The first parameter is an operation code that determines
- ** the number, meaning, and operation of all subsequent parameters.
- **
- ** This interface is not for use by applications. It exists solely
- ** for verifying the correct operation of the SQLite library. Depending
- ** on how the SQLite library is compiled, this interface might not exist.
- **
- ** The details of the operation codes, their meanings, the parameters
- ** they take, and what they do are all subject to change without notice.
- ** Unlike most of the SQLite API, this function is not guaranteed to
- ** operate consistently from one release to the next.
- */
- SQLITE_API int SQLITE_CDECL sqlite3_test_control(int op, ...);
- /*
- ** CAPI3REF: Testing Interface Operation Codes
- **
- ** These constants are the valid operation code parameters used
- ** as the first argument to [sqlite3_test_control()].
- **
- ** These parameters and their meanings are subject to change
- ** without notice. These values are for testing purposes only.
- ** Applications should not use any of these parameters or the
- ** [sqlite3_test_control()] interface.
- */
- #define SQLITE_TESTCTRL_FIRST 5
- #define SQLITE_TESTCTRL_PRNG_SAVE 5
- #define SQLITE_TESTCTRL_PRNG_RESTORE 6
- #define SQLITE_TESTCTRL_PRNG_RESET 7
- #define SQLITE_TESTCTRL_BITVEC_TEST 8
- #define SQLITE_TESTCTRL_FAULT_INSTALL 9
- #define SQLITE_TESTCTRL_BENIGN_MALLOC_HOOKS 10
- #define SQLITE_TESTCTRL_PENDING_BYTE 11
- #define SQLITE_TESTCTRL_ASSERT 12
- #define SQLITE_TESTCTRL_ALWAYS 13
- #define SQLITE_TESTCTRL_RESERVE 14
- #define SQLITE_TESTCTRL_OPTIMIZATIONS 15
- #define SQLITE_TESTCTRL_ISKEYWORD 16
- #define SQLITE_TESTCTRL_SCRATCHMALLOC 17
- #define SQLITE_TESTCTRL_LOCALTIME_FAULT 18
- #define SQLITE_TESTCTRL_EXPLAIN_STMT 19 /* NOT USED */
- #define SQLITE_TESTCTRL_NEVER_CORRUPT 20
- #define SQLITE_TESTCTRL_VDBE_COVERAGE 21
- #define SQLITE_TESTCTRL_BYTEORDER 22
- #define SQLITE_TESTCTRL_ISINIT 23
- #define SQLITE_TESTCTRL_SORTER_MMAP 24
- #define SQLITE_TESTCTRL_IMPOSTER 25
- #define SQLITE_TESTCTRL_LAST 25
- /*
- ** CAPI3REF: SQLite Runtime Status
- **
- ** ^These interfaces are used to retrieve runtime status information
- ** about the performance of SQLite, and optionally to reset various
- ** highwater marks. ^The first argument is an integer code for
- ** the specific parameter to measure. ^(Recognized integer codes
- ** are of the form [status parameters | SQLITE_STATUS_...].)^
- ** ^The current value of the parameter is returned into *pCurrent.
- ** ^The highest recorded value is returned in *pHighwater. ^If the
- ** resetFlag is true, then the highest record value is reset after
- ** *pHighwater is written. ^(Some parameters do not record the highest
- ** value. For those parameters
- ** nothing is written into *pHighwater and the resetFlag is ignored.)^
- ** ^(Other parameters record only the highwater mark and not the current
- ** value. For these latter parameters nothing is written into *pCurrent.)^
- **
- ** ^The sqlite3_status() and sqlite3_status64() routines return
- ** SQLITE_OK on success and a non-zero [error code] on failure.
- **
- ** If either the current value or the highwater mark is too large to
- ** be represented by a 32-bit integer, then the values returned by
- ** sqlite3_status() are undefined.
- **
- ** See also: [sqlite3_db_status()]
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_status(int op, int *pCurrent, int *pHighwater, int resetFlag);
- SQLITE_API int SQLITE_STDCALL sqlite3_status64(
- int op,
- sqlite3_int64 *pCurrent,
- sqlite3_int64 *pHighwater,
- int resetFlag
- );
- /*
- ** CAPI3REF: Status Parameters
- ** KEYWORDS: {status parameters}
- **
- ** These integer constants designate various run-time status parameters
- ** that can be returned by [sqlite3_status()].
- **
- ** <dl>
- ** [[SQLITE_STATUS_MEMORY_USED]] ^(<dt>SQLITE_STATUS_MEMORY_USED</dt>
- ** <dd>This parameter is the current amount of memory checked out
- ** using [sqlite3_malloc()], either directly or indirectly. The
- ** figure includes calls made to [sqlite3_malloc()] by the application
- ** and internal memory usage by the SQLite library. Scratch memory
- ** controlled by [SQLITE_CONFIG_SCRATCH] and auxiliary page-cache
- ** memory controlled by [SQLITE_CONFIG_PAGECACHE] is not included in
- ** this parameter. The amount returned is the sum of the allocation
- ** sizes as reported by the xSize method in [sqlite3_mem_methods].</dd>)^
- **
- ** [[SQLITE_STATUS_MALLOC_SIZE]] ^(<dt>SQLITE_STATUS_MALLOC_SIZE</dt>
- ** <dd>This parameter records the largest memory allocation request
- ** handed to [sqlite3_malloc()] or [sqlite3_realloc()] (or their
- ** internal equivalents). Only the value returned in the
- ** *pHighwater parameter to [sqlite3_status()] is of interest.
- ** The value written into the *pCurrent parameter is undefined.</dd>)^
- **
- ** [[SQLITE_STATUS_MALLOC_COUNT]] ^(<dt>SQLITE_STATUS_MALLOC_COUNT</dt>
- ** <dd>This parameter records the number of separate memory allocations
- ** currently checked out.</dd>)^
- **
- ** [[SQLITE_STATUS_PAGECACHE_USED]] ^(<dt>SQLITE_STATUS_PAGECACHE_USED</dt>
- ** <dd>This parameter returns the number of pages used out of the
- ** [pagecache memory allocator] that was configured using
- ** [SQLITE_CONFIG_PAGECACHE]. The
- ** value returned is in pages, not in bytes.</dd>)^
- **
- ** [[SQLITE_STATUS_PAGECACHE_OVERFLOW]]
- ** ^(<dt>SQLITE_STATUS_PAGECACHE_OVERFLOW</dt>
- ** <dd>This parameter returns the number of bytes of page cache
- ** allocation which could not be satisfied by the [SQLITE_CONFIG_PAGECACHE]
- ** buffer and where forced to overflow to [sqlite3_malloc()]. The
- ** returned value includes allocations that overflowed because they
- ** where too large (they were larger than the "sz" parameter to
- ** [SQLITE_CONFIG_PAGECACHE]) and allocations that overflowed because
- ** no space was left in the page cache.</dd>)^
- **
- ** [[SQLITE_STATUS_PAGECACHE_SIZE]] ^(<dt>SQLITE_STATUS_PAGECACHE_SIZE</dt>
- ** <dd>This parameter records the largest memory allocation request
- ** handed to [pagecache memory allocator]. Only the value returned in the
- ** *pHighwater parameter to [sqlite3_status()] is of interest.
- ** The value written into the *pCurrent parameter is undefined.</dd>)^
- **
- ** [[SQLITE_STATUS_SCRATCH_USED]] ^(<dt>SQLITE_STATUS_SCRATCH_USED</dt>
- ** <dd>This parameter returns the number of allocations used out of the
- ** [scratch memory allocator] configured using
- ** [SQLITE_CONFIG_SCRATCH]. The value returned is in allocations, not
- ** in bytes. Since a single thread may only have one scratch allocation
- ** outstanding at time, this parameter also reports the number of threads
- ** using scratch memory at the same time.</dd>)^
- **
- ** [[SQLITE_STATUS_SCRATCH_OVERFLOW]] ^(<dt>SQLITE_STATUS_SCRATCH_OVERFLOW</dt>
- ** <dd>This parameter returns the number of bytes of scratch memory
- ** allocation which could not be satisfied by the [SQLITE_CONFIG_SCRATCH]
- ** buffer and where forced to overflow to [sqlite3_malloc()]. The values
- ** returned include overflows because the requested allocation was too
- ** larger (that is, because the requested allocation was larger than the
- ** "sz" parameter to [SQLITE_CONFIG_SCRATCH]) and because no scratch buffer
- ** slots were available.
- ** </dd>)^
- **
- ** [[SQLITE_STATUS_SCRATCH_SIZE]] ^(<dt>SQLITE_STATUS_SCRATCH_SIZE</dt>
- ** <dd>This parameter records the largest memory allocation request
- ** handed to [scratch memory allocator]. Only the value returned in the
- ** *pHighwater parameter to [sqlite3_status()] is of interest.
- ** The value written into the *pCurrent parameter is undefined.</dd>)^
- **
- ** [[SQLITE_STATUS_PARSER_STACK]] ^(<dt>SQLITE_STATUS_PARSER_STACK</dt>
- ** <dd>This parameter records the deepest parser stack. It is only
- ** meaningful if SQLite is compiled with [YYTRACKMAXSTACKDEPTH].</dd>)^
- ** </dl>
- **
- ** New status parameters may be added from time to time.
- */
- #define SQLITE_STATUS_MEMORY_USED 0
- #define SQLITE_STATUS_PAGECACHE_USED 1
- #define SQLITE_STATUS_PAGECACHE_OVERFLOW 2
- #define SQLITE_STATUS_SCRATCH_USED 3
- #define SQLITE_STATUS_SCRATCH_OVERFLOW 4
- #define SQLITE_STATUS_MALLOC_SIZE 5
- #define SQLITE_STATUS_PARSER_STACK 6
- #define SQLITE_STATUS_PAGECACHE_SIZE 7
- #define SQLITE_STATUS_SCRATCH_SIZE 8
- #define SQLITE_STATUS_MALLOC_COUNT 9
- /*
- ** CAPI3REF: Database Connection Status
- ** METHOD: sqlite3
- **
- ** ^This interface is used to retrieve runtime status information
- ** about a single [database connection]. ^The first argument is the
- ** database connection object to be interrogated. ^The second argument
- ** is an integer constant, taken from the set of
- ** [SQLITE_DBSTATUS options], that
- ** determines the parameter to interrogate. The set of
- ** [SQLITE_DBSTATUS options] is likely
- ** to grow in future releases of SQLite.
- **
- ** ^The current value of the requested parameter is written into *pCur
- ** and the highest instantaneous value is written into *pHiwtr. ^If
- ** the resetFlg is true, then the highest instantaneous value is
- ** reset back down to the current value.
- **
- ** ^The sqlite3_db_status() routine returns SQLITE_OK on success and a
- ** non-zero [error code] on failure.
- **
- ** See also: [sqlite3_status()] and [sqlite3_stmt_status()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_db_status(sqlite3*, int op, int *pCur, int *pHiwtr, int resetFlg);
- /*
- ** CAPI3REF: Status Parameters for database connections
- ** KEYWORDS: {SQLITE_DBSTATUS options}
- **
- ** These constants are the available integer "verbs" that can be passed as
- ** the second argument to the [sqlite3_db_status()] interface.
- **
- ** New verbs may be added in future releases of SQLite. Existing verbs
- ** might be discontinued. Applications should check the return code from
- ** [sqlite3_db_status()] to make sure that the call worked.
- ** The [sqlite3_db_status()] interface will return a non-zero error code
- ** if a discontinued or unsupported verb is invoked.
- **
- ** <dl>
- ** [[SQLITE_DBSTATUS_LOOKASIDE_USED]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_USED</dt>
- ** <dd>This parameter returns the number of lookaside memory slots currently
- ** checked out.</dd>)^
- **
- ** [[SQLITE_DBSTATUS_LOOKASIDE_HIT]] ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_HIT</dt>
- ** <dd>This parameter returns the number malloc attempts that were
- ** satisfied using lookaside memory. Only the high-water value is meaningful;
- ** the current value is always zero.)^
- **
- ** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE]]
- ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE</dt>
- ** <dd>This parameter returns the number malloc attempts that might have
- ** been satisfied using lookaside memory but failed due to the amount of
- ** memory requested being larger than the lookaside slot size.
- ** Only the high-water value is meaningful;
- ** the current value is always zero.)^
- **
- ** [[SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL]]
- ** ^(<dt>SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL</dt>
- ** <dd>This parameter returns the number malloc attempts that might have
- ** been satisfied using lookaside memory but failed due to all lookaside
- ** memory already being in use.
- ** Only the high-water value is meaningful;
- ** the current value is always zero.)^
- **
- ** [[SQLITE_DBSTATUS_CACHE_USED]] ^(<dt>SQLITE_DBSTATUS_CACHE_USED</dt>
- ** <dd>This parameter returns the approximate number of bytes of heap
- ** memory used by all pager caches associated with the database connection.)^
- ** ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_USED is always 0.
- **
- ** [[SQLITE_DBSTATUS_SCHEMA_USED]] ^(<dt>SQLITE_DBSTATUS_SCHEMA_USED</dt>
- ** <dd>This parameter returns the approximate number of bytes of heap
- ** memory used to store the schema for all databases associated
- ** with the connection - main, temp, and any [ATTACH]-ed databases.)^
- ** ^The full amount of memory used by the schemas is reported, even if the
- ** schema memory is shared with other database connections due to
- ** [shared cache mode] being enabled.
- ** ^The highwater mark associated with SQLITE_DBSTATUS_SCHEMA_USED is always 0.
- **
- ** [[SQLITE_DBSTATUS_STMT_USED]] ^(<dt>SQLITE_DBSTATUS_STMT_USED</dt>
- ** <dd>This parameter returns the approximate number of bytes of heap
- ** and lookaside memory used by all prepared statements associated with
- ** the database connection.)^
- ** ^The highwater mark associated with SQLITE_DBSTATUS_STMT_USED is always 0.
- ** </dd>
- **
- ** [[SQLITE_DBSTATUS_CACHE_HIT]] ^(<dt>SQLITE_DBSTATUS_CACHE_HIT</dt>
- ** <dd>This parameter returns the number of pager cache hits that have
- ** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_HIT
- ** is always 0.
- ** </dd>
- **
- ** [[SQLITE_DBSTATUS_CACHE_MISS]] ^(<dt>SQLITE_DBSTATUS_CACHE_MISS</dt>
- ** <dd>This parameter returns the number of pager cache misses that have
- ** occurred.)^ ^The highwater mark associated with SQLITE_DBSTATUS_CACHE_MISS
- ** is always 0.
- ** </dd>
- **
- ** [[SQLITE_DBSTATUS_CACHE_WRITE]] ^(<dt>SQLITE_DBSTATUS_CACHE_WRITE</dt>
- ** <dd>This parameter returns the number of dirty cache entries that have
- ** been written to disk. Specifically, the number of pages written to the
- ** wal file in wal mode databases, or the number of pages written to the
- ** database file in rollback mode databases. Any pages written as part of
- ** transaction rollback or database recovery operations are not included.
- ** If an IO or other error occurs while writing a page to disk, the effect
- ** on subsequent SQLITE_DBSTATUS_CACHE_WRITE requests is undefined.)^ ^The
- ** highwater mark associated with SQLITE_DBSTATUS_CACHE_WRITE is always 0.
- ** </dd>
- **
- ** [[SQLITE_DBSTATUS_DEFERRED_FKS]] ^(<dt>SQLITE_DBSTATUS_DEFERRED_FKS</dt>
- ** <dd>This parameter returns zero for the current value if and only if
- ** all foreign key constraints (deferred or immediate) have been
- ** resolved.)^ ^The highwater mark is always 0.
- ** </dd>
- ** </dl>
- */
- #define SQLITE_DBSTATUS_LOOKASIDE_USED 0
- #define SQLITE_DBSTATUS_CACHE_USED 1
- #define SQLITE_DBSTATUS_SCHEMA_USED 2
- #define SQLITE_DBSTATUS_STMT_USED 3
- #define SQLITE_DBSTATUS_LOOKASIDE_HIT 4
- #define SQLITE_DBSTATUS_LOOKASIDE_MISS_SIZE 5
- #define SQLITE_DBSTATUS_LOOKASIDE_MISS_FULL 6
- #define SQLITE_DBSTATUS_CACHE_HIT 7
- #define SQLITE_DBSTATUS_CACHE_MISS 8
- #define SQLITE_DBSTATUS_CACHE_WRITE 9
- #define SQLITE_DBSTATUS_DEFERRED_FKS 10
- #define SQLITE_DBSTATUS_MAX 10 /* Largest defined DBSTATUS */
- /*
- ** CAPI3REF: Prepared Statement Status
- ** METHOD: sqlite3_stmt
- **
- ** ^(Each prepared statement maintains various
- ** [SQLITE_STMTSTATUS counters] that measure the number
- ** of times it has performed specific operations.)^ These counters can
- ** be used to monitor the performance characteristics of the prepared
- ** statements. For example, if the number of table steps greatly exceeds
- ** the number of table searches or result rows, that would tend to indicate
- ** that the prepared statement is using a full table scan rather than
- ** an index.
- **
- ** ^(This interface is used to retrieve and reset counter values from
- ** a [prepared statement]. The first argument is the prepared statement
- ** object to be interrogated. The second argument
- ** is an integer code for a specific [SQLITE_STMTSTATUS counter]
- ** to be interrogated.)^
- ** ^The current value of the requested counter is returned.
- ** ^If the resetFlg is true, then the counter is reset to zero after this
- ** interface call returns.
- **
- ** See also: [sqlite3_status()] and [sqlite3_db_status()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_stmt_status(sqlite3_stmt*, int op,int resetFlg);
- /*
- ** CAPI3REF: Status Parameters for prepared statements
- ** KEYWORDS: {SQLITE_STMTSTATUS counter} {SQLITE_STMTSTATUS counters}
- **
- ** These preprocessor macros define integer codes that name counter
- ** values associated with the [sqlite3_stmt_status()] interface.
- ** The meanings of the various counters are as follows:
- **
- ** <dl>
- ** [[SQLITE_STMTSTATUS_FULLSCAN_STEP]] <dt>SQLITE_STMTSTATUS_FULLSCAN_STEP</dt>
- ** <dd>^This is the number of times that SQLite has stepped forward in
- ** a table as part of a full table scan. Large numbers for this counter
- ** may indicate opportunities for performance improvement through
- ** careful use of indices.</dd>
- **
- ** [[SQLITE_STMTSTATUS_SORT]] <dt>SQLITE_STMTSTATUS_SORT</dt>
- ** <dd>^This is the number of sort operations that have occurred.
- ** A non-zero value in this counter may indicate an opportunity to
- ** improvement performance through careful use of indices.</dd>
- **
- ** [[SQLITE_STMTSTATUS_AUTOINDEX]] <dt>SQLITE_STMTSTATUS_AUTOINDEX</dt>
- ** <dd>^This is the number of rows inserted into transient indices that
- ** were created automatically in order to help joins run faster.
- ** A non-zero value in this counter may indicate an opportunity to
- ** improvement performance by adding permanent indices that do not
- ** need to be reinitialized each time the statement is run.</dd>
- **
- ** [[SQLITE_STMTSTATUS_VM_STEP]] <dt>SQLITE_STMTSTATUS_VM_STEP</dt>
- ** <dd>^This is the number of virtual machine operations executed
- ** by the prepared statement if that number is less than or equal
- ** to 2147483647. The number of virtual machine operations can be
- ** used as a proxy for the total work done by the prepared statement.
- ** If the number of virtual machine operations exceeds 2147483647
- ** then the value returned by this statement status code is undefined.
- ** </dd>
- ** </dl>
- */
- #define SQLITE_STMTSTATUS_FULLSCAN_STEP 1
- #define SQLITE_STMTSTATUS_SORT 2
- #define SQLITE_STMTSTATUS_AUTOINDEX 3
- #define SQLITE_STMTSTATUS_VM_STEP 4
- /*
- ** CAPI3REF: Custom Page Cache Object
- **
- ** The sqlite3_pcache type is opaque. It is implemented by
- ** the pluggable module. The SQLite core has no knowledge of
- ** its size or internal structure and never deals with the
- ** sqlite3_pcache object except by holding and passing pointers
- ** to the object.
- **
- ** See [sqlite3_pcache_methods2] for additional information.
- */
- typedef struct sqlite3_pcache sqlite3_pcache;
- /*
- ** CAPI3REF: Custom Page Cache Object
- **
- ** The sqlite3_pcache_page object represents a single page in the
- ** page cache. The page cache will allocate instances of this
- ** object. Various methods of the page cache use pointers to instances
- ** of this object as parameters or as their return value.
- **
- ** See [sqlite3_pcache_methods2] for additional information.
- */
- typedef struct sqlite3_pcache_page sqlite3_pcache_page;
- struct sqlite3_pcache_page {
- void *pBuf; /* The content of the page */
- void *pExtra; /* Extra information associated with the page */
- };
- /*
- ** CAPI3REF: Application Defined Page Cache.
- ** KEYWORDS: {page cache}
- **
- ** ^(The [sqlite3_config]([SQLITE_CONFIG_PCACHE2], ...) interface can
- ** register an alternative page cache implementation by passing in an
- ** instance of the sqlite3_pcache_methods2 structure.)^
- ** In many applications, most of the heap memory allocated by
- ** SQLite is used for the page cache.
- ** By implementing a
- ** custom page cache using this API, an application can better control
- ** the amount of memory consumed by SQLite, the way in which
- ** that memory is allocated and released, and the policies used to
- ** determine exactly which parts of a database file are cached and for
- ** how long.
- **
- ** The alternative page cache mechanism is an
- ** extreme measure that is only needed by the most demanding applications.
- ** The built-in page cache is recommended for most uses.
- **
- ** ^(The contents of the sqlite3_pcache_methods2 structure are copied to an
- ** internal buffer by SQLite within the call to [sqlite3_config]. Hence
- ** the application may discard the parameter after the call to
- ** [sqlite3_config()] returns.)^
- **
- ** [[the xInit() page cache method]]
- ** ^(The xInit() method is called once for each effective
- ** call to [sqlite3_initialize()])^
- ** (usually only once during the lifetime of the process). ^(The xInit()
- ** method is passed a copy of the sqlite3_pcache_methods2.pArg value.)^
- ** The intent of the xInit() method is to set up global data structures
- ** required by the custom page cache implementation.
- ** ^(If the xInit() method is NULL, then the
- ** built-in default page cache is used instead of the application defined
- ** page cache.)^
- **
- ** [[the xShutdown() page cache method]]
- ** ^The xShutdown() method is called by [sqlite3_shutdown()].
- ** It can be used to clean up
- ** any outstanding resources before process shutdown, if required.
- ** ^The xShutdown() method may be NULL.
- **
- ** ^SQLite automatically serializes calls to the xInit method,
- ** so the xInit method need not be threadsafe. ^The
- ** xShutdown method is only called from [sqlite3_shutdown()] so it does
- ** not need to be threadsafe either. All other methods must be threadsafe
- ** in multithreaded applications.
- **
- ** ^SQLite will never invoke xInit() more than once without an intervening
- ** call to xShutdown().
- **
- ** [[the xCreate() page cache methods]]
- ** ^SQLite invokes the xCreate() method to construct a new cache instance.
- ** SQLite will typically create one cache instance for each open database file,
- ** though this is not guaranteed. ^The
- ** first parameter, szPage, is the size in bytes of the pages that must
- ** be allocated by the cache. ^szPage will always a power of two. ^The
- ** second parameter szExtra is a number of bytes of extra storage
- ** associated with each page cache entry. ^The szExtra parameter will
- ** a number less than 250. SQLite will use the
- ** extra szExtra bytes on each page to store metadata about the underlying
- ** database page on disk. The value passed into szExtra depends
- ** on the SQLite version, the target platform, and how SQLite was compiled.
- ** ^The third argument to xCreate(), bPurgeable, is true if the cache being
- ** created will be used to cache database pages of a file stored on disk, or
- ** false if it is used for an in-memory database. The cache implementation
- ** does not have to do anything special based with the value of bPurgeable;
- ** it is purely advisory. ^On a cache where bPurgeable is false, SQLite will
- ** never invoke xUnpin() except to deliberately delete a page.
- ** ^In other words, calls to xUnpin() on a cache with bPurgeable set to
- ** false will always have the "discard" flag set to true.
- ** ^Hence, a cache created with bPurgeable false will
- ** never contain any unpinned pages.
- **
- ** [[the xCachesize() page cache method]]
- ** ^(The xCachesize() method may be called at any time by SQLite to set the
- ** suggested maximum cache-size (number of pages stored by) the cache
- ** instance passed as the first argument. This is the value configured using
- ** the SQLite "[PRAGMA cache_size]" command.)^ As with the bPurgeable
- ** parameter, the implementation is not required to do anything with this
- ** value; it is advisory only.
- **
- ** [[the xPagecount() page cache methods]]
- ** The xPagecount() method must return the number of pages currently
- ** stored in the cache, both pinned and unpinned.
- **
- ** [[the xFetch() page cache methods]]
- ** The xFetch() method locates a page in the cache and returns a pointer to
- ** an sqlite3_pcache_page object associated with that page, or a NULL pointer.
- ** The pBuf element of the returned sqlite3_pcache_page object will be a
- ** pointer to a buffer of szPage bytes used to store the content of a
- ** single database page. The pExtra element of sqlite3_pcache_page will be
- ** a pointer to the szExtra bytes of extra storage that SQLite has requested
- ** for each entry in the page cache.
- **
- ** The page to be fetched is determined by the key. ^The minimum key value
- ** is 1. After it has been retrieved using xFetch, the page is considered
- ** to be "pinned".
- **
- ** If the requested page is already in the page cache, then the page cache
- ** implementation must return a pointer to the page buffer with its content
- ** intact. If the requested page is not already in the cache, then the
- ** cache implementation should use the value of the createFlag
- ** parameter to help it determined what action to take:
- **
- ** <table border=1 width=85% align=center>
- ** <tr><th> createFlag <th> Behavior when page is not already in cache
- ** <tr><td> 0 <td> Do not allocate a new page. Return NULL.
- ** <tr><td> 1 <td> Allocate a new page if it easy and convenient to do so.
- ** Otherwise return NULL.
- ** <tr><td> 2 <td> Make every effort to allocate a new page. Only return
- ** NULL if allocating a new page is effectively impossible.
- ** </table>
- **
- ** ^(SQLite will normally invoke xFetch() with a createFlag of 0 or 1. SQLite
- ** will only use a createFlag of 2 after a prior call with a createFlag of 1
- ** failed.)^ In between the to xFetch() calls, SQLite may
- ** attempt to unpin one or more cache pages by spilling the content of
- ** pinned pages to disk and synching the operating system disk cache.
- **
- ** [[the xUnpin() page cache method]]
- ** ^xUnpin() is called by SQLite with a pointer to a currently pinned page
- ** as its second argument. If the third parameter, discard, is non-zero,
- ** then the page must be evicted from the cache.
- ** ^If the discard parameter is
- ** zero, then the page may be discarded or retained at the discretion of
- ** page cache implementation. ^The page cache implementation
- ** may choose to evict unpinned pages at any time.
- **
- ** The cache must not perform any reference counting. A single
- ** call to xUnpin() unpins the page regardless of the number of prior calls
- ** to xFetch().
- **
- ** [[the xRekey() page cache methods]]
- ** The xRekey() method is used to change the key value associated with the
- ** page passed as the second argument. If the cache
- ** previously contains an entry associated with newKey, it must be
- ** discarded. ^Any prior cache entry associated with newKey is guaranteed not
- ** to be pinned.
- **
- ** When SQLite calls the xTruncate() method, the cache must discard all
- ** existing cache entries with page numbers (keys) greater than or equal
- ** to the value of the iLimit parameter passed to xTruncate(). If any
- ** of these pages are pinned, they are implicitly unpinned, meaning that
- ** they can be safely discarded.
- **
- ** [[the xDestroy() page cache method]]
- ** ^The xDestroy() method is used to delete a cache allocated by xCreate().
- ** All resources associated with the specified cache should be freed. ^After
- ** calling the xDestroy() method, SQLite considers the [sqlite3_pcache*]
- ** handle invalid, and will not use it with any other sqlite3_pcache_methods2
- ** functions.
- **
- ** [[the xShrink() page cache method]]
- ** ^SQLite invokes the xShrink() method when it wants the page cache to
- ** free up as much of heap memory as possible. The page cache implementation
- ** is not obligated to free any memory, but well-behaved implementations should
- ** do their best.
- */
- typedef struct sqlite3_pcache_methods2 sqlite3_pcache_methods2;
- struct sqlite3_pcache_methods2 {
- int iVersion;
- void *pArg;
- int (*xInit)(void*);
- void (*xShutdown)(void*);
- sqlite3_pcache *(*xCreate)(int szPage, int szExtra, int bPurgeable);
- void (*xCachesize)(sqlite3_pcache*, int nCachesize);
- int (*xPagecount)(sqlite3_pcache*);
- sqlite3_pcache_page *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
- void (*xUnpin)(sqlite3_pcache*, sqlite3_pcache_page*, int discard);
- void (*xRekey)(sqlite3_pcache*, sqlite3_pcache_page*,
- unsigned oldKey, unsigned newKey);
- void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
- void (*xDestroy)(sqlite3_pcache*);
- void (*xShrink)(sqlite3_pcache*);
- };
- /*
- ** This is the obsolete pcache_methods object that has now been replaced
- ** by sqlite3_pcache_methods2. This object is not used by SQLite. It is
- ** retained in the header file for backwards compatibility only.
- */
- typedef struct sqlite3_pcache_methods sqlite3_pcache_methods;
- struct sqlite3_pcache_methods {
- void *pArg;
- int (*xInit)(void*);
- void (*xShutdown)(void*);
- sqlite3_pcache *(*xCreate)(int szPage, int bPurgeable);
- void (*xCachesize)(sqlite3_pcache*, int nCachesize);
- int (*xPagecount)(sqlite3_pcache*);
- void *(*xFetch)(sqlite3_pcache*, unsigned key, int createFlag);
- void (*xUnpin)(sqlite3_pcache*, void*, int discard);
- void (*xRekey)(sqlite3_pcache*, void*, unsigned oldKey, unsigned newKey);
- void (*xTruncate)(sqlite3_pcache*, unsigned iLimit);
- void (*xDestroy)(sqlite3_pcache*);
- };
- /*
- ** CAPI3REF: Online Backup Object
- **
- ** The sqlite3_backup object records state information about an ongoing
- ** online backup operation. ^The sqlite3_backup object is created by
- ** a call to [sqlite3_backup_init()] and is destroyed by a call to
- ** [sqlite3_backup_finish()].
- **
- ** See Also: [Using the SQLite Online Backup API]
- */
- typedef struct sqlite3_backup sqlite3_backup;
- /*
- ** CAPI3REF: Online Backup API.
- **
- ** The backup API copies the content of one database into another.
- ** It is useful either for creating backups of databases or
- ** for copying in-memory databases to or from persistent files.
- **
- ** See Also: [Using the SQLite Online Backup API]
- **
- ** ^SQLite holds a write transaction open on the destination database file
- ** for the duration of the backup operation.
- ** ^The source database is read-locked only while it is being read;
- ** it is not locked continuously for the entire backup operation.
- ** ^Thus, the backup may be performed on a live source database without
- ** preventing other database connections from
- ** reading or writing to the source database while the backup is underway.
- **
- ** ^(To perform a backup operation:
- ** <ol>
- ** <li><b>sqlite3_backup_init()</b> is called once to initialize the
- ** backup,
- ** <li><b>sqlite3_backup_step()</b> is called one or more times to transfer
- ** the data between the two databases, and finally
- ** <li><b>sqlite3_backup_finish()</b> is called to release all resources
- ** associated with the backup operation.
- ** </ol>)^
- ** There should be exactly one call to sqlite3_backup_finish() for each
- ** successful call to sqlite3_backup_init().
- **
- ** [[sqlite3_backup_init()]] <b>sqlite3_backup_init()</b>
- **
- ** ^The D and N arguments to sqlite3_backup_init(D,N,S,M) are the
- ** [database connection] associated with the destination database
- ** and the database name, respectively.
- ** ^The database name is "main" for the main database, "temp" for the
- ** temporary database, or the name specified after the AS keyword in
- ** an [ATTACH] statement for an attached database.
- ** ^The S and M arguments passed to
- ** sqlite3_backup_init(D,N,S,M) identify the [database connection]
- ** and database name of the source database, respectively.
- ** ^The source and destination [database connections] (parameters S and D)
- ** must be different or else sqlite3_backup_init(D,N,S,M) will fail with
- ** an error.
- **
- ** ^A call to sqlite3_backup_init() will fail, returning SQLITE_ERROR, if
- ** there is already a read or read-write transaction open on the
- ** destination database.
- **
- ** ^If an error occurs within sqlite3_backup_init(D,N,S,M), then NULL is
- ** returned and an error code and error message are stored in the
- ** destination [database connection] D.
- ** ^The error code and message for the failed call to sqlite3_backup_init()
- ** can be retrieved using the [sqlite3_errcode()], [sqlite3_errmsg()], and/or
- ** [sqlite3_errmsg16()] functions.
- ** ^A successful call to sqlite3_backup_init() returns a pointer to an
- ** [sqlite3_backup] object.
- ** ^The [sqlite3_backup] object may be used with the sqlite3_backup_step() and
- ** sqlite3_backup_finish() functions to perform the specified backup
- ** operation.
- **
- ** [[sqlite3_backup_step()]] <b>sqlite3_backup_step()</b>
- **
- ** ^Function sqlite3_backup_step(B,N) will copy up to N pages between
- ** the source and destination databases specified by [sqlite3_backup] object B.
- ** ^If N is negative, all remaining source pages are copied.
- ** ^If sqlite3_backup_step(B,N) successfully copies N pages and there
- ** are still more pages to be copied, then the function returns [SQLITE_OK].
- ** ^If sqlite3_backup_step(B,N) successfully finishes copying all pages
- ** from source to destination, then it returns [SQLITE_DONE].
- ** ^If an error occurs while running sqlite3_backup_step(B,N),
- ** then an [error code] is returned. ^As well as [SQLITE_OK] and
- ** [SQLITE_DONE], a call to sqlite3_backup_step() may return [SQLITE_READONLY],
- ** [SQLITE_NOMEM], [SQLITE_BUSY], [SQLITE_LOCKED], or an
- ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX] extended error code.
- **
- ** ^(The sqlite3_backup_step() might return [SQLITE_READONLY] if
- ** <ol>
- ** <li> the destination database was opened read-only, or
- ** <li> the destination database is using write-ahead-log journaling
- ** and the destination and source page sizes differ, or
- ** <li> the destination database is an in-memory database and the
- ** destination and source page sizes differ.
- ** </ol>)^
- **
- ** ^If sqlite3_backup_step() cannot obtain a required file-system lock, then
- ** the [sqlite3_busy_handler | busy-handler function]
- ** is invoked (if one is specified). ^If the
- ** busy-handler returns non-zero before the lock is available, then
- ** [SQLITE_BUSY] is returned to the caller. ^In this case the call to
- ** sqlite3_backup_step() can be retried later. ^If the source
- ** [database connection]
- ** is being used to write to the source database when sqlite3_backup_step()
- ** is called, then [SQLITE_LOCKED] is returned immediately. ^Again, in this
- ** case the call to sqlite3_backup_step() can be retried later on. ^(If
- ** [SQLITE_IOERR_ACCESS | SQLITE_IOERR_XXX], [SQLITE_NOMEM], or
- ** [SQLITE_READONLY] is returned, then
- ** there is no point in retrying the call to sqlite3_backup_step(). These
- ** errors are considered fatal.)^ The application must accept
- ** that the backup operation has failed and pass the backup operation handle
- ** to the sqlite3_backup_finish() to release associated resources.
- **
- ** ^The first call to sqlite3_backup_step() obtains an exclusive lock
- ** on the destination file. ^The exclusive lock is not released until either
- ** sqlite3_backup_finish() is called or the backup operation is complete
- ** and sqlite3_backup_step() returns [SQLITE_DONE]. ^Every call to
- ** sqlite3_backup_step() obtains a [shared lock] on the source database that
- ** lasts for the duration of the sqlite3_backup_step() call.
- ** ^Because the source database is not locked between calls to
- ** sqlite3_backup_step(), the source database may be modified mid-way
- ** through the backup process. ^If the source database is modified by an
- ** external process or via a database connection other than the one being
- ** used by the backup operation, then the backup will be automatically
- ** restarted by the next call to sqlite3_backup_step(). ^If the source
- ** database is modified by the using the same database connection as is used
- ** by the backup operation, then the backup database is automatically
- ** updated at the same time.
- **
- ** [[sqlite3_backup_finish()]] <b>sqlite3_backup_finish()</b>
- **
- ** When sqlite3_backup_step() has returned [SQLITE_DONE], or when the
- ** application wishes to abandon the backup operation, the application
- ** should destroy the [sqlite3_backup] by passing it to sqlite3_backup_finish().
- ** ^The sqlite3_backup_finish() interfaces releases all
- ** resources associated with the [sqlite3_backup] object.
- ** ^If sqlite3_backup_step() has not yet returned [SQLITE_DONE], then any
- ** active write-transaction on the destination database is rolled back.
- ** The [sqlite3_backup] object is invalid
- ** and may not be used following a call to sqlite3_backup_finish().
- **
- ** ^The value returned by sqlite3_backup_finish is [SQLITE_OK] if no
- ** sqlite3_backup_step() errors occurred, regardless or whether or not
- ** sqlite3_backup_step() completed.
- ** ^If an out-of-memory condition or IO error occurred during any prior
- ** sqlite3_backup_step() call on the same [sqlite3_backup] object, then
- ** sqlite3_backup_finish() returns the corresponding [error code].
- **
- ** ^A return of [SQLITE_BUSY] or [SQLITE_LOCKED] from sqlite3_backup_step()
- ** is not a permanent error and does not affect the return value of
- ** sqlite3_backup_finish().
- **
- ** [[sqlite3_backup_remaining()]] [[sqlite3_backup_pagecount()]]
- ** <b>sqlite3_backup_remaining() and sqlite3_backup_pagecount()</b>
- **
- ** ^The sqlite3_backup_remaining() routine returns the number of pages still
- ** to be backed up at the conclusion of the most recent sqlite3_backup_step().
- ** ^The sqlite3_backup_pagecount() routine returns the total number of pages
- ** in the source database at the conclusion of the most recent
- ** sqlite3_backup_step().
- ** ^(The values returned by these functions are only updated by
- ** sqlite3_backup_step(). If the source database is modified in a way that
- ** changes the size of the source database or the number of pages remaining,
- ** those changes are not reflected in the output of sqlite3_backup_pagecount()
- ** and sqlite3_backup_remaining() until after the next
- ** sqlite3_backup_step().)^
- **
- ** <b>Concurrent Usage of Database Handles</b>
- **
- ** ^The source [database connection] may be used by the application for other
- ** purposes while a backup operation is underway or being initialized.
- ** ^If SQLite is compiled and configured to support threadsafe database
- ** connections, then the source database connection may be used concurrently
- ** from within other threads.
- **
- ** However, the application must guarantee that the destination
- ** [database connection] is not passed to any other API (by any thread) after
- ** sqlite3_backup_init() is called and before the corresponding call to
- ** sqlite3_backup_finish(). SQLite does not currently check to see
- ** if the application incorrectly accesses the destination [database connection]
- ** and so no error code is reported, but the operations may malfunction
- ** nevertheless. Use of the destination database connection while a
- ** backup is in progress might also also cause a mutex deadlock.
- **
- ** If running in [shared cache mode], the application must
- ** guarantee that the shared cache used by the destination database
- ** is not accessed while the backup is running. In practice this means
- ** that the application must guarantee that the disk file being
- ** backed up to is not accessed by any connection within the process,
- ** not just the specific connection that was passed to sqlite3_backup_init().
- **
- ** The [sqlite3_backup] object itself is partially threadsafe. Multiple
- ** threads may safely make multiple concurrent calls to sqlite3_backup_step().
- ** However, the sqlite3_backup_remaining() and sqlite3_backup_pagecount()
- ** APIs are not strictly speaking threadsafe. If they are invoked at the
- ** same time as another thread is invoking sqlite3_backup_step() it is
- ** possible that they return invalid values.
- */
- SQLITE_API sqlite3_backup *SQLITE_STDCALL sqlite3_backup_init(
- sqlite3 *pDest, /* Destination database handle */
- const char *zDestName, /* Destination database name */
- sqlite3 *pSource, /* Source database handle */
- const char *zSourceName /* Source database name */
- );
- SQLITE_API int SQLITE_STDCALL sqlite3_backup_step(sqlite3_backup *p, int nPage);
- SQLITE_API int SQLITE_STDCALL sqlite3_backup_finish(sqlite3_backup *p);
- SQLITE_API int SQLITE_STDCALL sqlite3_backup_remaining(sqlite3_backup *p);
- SQLITE_API int SQLITE_STDCALL sqlite3_backup_pagecount(sqlite3_backup *p);
- /*
- ** CAPI3REF: Unlock Notification
- ** METHOD: sqlite3
- **
- ** ^When running in shared-cache mode, a database operation may fail with
- ** an [SQLITE_LOCKED] error if the required locks on the shared-cache or
- ** individual tables within the shared-cache cannot be obtained. See
- ** [SQLite Shared-Cache Mode] for a description of shared-cache locking.
- ** ^This API may be used to register a callback that SQLite will invoke
- ** when the connection currently holding the required lock relinquishes it.
- ** ^This API is only available if the library was compiled with the
- ** [SQLITE_ENABLE_UNLOCK_NOTIFY] C-preprocessor symbol defined.
- **
- ** See Also: [Using the SQLite Unlock Notification Feature].
- **
- ** ^Shared-cache locks are released when a database connection concludes
- ** its current transaction, either by committing it or rolling it back.
- **
- ** ^When a connection (known as the blocked connection) fails to obtain a
- ** shared-cache lock and SQLITE_LOCKED is returned to the caller, the
- ** identity of the database connection (the blocking connection) that
- ** has locked the required resource is stored internally. ^After an
- ** application receives an SQLITE_LOCKED error, it may call the
- ** sqlite3_unlock_notify() method with the blocked connection handle as
- ** the first argument to register for a callback that will be invoked
- ** when the blocking connections current transaction is concluded. ^The
- ** callback is invoked from within the [sqlite3_step] or [sqlite3_close]
- ** call that concludes the blocking connections transaction.
- **
- ** ^(If sqlite3_unlock_notify() is called in a multi-threaded application,
- ** there is a chance that the blocking connection will have already
- ** concluded its transaction by the time sqlite3_unlock_notify() is invoked.
- ** If this happens, then the specified callback is invoked immediately,
- ** from within the call to sqlite3_unlock_notify().)^
- **
- ** ^If the blocked connection is attempting to obtain a write-lock on a
- ** shared-cache table, and more than one other connection currently holds
- ** a read-lock on the same table, then SQLite arbitrarily selects one of
- ** the other connections to use as the blocking connection.
- **
- ** ^(There may be at most one unlock-notify callback registered by a
- ** blocked connection. If sqlite3_unlock_notify() is called when the
- ** blocked connection already has a registered unlock-notify callback,
- ** then the new callback replaces the old.)^ ^If sqlite3_unlock_notify() is
- ** called with a NULL pointer as its second argument, then any existing
- ** unlock-notify callback is canceled. ^The blocked connections
- ** unlock-notify callback may also be canceled by closing the blocked
- ** connection using [sqlite3_close()].
- **
- ** The unlock-notify callback is not reentrant. If an application invokes
- ** any sqlite3_xxx API functions from within an unlock-notify callback, a
- ** crash or deadlock may be the result.
- **
- ** ^Unless deadlock is detected (see below), sqlite3_unlock_notify() always
- ** returns SQLITE_OK.
- **
- ** <b>Callback Invocation Details</b>
- **
- ** When an unlock-notify callback is registered, the application provides a
- ** single void* pointer that is passed to the callback when it is invoked.
- ** However, the signature of the callback function allows SQLite to pass
- ** it an array of void* context pointers. The first argument passed to
- ** an unlock-notify callback is a pointer to an array of void* pointers,
- ** and the second is the number of entries in the array.
- **
- ** When a blocking connections transaction is concluded, there may be
- ** more than one blocked connection that has registered for an unlock-notify
- ** callback. ^If two or more such blocked connections have specified the
- ** same callback function, then instead of invoking the callback function
- ** multiple times, it is invoked once with the set of void* context pointers
- ** specified by the blocked connections bundled together into an array.
- ** This gives the application an opportunity to prioritize any actions
- ** related to the set of unblocked database connections.
- **
- ** <b>Deadlock Detection</b>
- **
- ** Assuming that after registering for an unlock-notify callback a
- ** database waits for the callback to be issued before taking any further
- ** action (a reasonable assumption), then using this API may cause the
- ** application to deadlock. For example, if connection X is waiting for
- ** connection Y's transaction to be concluded, and similarly connection
- ** Y is waiting on connection X's transaction, then neither connection
- ** will proceed and the system may remain deadlocked indefinitely.
- **
- ** To avoid this scenario, the sqlite3_unlock_notify() performs deadlock
- ** detection. ^If a given call to sqlite3_unlock_notify() would put the
- ** system in a deadlocked state, then SQLITE_LOCKED is returned and no
- ** unlock-notify callback is registered. The system is said to be in
- ** a deadlocked state if connection A has registered for an unlock-notify
- ** callback on the conclusion of connection B's transaction, and connection
- ** B has itself registered for an unlock-notify callback when connection
- ** A's transaction is concluded. ^Indirect deadlock is also detected, so
- ** the system is also considered to be deadlocked if connection B has
- ** registered for an unlock-notify callback on the conclusion of connection
- ** C's transaction, where connection C is waiting on connection A. ^Any
- ** number of levels of indirection are allowed.
- **
- ** <b>The "DROP TABLE" Exception</b>
- **
- ** When a call to [sqlite3_step()] returns SQLITE_LOCKED, it is almost
- ** always appropriate to call sqlite3_unlock_notify(). There is however,
- ** one exception. When executing a "DROP TABLE" or "DROP INDEX" statement,
- ** SQLite checks if there are any currently executing SELECT statements
- ** that belong to the same connection. If there are, SQLITE_LOCKED is
- ** returned. In this case there is no "blocking connection", so invoking
- ** sqlite3_unlock_notify() results in the unlock-notify callback being
- ** invoked immediately. If the application then re-attempts the "DROP TABLE"
- ** or "DROP INDEX" query, an infinite loop might be the result.
- **
- ** One way around this problem is to check the extended error code returned
- ** by an sqlite3_step() call. ^(If there is a blocking connection, then the
- ** extended error code is set to SQLITE_LOCKED_SHAREDCACHE. Otherwise, in
- ** the special "DROP TABLE/INDEX" case, the extended error code is just
- ** SQLITE_LOCKED.)^
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_unlock_notify(
- sqlite3 *pBlocked, /* Waiting connection */
- void (*xNotify)(void **apArg, int nArg), /* Callback function to invoke */
- void *pNotifyArg /* Argument to pass to xNotify */
- );
- /*
- ** CAPI3REF: String Comparison
- **
- ** ^The [sqlite3_stricmp()] and [sqlite3_strnicmp()] APIs allow applications
- ** and extensions to compare the contents of two buffers containing UTF-8
- ** strings in a case-independent fashion, using the same definition of "case
- ** independence" that SQLite uses internally when comparing identifiers.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_stricmp(const char *, const char *);
- SQLITE_API int SQLITE_STDCALL sqlite3_strnicmp(const char *, const char *, int);
- /*
- ** CAPI3REF: String Globbing
- *
- ** ^The [sqlite3_strglob(P,X)] interface returns zero if string X matches
- ** the glob pattern P, and it returns non-zero if string X does not match
- ** the glob pattern P. ^The definition of glob pattern matching used in
- ** [sqlite3_strglob(P,X)] is the same as for the "X GLOB P" operator in the
- ** SQL dialect used by SQLite. ^The sqlite3_strglob(P,X) function is case
- ** sensitive.
- **
- ** Note that this routine returns zero on a match and non-zero if the strings
- ** do not match, the same as [sqlite3_stricmp()] and [sqlite3_strnicmp()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_strglob(const char *zGlob, const char *zStr);
- /*
- ** CAPI3REF: Error Logging Interface
- **
- ** ^The [sqlite3_log()] interface writes a message into the [error log]
- ** established by the [SQLITE_CONFIG_LOG] option to [sqlite3_config()].
- ** ^If logging is enabled, the zFormat string and subsequent arguments are
- ** used with [sqlite3_snprintf()] to generate the final output string.
- **
- ** The sqlite3_log() interface is intended for use by extensions such as
- ** virtual tables, collating functions, and SQL functions. While there is
- ** nothing to prevent an application from calling sqlite3_log(), doing so
- ** is considered bad form.
- **
- ** The zFormat string must not be NULL.
- **
- ** To avoid deadlocks and other threading problems, the sqlite3_log() routine
- ** will not use dynamically allocated memory. The log message is stored in
- ** a fixed-length buffer on the stack. If the log message is longer than
- ** a few hundred characters, it will be truncated to the length of the
- ** buffer.
- */
- SQLITE_API void SQLITE_CDECL sqlite3_log(int iErrCode, const char *zFormat, ...);
- /*
- ** CAPI3REF: Write-Ahead Log Commit Hook
- ** METHOD: sqlite3
- **
- ** ^The [sqlite3_wal_hook()] function is used to register a callback that
- ** is invoked each time data is committed to a database in wal mode.
- **
- ** ^(The callback is invoked by SQLite after the commit has taken place and
- ** the associated write-lock on the database released)^, so the implementation
- ** may read, write or [checkpoint] the database as required.
- **
- ** ^The first parameter passed to the callback function when it is invoked
- ** is a copy of the third parameter passed to sqlite3_wal_hook() when
- ** registering the callback. ^The second is a copy of the database handle.
- ** ^The third parameter is the name of the database that was written to -
- ** either "main" or the name of an [ATTACH]-ed database. ^The fourth parameter
- ** is the number of pages currently in the write-ahead log file,
- ** including those that were just committed.
- **
- ** The callback function should normally return [SQLITE_OK]. ^If an error
- ** code is returned, that error will propagate back up through the
- ** SQLite code base to cause the statement that provoked the callback
- ** to report an error, though the commit will have still occurred. If the
- ** callback returns [SQLITE_ROW] or [SQLITE_DONE], or if it returns a value
- ** that does not correspond to any valid SQLite error code, the results
- ** are undefined.
- **
- ** A single database handle may have at most a single write-ahead log callback
- ** registered at one time. ^Calling [sqlite3_wal_hook()] replaces any
- ** previously registered write-ahead log callback. ^Note that the
- ** [sqlite3_wal_autocheckpoint()] interface and the
- ** [wal_autocheckpoint pragma] both invoke [sqlite3_wal_hook()] and will
- ** those overwrite any prior [sqlite3_wal_hook()] settings.
- */
- SQLITE_API void *SQLITE_STDCALL sqlite3_wal_hook(
- sqlite3*,
- int(*)(void *,sqlite3*,const char*,int),
- void*
- );
- /*
- ** CAPI3REF: Configure an auto-checkpoint
- ** METHOD: sqlite3
- **
- ** ^The [sqlite3_wal_autocheckpoint(D,N)] is a wrapper around
- ** [sqlite3_wal_hook()] that causes any database on [database connection] D
- ** to automatically [checkpoint]
- ** after committing a transaction if there are N or
- ** more frames in the [write-ahead log] file. ^Passing zero or
- ** a negative value as the nFrame parameter disables automatic
- ** checkpoints entirely.
- **
- ** ^The callback registered by this function replaces any existing callback
- ** registered using [sqlite3_wal_hook()]. ^Likewise, registering a callback
- ** using [sqlite3_wal_hook()] disables the automatic checkpoint mechanism
- ** configured by this function.
- **
- ** ^The [wal_autocheckpoint pragma] can be used to invoke this interface
- ** from SQL.
- **
- ** ^Checkpoints initiated by this mechanism are
- ** [sqlite3_wal_checkpoint_v2|PASSIVE].
- **
- ** ^Every new [database connection] defaults to having the auto-checkpoint
- ** enabled with a threshold of 1000 or [SQLITE_DEFAULT_WAL_AUTOCHECKPOINT]
- ** pages. The use of this interface
- ** is only necessary if the default setting is found to be suboptimal
- ** for a particular application.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_wal_autocheckpoint(sqlite3 *db, int N);
- /*
- ** CAPI3REF: Checkpoint a database
- ** METHOD: sqlite3
- **
- ** ^(The sqlite3_wal_checkpoint(D,X) is equivalent to
- ** [sqlite3_wal_checkpoint_v2](D,X,[SQLITE_CHECKPOINT_PASSIVE],0,0).)^
- **
- ** In brief, sqlite3_wal_checkpoint(D,X) causes the content in the
- ** [write-ahead log] for database X on [database connection] D to be
- ** transferred into the database file and for the write-ahead log to
- ** be reset. See the [checkpointing] documentation for addition
- ** information.
- **
- ** This interface used to be the only way to cause a checkpoint to
- ** occur. But then the newer and more powerful [sqlite3_wal_checkpoint_v2()]
- ** interface was added. This interface is retained for backwards
- ** compatibility and as a convenience for applications that need to manually
- ** start a callback but which do not need the full power (and corresponding
- ** complication) of [sqlite3_wal_checkpoint_v2()].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_wal_checkpoint(sqlite3 *db, const char *zDb);
- /*
- ** CAPI3REF: Checkpoint a database
- ** METHOD: sqlite3
- **
- ** ^(The sqlite3_wal_checkpoint_v2(D,X,M,L,C) interface runs a checkpoint
- ** operation on database X of [database connection] D in mode M. Status
- ** information is written back into integers pointed to by L and C.)^
- ** ^(The M parameter must be a valid [checkpoint mode]:)^
- **
- ** <dl>
- ** <dt>SQLITE_CHECKPOINT_PASSIVE<dd>
- ** ^Checkpoint as many frames as possible without waiting for any database
- ** readers or writers to finish, then sync the database file if all frames
- ** in the log were checkpointed. ^The [busy-handler callback]
- ** is never invoked in the SQLITE_CHECKPOINT_PASSIVE mode.
- ** ^On the other hand, passive mode might leave the checkpoint unfinished
- ** if there are concurrent readers or writers.
- **
- ** <dt>SQLITE_CHECKPOINT_FULL<dd>
- ** ^This mode blocks (it invokes the
- ** [sqlite3_busy_handler|busy-handler callback]) until there is no
- ** database writer and all readers are reading from the most recent database
- ** snapshot. ^It then checkpoints all frames in the log file and syncs the
- ** database file. ^This mode blocks new database writers while it is pending,
- ** but new database readers are allowed to continue unimpeded.
- **
- ** <dt>SQLITE_CHECKPOINT_RESTART<dd>
- ** ^This mode works the same way as SQLITE_CHECKPOINT_FULL with the addition
- ** that after checkpointing the log file it blocks (calls the
- ** [busy-handler callback])
- ** until all readers are reading from the database file only. ^This ensures
- ** that the next writer will restart the log file from the beginning.
- ** ^Like SQLITE_CHECKPOINT_FULL, this mode blocks new
- ** database writer attempts while it is pending, but does not impede readers.
- **
- ** <dt>SQLITE_CHECKPOINT_TRUNCATE<dd>
- ** ^This mode works the same way as SQLITE_CHECKPOINT_RESTART with the
- ** addition that it also truncates the log file to zero bytes just prior
- ** to a successful return.
- ** </dl>
- **
- ** ^If pnLog is not NULL, then *pnLog is set to the total number of frames in
- ** the log file or to -1 if the checkpoint could not run because
- ** of an error or because the database is not in [WAL mode]. ^If pnCkpt is not
- ** NULL,then *pnCkpt is set to the total number of checkpointed frames in the
- ** log file (including any that were already checkpointed before the function
- ** was called) or to -1 if the checkpoint could not run due to an error or
- ** because the database is not in WAL mode. ^Note that upon successful
- ** completion of an SQLITE_CHECKPOINT_TRUNCATE, the log file will have been
- ** truncated to zero bytes and so both *pnLog and *pnCkpt will be set to zero.
- **
- ** ^All calls obtain an exclusive "checkpoint" lock on the database file. ^If
- ** any other process is running a checkpoint operation at the same time, the
- ** lock cannot be obtained and SQLITE_BUSY is returned. ^Even if there is a
- ** busy-handler configured, it will not be invoked in this case.
- **
- ** ^The SQLITE_CHECKPOINT_FULL, RESTART and TRUNCATE modes also obtain the
- ** exclusive "writer" lock on the database file. ^If the writer lock cannot be
- ** obtained immediately, and a busy-handler is configured, it is invoked and
- ** the writer lock retried until either the busy-handler returns 0 or the lock
- ** is successfully obtained. ^The busy-handler is also invoked while waiting for
- ** database readers as described above. ^If the busy-handler returns 0 before
- ** the writer lock is obtained or while waiting for database readers, the
- ** checkpoint operation proceeds from that point in the same way as
- ** SQLITE_CHECKPOINT_PASSIVE - checkpointing as many frames as possible
- ** without blocking any further. ^SQLITE_BUSY is returned in this case.
- **
- ** ^If parameter zDb is NULL or points to a zero length string, then the
- ** specified operation is attempted on all WAL databases [attached] to
- ** [database connection] db. In this case the
- ** values written to output parameters *pnLog and *pnCkpt are undefined. ^If
- ** an SQLITE_BUSY error is encountered when processing one or more of the
- ** attached WAL databases, the operation is still attempted on any remaining
- ** attached databases and SQLITE_BUSY is returned at the end. ^If any other
- ** error occurs while processing an attached database, processing is abandoned
- ** and the error code is returned to the caller immediately. ^If no error
- ** (SQLITE_BUSY or otherwise) is encountered while processing the attached
- ** databases, SQLITE_OK is returned.
- **
- ** ^If database zDb is the name of an attached database that is not in WAL
- ** mode, SQLITE_OK is returned and both *pnLog and *pnCkpt set to -1. ^If
- ** zDb is not NULL (or a zero length string) and is not the name of any
- ** attached database, SQLITE_ERROR is returned to the caller.
- **
- ** ^Unless it returns SQLITE_MISUSE,
- ** the sqlite3_wal_checkpoint_v2() interface
- ** sets the error information that is queried by
- ** [sqlite3_errcode()] and [sqlite3_errmsg()].
- **
- ** ^The [PRAGMA wal_checkpoint] command can be used to invoke this interface
- ** from SQL.
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_wal_checkpoint_v2(
- sqlite3 *db, /* Database handle */
- const char *zDb, /* Name of attached database (or NULL) */
- int eMode, /* SQLITE_CHECKPOINT_* value */
- int *pnLog, /* OUT: Size of WAL log in frames */
- int *pnCkpt /* OUT: Total number of frames checkpointed */
- );
- /*
- ** CAPI3REF: Checkpoint Mode Values
- ** KEYWORDS: {checkpoint mode}
- **
- ** These constants define all valid values for the "checkpoint mode" passed
- ** as the third parameter to the [sqlite3_wal_checkpoint_v2()] interface.
- ** See the [sqlite3_wal_checkpoint_v2()] documentation for details on the
- ** meaning of each of these checkpoint modes.
- */
- #define SQLITE_CHECKPOINT_PASSIVE 0 /* Do as much as possible w/o blocking */
- #define SQLITE_CHECKPOINT_FULL 1 /* Wait for writers, then checkpoint */
- #define SQLITE_CHECKPOINT_RESTART 2 /* Like FULL but wait for for readers */
- #define SQLITE_CHECKPOINT_TRUNCATE 3 /* Like RESTART but also truncate WAL */
- /*
- ** CAPI3REF: Virtual Table Interface Configuration
- **
- ** This function may be called by either the [xConnect] or [xCreate] method
- ** of a [virtual table] implementation to configure
- ** various facets of the virtual table interface.
- **
- ** If this interface is invoked outside the context of an xConnect or
- ** xCreate virtual table method then the behavior is undefined.
- **
- ** At present, there is only one option that may be configured using
- ** this function. (See [SQLITE_VTAB_CONSTRAINT_SUPPORT].) Further options
- ** may be added in the future.
- */
- SQLITE_API int SQLITE_CDECL sqlite3_vtab_config(sqlite3*, int op, ...);
- /*
- ** CAPI3REF: Virtual Table Configuration Options
- **
- ** These macros define the various options to the
- ** [sqlite3_vtab_config()] interface that [virtual table] implementations
- ** can use to customize and optimize their behavior.
- **
- ** <dl>
- ** <dt>SQLITE_VTAB_CONSTRAINT_SUPPORT
- ** <dd>Calls of the form
- ** [sqlite3_vtab_config](db,SQLITE_VTAB_CONSTRAINT_SUPPORT,X) are supported,
- ** where X is an integer. If X is zero, then the [virtual table] whose
- ** [xCreate] or [xConnect] method invoked [sqlite3_vtab_config()] does not
- ** support constraints. In this configuration (which is the default) if
- ** a call to the [xUpdate] method returns [SQLITE_CONSTRAINT], then the entire
- ** statement is rolled back as if [ON CONFLICT | OR ABORT] had been
- ** specified as part of the users SQL statement, regardless of the actual
- ** ON CONFLICT mode specified.
- **
- ** If X is non-zero, then the virtual table implementation guarantees
- ** that if [xUpdate] returns [SQLITE_CONSTRAINT], it will do so before
- ** any modifications to internal or persistent data structures have been made.
- ** If the [ON CONFLICT] mode is ABORT, FAIL, IGNORE or ROLLBACK, SQLite
- ** is able to roll back a statement or database transaction, and abandon
- ** or continue processing the current SQL statement as appropriate.
- ** If the ON CONFLICT mode is REPLACE and the [xUpdate] method returns
- ** [SQLITE_CONSTRAINT], SQLite handles this as if the ON CONFLICT mode
- ** had been ABORT.
- **
- ** Virtual table implementations that are required to handle OR REPLACE
- ** must do so within the [xUpdate] method. If a call to the
- ** [sqlite3_vtab_on_conflict()] function indicates that the current ON
- ** CONFLICT policy is REPLACE, the virtual table implementation should
- ** silently replace the appropriate rows within the xUpdate callback and
- ** return SQLITE_OK. Or, if this is not possible, it may return
- ** SQLITE_CONSTRAINT, in which case SQLite falls back to OR ABORT
- ** constraint handling.
- ** </dl>
- */
- #define SQLITE_VTAB_CONSTRAINT_SUPPORT 1
- /*
- ** CAPI3REF: Determine The Virtual Table Conflict Policy
- **
- ** This function may only be called from within a call to the [xUpdate] method
- ** of a [virtual table] implementation for an INSERT or UPDATE operation. ^The
- ** value returned is one of [SQLITE_ROLLBACK], [SQLITE_IGNORE], [SQLITE_FAIL],
- ** [SQLITE_ABORT], or [SQLITE_REPLACE], according to the [ON CONFLICT] mode
- ** of the SQL statement that triggered the call to the [xUpdate] method of the
- ** [virtual table].
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_vtab_on_conflict(sqlite3 *);
- /*
- ** CAPI3REF: Conflict resolution modes
- ** KEYWORDS: {conflict resolution mode}
- **
- ** These constants are returned by [sqlite3_vtab_on_conflict()] to
- ** inform a [virtual table] implementation what the [ON CONFLICT] mode
- ** is for the SQL statement being evaluated.
- **
- ** Note that the [SQLITE_IGNORE] constant is also used as a potential
- ** return value from the [sqlite3_set_authorizer()] callback and that
- ** [SQLITE_ABORT] is also a [result code].
- */
- #define SQLITE_ROLLBACK 1
- /* #define SQLITE_IGNORE 2 // Also used by sqlite3_authorizer() callback */
- #define SQLITE_FAIL 3
- /* #define SQLITE_ABORT 4 // Also an error code */
- #define SQLITE_REPLACE 5
- /*
- ** CAPI3REF: Prepared Statement Scan Status Opcodes
- ** KEYWORDS: {scanstatus options}
- **
- ** The following constants can be used for the T parameter to the
- ** [sqlite3_stmt_scanstatus(S,X,T,V)] interface. Each constant designates a
- ** different metric for sqlite3_stmt_scanstatus() to return.
- **
- ** When the value returned to V is a string, space to hold that string is
- ** managed by the prepared statement S and will be automatically freed when
- ** S is finalized.
- **
- ** <dl>
- ** [[SQLITE_SCANSTAT_NLOOP]] <dt>SQLITE_SCANSTAT_NLOOP</dt>
- ** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be
- ** set to the total number of times that the X-th loop has run.</dd>
- **
- ** [[SQLITE_SCANSTAT_NVISIT]] <dt>SQLITE_SCANSTAT_NVISIT</dt>
- ** <dd>^The [sqlite3_int64] variable pointed to by the T parameter will be set
- ** to the total number of rows examined by all iterations of the X-th loop.</dd>
- **
- ** [[SQLITE_SCANSTAT_EST]] <dt>SQLITE_SCANSTAT_EST</dt>
- ** <dd>^The "double" variable pointed to by the T parameter will be set to the
- ** query planner's estimate for the average number of rows output from each
- ** iteration of the X-th loop. If the query planner's estimates was accurate,
- ** then this value will approximate the quotient NVISIT/NLOOP and the
- ** product of this value for all prior loops with the same SELECTID will
- ** be the NLOOP value for the current loop.
- **
- ** [[SQLITE_SCANSTAT_NAME]] <dt>SQLITE_SCANSTAT_NAME</dt>
- ** <dd>^The "const char *" variable pointed to by the T parameter will be set
- ** to a zero-terminated UTF-8 string containing the name of the index or table
- ** used for the X-th loop.
- **
- ** [[SQLITE_SCANSTAT_EXPLAIN]] <dt>SQLITE_SCANSTAT_EXPLAIN</dt>
- ** <dd>^The "const char *" variable pointed to by the T parameter will be set
- ** to a zero-terminated UTF-8 string containing the [EXPLAIN QUERY PLAN]
- ** description for the X-th loop.
- **
- ** [[SQLITE_SCANSTAT_SELECTID]] <dt>SQLITE_SCANSTAT_SELECT</dt>
- ** <dd>^The "int" variable pointed to by the T parameter will be set to the
- ** "select-id" for the X-th loop. The select-id identifies which query or
- ** subquery the loop is part of. The main query has a select-id of zero.
- ** The select-id is the same value as is output in the first column
- ** of an [EXPLAIN QUERY PLAN] query.
- ** </dl>
- */
- #define SQLITE_SCANSTAT_NLOOP 0
- #define SQLITE_SCANSTAT_NVISIT 1
- #define SQLITE_SCANSTAT_EST 2
- #define SQLITE_SCANSTAT_NAME 3
- #define SQLITE_SCANSTAT_EXPLAIN 4
- #define SQLITE_SCANSTAT_SELECTID 5
- /*
- ** CAPI3REF: Prepared Statement Scan Status
- ** METHOD: sqlite3_stmt
- **
- ** This interface returns information about the predicted and measured
- ** performance for pStmt. Advanced applications can use this
- ** interface to compare the predicted and the measured performance and
- ** issue warnings and/or rerun [ANALYZE] if discrepancies are found.
- **
- ** Since this interface is expected to be rarely used, it is only
- ** available if SQLite is compiled using the [SQLITE_ENABLE_STMT_SCANSTATUS]
- ** compile-time option.
- **
- ** The "iScanStatusOp" parameter determines which status information to return.
- ** The "iScanStatusOp" must be one of the [scanstatus options] or the behavior
- ** of this interface is undefined.
- ** ^The requested measurement is written into a variable pointed to by
- ** the "pOut" parameter.
- ** Parameter "idx" identifies the specific loop to retrieve statistics for.
- ** Loops are numbered starting from zero. ^If idx is out of range - less than
- ** zero or greater than or equal to the total number of loops used to implement
- ** the statement - a non-zero value is returned and the variable that pOut
- ** points to is unchanged.
- **
- ** ^Statistics might not be available for all loops in all statements. ^In cases
- ** where there exist loops with no available statistics, this function behaves
- ** as if the loop did not exist - it returns non-zero and leave the variable
- ** that pOut points to unchanged.
- **
- ** See also: [sqlite3_stmt_scanstatus_reset()]
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_stmt_scanstatus(
- sqlite3_stmt *pStmt, /* Prepared statement for which info desired */
- int idx, /* Index of loop to report on */
- int iScanStatusOp, /* Information desired. SQLITE_SCANSTAT_* */
- void *pOut /* Result written here */
- );
- /*
- ** CAPI3REF: Zero Scan-Status Counters
- ** METHOD: sqlite3_stmt
- **
- ** ^Zero all [sqlite3_stmt_scanstatus()] related event counters.
- **
- ** This API is only available if the library is built with pre-processor
- ** symbol [SQLITE_ENABLE_STMT_SCANSTATUS] defined.
- */
- SQLITE_API void SQLITE_STDCALL sqlite3_stmt_scanstatus_reset(sqlite3_stmt*);
- /*
- ** Undo the hack that converts floating point types to integer for
- ** builds on processors without floating point support.
- */
- #ifdef SQLITE_OMIT_FLOATING_POINT
- # undef double
- #endif
- #ifdef __cplusplus
- } /* End of the 'extern "C"' block */
- #endif
- #endif /* _SQLITE3_H_ */
- /*
- ** 2010 August 30
- **
- ** The author disclaims copyright to this source code. In place of
- ** a legal notice, here is a blessing:
- **
- ** May you do good and not evil.
- ** May you find forgiveness for yourself and forgive others.
- ** May you share freely, never taking more than you give.
- **
- *************************************************************************
- */
- #ifndef _SQLITE3RTREE_H_
- #define _SQLITE3RTREE_H_
- #ifdef __cplusplus
- extern "C" {
- #endif
- typedef struct sqlite3_rtree_geometry sqlite3_rtree_geometry;
- typedef struct sqlite3_rtree_query_info sqlite3_rtree_query_info;
- /* The double-precision datatype used by RTree depends on the
- ** SQLITE_RTREE_INT_ONLY compile-time option.
- */
- #ifdef SQLITE_RTREE_INT_ONLY
- typedef sqlite3_int64 sqlite3_rtree_dbl;
- #else
- typedef double sqlite3_rtree_dbl;
- #endif
- /*
- ** Register a geometry callback named zGeom that can be used as part of an
- ** R-Tree geometry query as follows:
- **
- ** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zGeom(... params ...)
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_rtree_geometry_callback(
- sqlite3 *db,
- const char *zGeom,
- int (*xGeom)(sqlite3_rtree_geometry*, int, sqlite3_rtree_dbl*,int*),
- void *pContext
- );
- /*
- ** A pointer to a structure of the following type is passed as the first
- ** argument to callbacks registered using rtree_geometry_callback().
- */
- struct sqlite3_rtree_geometry {
- void *pContext; /* Copy of pContext passed to s_r_g_c() */
- int nParam; /* Size of array aParam[] */
- sqlite3_rtree_dbl *aParam; /* Parameters passed to SQL geom function */
- void *pUser; /* Callback implementation user data */
- void (*xDelUser)(void *); /* Called by SQLite to clean up pUser */
- };
- /*
- ** Register a 2nd-generation geometry callback named zScore that can be
- ** used as part of an R-Tree geometry query as follows:
- **
- ** SELECT ... FROM <rtree> WHERE <rtree col> MATCH $zQueryFunc(... params ...)
- */
- SQLITE_API int SQLITE_STDCALL sqlite3_rtree_query_callback(
- sqlite3 *db,
- const char *zQueryFunc,
- int (*xQueryFunc)(sqlite3_rtree_query_info*),
- void *pContext,
- void (*xDestructor)(void*)
- );
- /*
- ** A pointer to a structure of the following type is passed as the
- ** argument to scored geometry callback registered using
- ** sqlite3_rtree_query_callback().
- **
- ** Note that the first 5 fields of this structure are identical to
- ** sqlite3_rtree_geometry. This structure is a subclass of
- ** sqlite3_rtree_geometry.
- */
- struct sqlite3_rtree_query_info {
- void *pContext; /* pContext from when function registered */
- int nParam; /* Number of function parameters */
- sqlite3_rtree_dbl *aParam; /* value of function parameters */
- void *pUser; /* callback can use this, if desired */
- void (*xDelUser)(void*); /* function to free pUser */
- sqlite3_rtree_dbl *aCoord; /* Coordinates of node or entry to check */
- unsigned int *anQueue; /* Number of pending entries in the queue */
- int nCoord; /* Number of coordinates */
- int iLevel; /* Level of current node or entry */
- int mxLevel; /* The largest iLevel value in the tree */
- sqlite3_int64 iRowid; /* Rowid for current entry */
- sqlite3_rtree_dbl rParentScore; /* Score of parent node */
- int eParentWithin; /* Visibility of parent node */
- int eWithin; /* OUT: Visiblity */
- sqlite3_rtree_dbl rScore; /* OUT: Write the score here */
- /* The following fields are only available in 3.8.11 and later */
- sqlite3_value **apSqlParam; /* Original SQL values of parameters */
- };
- /*
- ** Allowed values for sqlite3_rtree_query.eWithin and .eParentWithin.
- */
- #define NOT_WITHIN 0 /* Object completely outside of query region */
- #define PARTLY_WITHIN 1 /* Object partially overlaps query region */
- #define FULLY_WITHIN 2 /* Object fully contained within query region */
- #ifdef __cplusplus
- } /* end of the 'extern "C"' block */
- #endif
- #endif /* ifndef _SQLITE3RTREE_H_ */
|