123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634 |
- /**
- * @file dSFMT.c
- * @brief double precision SIMD-oriented Fast Mersenne Twister (dSFMT)
- * based on IEEE 754 format.
- *
- * @author Mutsuo Saito (Hiroshima University)
- * @author Makoto Matsumoto (Hiroshima University)
- *
- * Copyright (C) 2007,2008 Mutsuo Saito, Makoto Matsumoto and Hiroshima
- * University. All rights reserved.
- *
- * The new BSD License is applied to this software, see LICENSE.txt
- */
- #include <stdio.h>
- #include <string.h>
- #include <stdlib.h>
- #include "dSFMT-params.h"
- #include "dSFMT-common.h"
- #if defined(__cplusplus)
- extern "C" {
- #endif
- /** dsfmt internal state vector */
- dsfmt_t dsfmt_global_data;
- /** dsfmt mexp for check */
- static const int dsfmt_mexp = DSFMT_MEXP;
- /*----------------
- STATIC FUNCTIONS
- ----------------*/
- inline static uint32_t ini_func1(uint32_t x);
- inline static uint32_t ini_func2(uint32_t x);
- inline static void gen_rand_array_c1o2(dsfmt_t *dsfmt, w128_t *array,
- int size);
- inline static void gen_rand_array_c0o1(dsfmt_t *dsfmt, w128_t *array,
- int size);
- inline static void gen_rand_array_o0c1(dsfmt_t *dsfmt, w128_t *array,
- int size);
- inline static void gen_rand_array_o0o1(dsfmt_t *dsfmt, w128_t *array,
- int size);
- inline static int idxof(int i);
- static void initial_mask(dsfmt_t *dsfmt);
- static void period_certification(dsfmt_t *dsfmt);
- #if defined(HAVE_SSE2)
- /** 1 in 64bit for sse2 */
- static const union X128I_T sse2_int_one = {{1, 1}};
- /** 2.0 double for sse2 */
- static const union X128D_T sse2_double_two = {{2.0, 2.0}};
- /** -1.0 double for sse2 */
- static const union X128D_T sse2_double_m_one = {{-1.0, -1.0}};
- #endif
- /**
- * This function simulate a 32-bit array index overlapped to 64-bit
- * array of LITTLE ENDIAN in BIG ENDIAN machine.
- */
- #if defined(DSFMT_BIG_ENDIAN)
- inline static int idxof(int i) {
- return i ^ 1;
- }
- #else
- inline static int idxof(int i) {
- return i;
- }
- #endif
- #if defined(HAVE_SSE2)
- /**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range [0, 1).
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
- inline static void convert_c0o1(w128_t *w) {
- w->sd = _mm_add_pd(w->sd, sse2_double_m_one.d128);
- }
- /**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range (0, 1].
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
- inline static void convert_o0c1(w128_t *w) {
- w->sd = _mm_sub_pd(sse2_double_two.d128, w->sd);
- }
- /**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range (0, 1).
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
- inline static void convert_o0o1(w128_t *w) {
- w->si = _mm_or_si128(w->si, sse2_int_one.i128);
- w->sd = _mm_add_pd(w->sd, sse2_double_m_one.d128);
- }
- #else /* standard C and altivec */
- /**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range [0, 1).
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
- inline static void convert_c0o1(w128_t *w) {
- w->d[0] -= 1.0;
- w->d[1] -= 1.0;
- }
- /**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range (0, 1].
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
- inline static void convert_o0c1(w128_t *w) {
- w->d[0] = 2.0 - w->d[0];
- w->d[1] = 2.0 - w->d[1];
- }
- /**
- * This function converts the double precision floating point numbers which
- * distribute uniformly in the range [1, 2) to those which distribute uniformly
- * in the range (0, 1).
- * @param w 128bit stracture of double precision floating point numbers (I/O)
- */
- inline static void convert_o0o1(w128_t *w) {
- w->u[0] |= 1;
- w->u[1] |= 1;
- w->d[0] -= 1.0;
- w->d[1] -= 1.0;
- }
- #endif
- /**
- * This function fills the user-specified array with double precision
- * floating point pseudorandom numbers of the IEEE 754 format.
- * @param dsfmt dsfmt state vector.
- * @param array an 128-bit array to be filled by pseudorandom numbers.
- * @param size number of 128-bit pseudorandom numbers to be generated.
- */
- inline static void gen_rand_array_c1o2(dsfmt_t *dsfmt, w128_t *array,
- int size) {
- int i, j;
- w128_t lung;
- lung = dsfmt->status[DSFMT_N];
- do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
- &lung);
- for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
- do_recursion(&array[i], &dsfmt->status[i],
- &dsfmt->status[i + DSFMT_POS1], &lung);
- }
- for (; i < DSFMT_N; i++) {
- do_recursion(&array[i], &dsfmt->status[i],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- }
- for (; i < size - DSFMT_N; i++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- }
- for (j = 0; j < 2 * DSFMT_N - size; j++) {
- dsfmt->status[j] = array[j + size - DSFMT_N];
- }
- for (; i < size; i++, j++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- dsfmt->status[j] = array[i];
- }
- dsfmt->status[DSFMT_N] = lung;
- }
- /**
- * This function fills the user-specified array with double precision
- * floating point pseudorandom numbers of the IEEE 754 format.
- * @param dsfmt dsfmt state vector.
- * @param array an 128-bit array to be filled by pseudorandom numbers.
- * @param size number of 128-bit pseudorandom numbers to be generated.
- */
- inline static void gen_rand_array_c0o1(dsfmt_t *dsfmt, w128_t *array,
- int size) {
- int i, j;
- w128_t lung;
- lung = dsfmt->status[DSFMT_N];
- do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
- &lung);
- for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
- do_recursion(&array[i], &dsfmt->status[i],
- &dsfmt->status[i + DSFMT_POS1], &lung);
- }
- for (; i < DSFMT_N; i++) {
- do_recursion(&array[i], &dsfmt->status[i],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- }
- for (; i < size - DSFMT_N; i++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- convert_c0o1(&array[i - DSFMT_N]);
- }
- for (j = 0; j < 2 * DSFMT_N - size; j++) {
- dsfmt->status[j] = array[j + size - DSFMT_N];
- }
- for (; i < size; i++, j++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- dsfmt->status[j] = array[i];
- convert_c0o1(&array[i - DSFMT_N]);
- }
- for (i = size - DSFMT_N; i < size; i++) {
- convert_c0o1(&array[i]);
- }
- dsfmt->status[DSFMT_N] = lung;
- }
- /**
- * This function fills the user-specified array with double precision
- * floating point pseudorandom numbers of the IEEE 754 format.
- * @param dsfmt dsfmt state vector.
- * @param array an 128-bit array to be filled by pseudorandom numbers.
- * @param size number of 128-bit pseudorandom numbers to be generated.
- */
- inline static void gen_rand_array_o0o1(dsfmt_t *dsfmt, w128_t *array,
- int size) {
- int i, j;
- w128_t lung;
- lung = dsfmt->status[DSFMT_N];
- do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
- &lung);
- for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
- do_recursion(&array[i], &dsfmt->status[i],
- &dsfmt->status[i + DSFMT_POS1], &lung);
- }
- for (; i < DSFMT_N; i++) {
- do_recursion(&array[i], &dsfmt->status[i],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- }
- for (; i < size - DSFMT_N; i++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- convert_o0o1(&array[i - DSFMT_N]);
- }
- for (j = 0; j < 2 * DSFMT_N - size; j++) {
- dsfmt->status[j] = array[j + size - DSFMT_N];
- }
- for (; i < size; i++, j++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- dsfmt->status[j] = array[i];
- convert_o0o1(&array[i - DSFMT_N]);
- }
- for (i = size - DSFMT_N; i < size; i++) {
- convert_o0o1(&array[i]);
- }
- dsfmt->status[DSFMT_N] = lung;
- }
- /**
- * This function fills the user-specified array with double precision
- * floating point pseudorandom numbers of the IEEE 754 format.
- * @param dsfmt dsfmt state vector.
- * @param array an 128-bit array to be filled by pseudorandom numbers.
- * @param size number of 128-bit pseudorandom numbers to be generated.
- */
- inline static void gen_rand_array_o0c1(dsfmt_t *dsfmt, w128_t *array,
- int size) {
- int i, j;
- w128_t lung;
- lung = dsfmt->status[DSFMT_N];
- do_recursion(&array[0], &dsfmt->status[0], &dsfmt->status[DSFMT_POS1],
- &lung);
- for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
- do_recursion(&array[i], &dsfmt->status[i],
- &dsfmt->status[i + DSFMT_POS1], &lung);
- }
- for (; i < DSFMT_N; i++) {
- do_recursion(&array[i], &dsfmt->status[i],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- }
- for (; i < size - DSFMT_N; i++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- convert_o0c1(&array[i - DSFMT_N]);
- }
- for (j = 0; j < 2 * DSFMT_N - size; j++) {
- dsfmt->status[j] = array[j + size - DSFMT_N];
- }
- for (; i < size; i++, j++) {
- do_recursion(&array[i], &array[i - DSFMT_N],
- &array[i + DSFMT_POS1 - DSFMT_N], &lung);
- dsfmt->status[j] = array[i];
- convert_o0c1(&array[i - DSFMT_N]);
- }
- for (i = size - DSFMT_N; i < size; i++) {
- convert_o0c1(&array[i]);
- }
- dsfmt->status[DSFMT_N] = lung;
- }
- /**
- * This function represents a function used in the initialization
- * by init_by_array
- * @param x 32-bit integer
- * @return 32-bit integer
- */
- static uint32_t ini_func1(uint32_t x) {
- return (x ^ (x >> 27)) * (uint32_t)1664525UL;
- }
- /**
- * This function represents a function used in the initialization
- * by init_by_array
- * @param x 32-bit integer
- * @return 32-bit integer
- */
- static uint32_t ini_func2(uint32_t x) {
- return (x ^ (x >> 27)) * (uint32_t)1566083941UL;
- }
- /**
- * This function initializes the internal state array to fit the IEEE
- * 754 format.
- * @param dsfmt dsfmt state vector.
- */
- static void initial_mask(dsfmt_t *dsfmt) {
- int i;
- uint64_t *psfmt;
- psfmt = &dsfmt->status[0].u[0];
- for (i = 0; i < DSFMT_N * 2; i++) {
- psfmt[i] = (psfmt[i] & DSFMT_LOW_MASK) | DSFMT_HIGH_CONST;
- }
- }
- /**
- * This function certificate the period of 2^{SFMT_MEXP}-1.
- * @param dsfmt dsfmt state vector.
- */
- static void period_certification(dsfmt_t *dsfmt) {
- uint64_t pcv[2] = {DSFMT_PCV1, DSFMT_PCV2};
- uint64_t tmp[2];
- uint64_t inner;
- int i;
- #if (DSFMT_PCV2 & 1) != 1
- int j;
- uint64_t work;
- #endif
- tmp[0] = (dsfmt->status[DSFMT_N].u[0] ^ DSFMT_FIX1);
- tmp[1] = (dsfmt->status[DSFMT_N].u[1] ^ DSFMT_FIX2);
- inner = tmp[0] & pcv[0];
- inner ^= tmp[1] & pcv[1];
- for (i = 32; i > 0; i >>= 1) {
- inner ^= inner >> i;
- }
- inner &= 1;
- /* check OK */
- if (inner == 1) {
- return;
- }
- /* check NG, and modification */
- #if (DSFMT_PCV2 & 1) == 1
- dsfmt->status[DSFMT_N].u[1] ^= 1;
- #else
- for (i = 1; i >= 0; i--) {
- work = 1;
- for (j = 0; j < 64; j++) {
- if ((work & pcv[i]) != 0) {
- dsfmt->status[DSFMT_N].u[i] ^= work;
- return;
- }
- work = work << 1;
- }
- }
- #endif
- return;
- }
- /*----------------
- PUBLIC FUNCTIONS
- ----------------*/
- /**
- * This function returns the identification string. The string shows
- * the Mersenne exponent, and all parameters of this generator.
- * @return id string.
- */
- const char *dsfmt_get_idstring(void) {
- return DSFMT_IDSTR;
- }
- /**
- * This function returns the minimum size of array used for \b
- * fill_array functions.
- * @return minimum size of array used for fill_array functions.
- */
- int dsfmt_get_min_array_size(void) {
- return DSFMT_N64;
- }
- /**
- * This function fills the internal state array with double precision
- * floating point pseudorandom numbers of the IEEE 754 format.
- * @param dsfmt dsfmt state vector.
- */
- void dsfmt_gen_rand_all(dsfmt_t *dsfmt) {
- int i;
- w128_t lung;
- lung = dsfmt->status[DSFMT_N];
- do_recursion(&dsfmt->status[0], &dsfmt->status[0],
- &dsfmt->status[DSFMT_POS1], &lung);
- for (i = 1; i < DSFMT_N - DSFMT_POS1; i++) {
- do_recursion(&dsfmt->status[i], &dsfmt->status[i],
- &dsfmt->status[i + DSFMT_POS1], &lung);
- }
- for (; i < DSFMT_N; i++) {
- do_recursion(&dsfmt->status[i], &dsfmt->status[i],
- &dsfmt->status[i + DSFMT_POS1 - DSFMT_N], &lung);
- }
- dsfmt->status[DSFMT_N] = lung;
- }
- /**
- * This function generates double precision floating point
- * pseudorandom numbers which distribute in the range [1, 2) to the
- * specified array[] by one call. The number of pseudorandom numbers
- * is specified by the argument \b size, which must be at least (SFMT_MEXP
- * / 128) * 2 and a multiple of two. The function
- * get_min_array_size() returns this minimum size. The generation by
- * this function is much faster than the following fill_array_xxx functions.
- *
- * For initialization, init_gen_rand() or init_by_array() must be called
- * before the first call of this function. This function can not be
- * used after calling genrand_xxx functions, without initialization.
- *
- * @param dsfmt dsfmt state vector.
- * @param array an array where pseudorandom numbers are filled
- * by this function. The pointer to the array must be "aligned"
- * (namely, must be a multiple of 16) in the SIMD version, since it
- * refers to the address of a 128-bit integer. In the standard C
- * version, the pointer is arbitrary.
- *
- * @param size the number of 64-bit pseudorandom integers to be
- * generated. size must be a multiple of 2, and greater than or equal
- * to (SFMT_MEXP / 128) * 2.
- *
- * @note \b memalign or \b posix_memalign is available to get aligned
- * memory. Mac OSX doesn't have these functions, but \b malloc of OSX
- * returns the pointer to the aligned memory block.
- */
- void dsfmt_fill_array_close1_open2(dsfmt_t *dsfmt, double array[], int size) {
- assert(size % 2 == 0);
- assert(size >= DSFMT_N64);
- gen_rand_array_c1o2(dsfmt, (w128_t *)array, size / 2);
- }
- /**
- * This function generates double precision floating point
- * pseudorandom numbers which distribute in the range (0, 1] to the
- * specified array[] by one call. This function is the same as
- * fill_array_close1_open2() except the distribution range.
- *
- * @param dsfmt dsfmt state vector.
- * @param array an array where pseudorandom numbers are filled
- * by this function.
- * @param size the number of pseudorandom numbers to be generated.
- * see also \sa fill_array_close1_open2()
- */
- void dsfmt_fill_array_open_close(dsfmt_t *dsfmt, double array[], int size) {
- assert(size % 2 == 0);
- assert(size >= DSFMT_N64);
- gen_rand_array_o0c1(dsfmt, (w128_t *)array, size / 2);
- }
- /**
- * This function generates double precision floating point
- * pseudorandom numbers which distribute in the range [0, 1) to the
- * specified array[] by one call. This function is the same as
- * fill_array_close1_open2() except the distribution range.
- *
- * @param array an array where pseudorandom numbers are filled
- * by this function.
- * @param dsfmt dsfmt state vector.
- * @param size the number of pseudorandom numbers to be generated.
- * see also \sa fill_array_close1_open2()
- */
- void dsfmt_fill_array_close_open(dsfmt_t *dsfmt, double array[], int size) {
- assert(size % 2 == 0);
- assert(size >= DSFMT_N64);
- gen_rand_array_c0o1(dsfmt, (w128_t *)array, size / 2);
- }
- /**
- * This function generates double precision floating point
- * pseudorandom numbers which distribute in the range (0, 1) to the
- * specified array[] by one call. This function is the same as
- * fill_array_close1_open2() except the distribution range.
- *
- * @param dsfmt dsfmt state vector.
- * @param array an array where pseudorandom numbers are filled
- * by this function.
- * @param size the number of pseudorandom numbers to be generated.
- * see also \sa fill_array_close1_open2()
- */
- void dsfmt_fill_array_open_open(dsfmt_t *dsfmt, double array[], int size) {
- assert(size % 2 == 0);
- assert(size >= DSFMT_N64);
- gen_rand_array_o0o1(dsfmt, (w128_t *)array, size / 2);
- }
- #if defined(__INTEL_COMPILER)
- # pragma warning(disable:981)
- #endif
- /**
- * This function initializes the internal state array with a 32-bit
- * integer seed.
- * @param dsfmt dsfmt state vector.
- * @param seed a 32-bit integer used as the seed.
- * @param mexp caller's mersenne expornent
- */
- void dsfmt_chk_init_gen_rand(dsfmt_t *dsfmt, uint32_t seed, int mexp) {
- int i;
- uint32_t *psfmt;
- /* make sure caller program is compiled with the same MEXP */
- if (mexp != dsfmt_mexp) {
- fprintf(stderr, "DSFMT_MEXP doesn't match with dSFMT.c\n");
- exit(1);
- }
- psfmt = &dsfmt->status[0].u32[0];
- psfmt[idxof(0)] = seed;
- for (i = 1; i < (DSFMT_N + 1) * 4; i++) {
- psfmt[idxof(i)] = 1812433253UL
- * (psfmt[idxof(i - 1)] ^ (psfmt[idxof(i - 1)] >> 30)) + i;
- }
- initial_mask(dsfmt);
- period_certification(dsfmt);
- dsfmt->idx = DSFMT_N64;
- }
- /**
- * This function initializes the internal state array,
- * with an array of 32-bit integers used as the seeds
- * @param dsfmt dsfmt state vector.
- * @param init_key the array of 32-bit integers, used as a seed.
- * @param key_length the length of init_key.
- * @param mexp caller's mersenne expornent
- */
- void dsfmt_chk_init_by_array(dsfmt_t *dsfmt, uint32_t init_key[],
- int key_length, int mexp) {
- int i, j, count;
- uint32_t r;
- uint32_t *psfmt32;
- int lag;
- int mid;
- int size = (DSFMT_N + 1) * 4; /* pulmonary */
- /* make sure caller program is compiled with the same MEXP */
- if (mexp != dsfmt_mexp) {
- fprintf(stderr, "DSFMT_MEXP doesn't match with dSFMT.c\n");
- exit(1);
- }
- if (size >= 623) {
- lag = 11;
- } else if (size >= 68) {
- lag = 7;
- } else if (size >= 39) {
- lag = 5;
- } else {
- lag = 3;
- }
- mid = (size - lag) / 2;
- psfmt32 = &dsfmt->status[0].u32[0];
- memset(dsfmt->status, 0x8b, sizeof(dsfmt->status));
- if (key_length + 1 > size) {
- count = key_length + 1;
- } else {
- count = size;
- }
- r = ini_func1(psfmt32[idxof(0)] ^ psfmt32[idxof(mid % size)]
- ^ psfmt32[idxof((size - 1) % size)]);
- psfmt32[idxof(mid % size)] += r;
- r += key_length;
- psfmt32[idxof((mid + lag) % size)] += r;
- psfmt32[idxof(0)] = r;
- count--;
- for (i = 1, j = 0; (j < count) && (j < key_length); j++) {
- r = ini_func1(psfmt32[idxof(i)]
- ^ psfmt32[idxof((i + mid) % size)]
- ^ psfmt32[idxof((i + size - 1) % size)]);
- psfmt32[idxof((i + mid) % size)] += r;
- r += init_key[j] + i;
- psfmt32[idxof((i + mid + lag) % size)] += r;
- psfmt32[idxof(i)] = r;
- i = (i + 1) % size;
- }
- for (; j < count; j++) {
- r = ini_func1(psfmt32[idxof(i)]
- ^ psfmt32[idxof((i + mid) % size)]
- ^ psfmt32[idxof((i + size - 1) % size)]);
- psfmt32[idxof((i + mid) % size)] += r;
- r += i;
- psfmt32[idxof((i + mid + lag) % size)] += r;
- psfmt32[idxof(i)] = r;
- i = (i + 1) % size;
- }
- for (j = 0; j < size; j++) {
- r = ini_func2(psfmt32[idxof(i)]
- + psfmt32[idxof((i + mid) % size)]
- + psfmt32[idxof((i + size - 1) % size)]);
- psfmt32[idxof((i + mid) % size)] ^= r;
- r -= i;
- psfmt32[idxof((i + mid + lag) % size)] ^= r;
- psfmt32[idxof(i)] = r;
- i = (i + 1) % size;
- }
- initial_mask(dsfmt);
- period_certification(dsfmt);
- dsfmt->idx = DSFMT_N64;
- }
- #if defined(__INTEL_COMPILER)
- # pragma warning(default:981)
- #endif
- #if defined(__cplusplus)
- }
- #endif
|