123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376 |
- /********************************************************************
- * *
- * THIS FILE IS PART OF THE Ogg Vorbis SOFTWARE CODEC SOURCE CODE. *
- * USE, DISTRIBUTION AND REPRODUCTION OF THIS SOURCE IS GOVERNED BY *
- * THE GNU PUBLIC LICENSE 2, WHICH IS INCLUDED WITH THIS SOURCE. *
- * PLEASE READ THESE TERMS DISTRIBUTING. *
- * *
- * THE OggSQUISH SOURCE CODE IS (C) COPYRIGHT 1994-2000 *
- * by Monty <monty@xiph.org> and The XIPHOPHORUS Company *
- * http://www.xiph.org/ *
- * *
- ********************************************************************
- function: LPC low level routines
- last mod: $Id: lpc.c,v 1.18.2.1 2000/03/29 03:49:28 xiphmont Exp $
- ********************************************************************/
- /* Some of these routines (autocorrelator, LPC coefficient estimator)
- are derived from code written by Jutta Degener and Carsten Bormann;
- thus we include their copyright below. The entirety of this file
- is freely redistributable on the condition that both of these
- copyright notices are preserved without modification. */
- /* Preserved Copyright: *********************************************/
- /* Copyright 1992, 1993, 1994 by Jutta Degener and Carsten Bormann,
- Technische Universita"t Berlin
- Any use of this software is permitted provided that this notice is not
- removed and that neither the authors nor the Technische Universita"t
- Berlin are deemed to have made any representations as to the
- suitability of this software for any purpose nor are held responsible
- for any defects of this software. THERE IS ABSOLUTELY NO WARRANTY FOR
- THIS SOFTWARE.
- As a matter of courtesy, the authors request to be informed about uses
- this software has found, about bugs in this software, and about any
- improvements that may be of general interest.
- Berlin, 28.11.1994
- Jutta Degener
- Carsten Bormann
- *********************************************************************/
- #include <stdlib.h>
- #include <string.h>
- #include <math.h>
- #include "os.h"
- #include "smallft.h"
- #include "lpc.h"
- #include "scales.h"
- #include "misc.h"
- /* Autocorrelation LPC coeff generation algorithm invented by
- N. Levinson in 1947, modified by J. Durbin in 1959. */
- /* Input : n elements of time doamin data
- Output: m lpc coefficients, excitation energy */
- double vorbis_lpc_from_data(double *data,double *lpc,int n,int m){
- double *aut=alloca(sizeof(double)*(m+1));
- double error;
- int i,j;
- /* autocorrelation, p+1 lag coefficients */
- j=m+1;
- while(j--){
- double d=0;
- for(i=j;i<n;i++)d+=data[i]*data[i-j];
- aut[j]=d;
- }
-
- /* Generate lpc coefficients from autocorr values */
- error=aut[0];
- if(error==0){
- memset(lpc,0,m*sizeof(double));
- return 0;
- }
-
- for(i=0;i<m;i++){
- double r=-aut[i+1];
- /* Sum up this iteration's reflection coefficient; note that in
- Vorbis we don't save it. If anyone wants to recycle this code
- and needs reflection coefficients, save the results of 'r' from
- each iteration. */
- for(j=0;j<i;j++)r-=lpc[j]*aut[i-j];
- r/=error;
- /* Update LPC coefficients and total error */
-
- lpc[i]=r;
- for(j=0;j<i/2;j++){
- double tmp=lpc[j];
- lpc[j]+=r*lpc[i-1-j];
- lpc[i-1-j]+=r*tmp;
- }
- if(i%2)lpc[j]+=lpc[j]*r;
-
- error*=1.0-r*r;
- }
-
- /* we need the error value to know how big an impulse to hit the
- filter with later */
-
- return error;
- }
- /* Input : n element envelope spectral curve
- Output: m lpc coefficients, excitation energy */
- double vorbis_lpc_from_spectrum(double *curve,double *lpc,lpc_lookup *l){
- int n=l->ln;
- int m=l->m;
- double *work=alloca(sizeof(double)*(n+n));
- double fscale=.5/n;
- int i,j;
-
- /* input is a real curve. make it complex-real */
- /* This mixes phase, but the LPC generation doesn't care. */
- for(i=0;i<n;i++){
- work[i*2]=curve[i]*fscale;
- work[i*2+1]=0;
- }
-
- n*=2;
- drft_backward(&l->fft,work);
-
- /* The autocorrelation will not be circular. Shift, else we lose
- most of the power in the edges. */
-
- for(i=0,j=n/2;i<n/2;){
- double temp=work[i];
- work[i++]=work[j];
- work[j++]=temp;
- }
-
- return(vorbis_lpc_from_data(work,lpc,n,m));
- }
- /* initialize Bark scale and normalization lookups. We could do this
- with static tables, but Vorbis allows a number of possible
- combinations, so it's best to do it computationally.
- The below is authoritative in terms of defining scale mapping.
- Note that the scale depends on the sampling rate as well as the
- linear block and mapping sizes */
- void lpc_init(lpc_lookup *l,int n, long mapped, long rate, int m){
- int i;
- double scale;
- memset(l,0,sizeof(lpc_lookup));
- l->n=n;
- l->ln=mapped;
- l->m=m;
- l->linearmap=malloc(n*sizeof(int));
- l->barknorm=malloc(mapped*sizeof(double));
- /* we choose a scaling constant so that:
- floor(bark(rate/2-1)*C)=mapped-1
- floor(bark(rate/2)*C)=mapped */
- scale=mapped/toBARK(rate/2.);
- /* the mapping from a linear scale to a smaller bark scale is
- straightforward. We do *not* make sure that the linear mapping
- does not skip bark-scale bins; the decoder simply skips them and
- the encoder may do what it wishes in filling them. They're
- necessary in some mapping combinations to keep the scale spacing
- accurate */
- {
- int last=-1;
- for(i=0;i<n;i++){
- int val=floor( toBARK((rate/2.)/n*i) *scale); /* bark numbers
- represent
- band edges */
- if(val>=mapped)val=mapped; /* guard against the approximation */
- l->linearmap[i]=val;
- last=val;
- }
- }
- /* 'Normalization' is just making sure that power isn't lost in the
- log scale by virtue of compressing the scale in higher
- frequencies. We figure the weight of bands in proportion to
- their linear/bark width ratio below, again, authoritatively. We
- use computed width (not the number of actual bins above) for
- smoothness in the scale; they should agree closely */
- /* keep it 0. to 1., else the dynamic range starts spreading through
- all the squaring... */
- for(i=0;i<mapped;i++)
- l->barknorm[i]=(fromBARK((i+1)/scale)-fromBARK(i/scale));
- for(i=0;i<mapped;i++)
- l->barknorm[i]/=l->barknorm[mapped-1];
- /* we cheat decoding the LPC spectrum via FFTs */
-
- drft_init(&l->fft,mapped*2);
- }
- void lpc_clear(lpc_lookup *l){
- if(l){
- if(l->barknorm)free(l->barknorm);
- if(l->linearmap)free(l->linearmap);
- drft_clear(&l->fft);
- }
- }
- /* less efficient than the decode side (written for clarity). We're
- not bottlenecked here anyway */
- double vorbis_curve_to_lpc(double *curve,double *lpc,lpc_lookup *l){
- /* map the input curve to a bark-scale curve for encoding */
-
- int mapped=l->ln;
- double *work=alloca(sizeof(double)*mapped);
- int i,j,last=0;
- memset(work,0,sizeof(double)*mapped);
- /* Only the decode side is behavior-specced; for now in the encoder,
- we select the maximum value of each band as representative (this
- helps make sure peaks don't go out of range. In error terms,
- selecting min would make more sense, but the codebook is trained
- numerically, so we don't actually lose. We'd still want to
- use the original curve for error and noise estimation */
- for(i=0;i<l->n;i++){
- int bark=l->linearmap[i];
- if(work[bark]<curve[i])work[bark]=curve[i];
- if(bark>last+1){
- /* If the bark scale is climbing rapidly, some bins may end up
- going unused. This isn't a waste actually; it keeps the
- scale resolution even so that the LPC generator has an easy
- time. However, if we leave the bins empty we lose energy.
- So, fill 'em in. The decoder does not do anything with he
- unused bins, so we can fill them anyway we like to end up
- with a better spectral curve */
- /* we'll always have a bin zero, so we don't need to guard init */
- long span=bark-last;
- for(j=1;j<span;j++){
- double del=(double)j/span;
- work[j+last]=work[bark]*del+work[last]*(1.-del);
- }
- }
- last=bark;
- }
- /*for(i=0;i<mapped;i++)work[i]*=l->barknorm[i];*/
- return vorbis_lpc_from_spectrum(work,lpc,l);
- }
- /* One can do this the long way by generating the transfer function in
- the time domain and taking the forward FFT of the result. The
- results from direct calculation are cleaner and faster.
- This version does a linear curve generation and then later
- interpolates the log curve from the linear curve. */
- void _vlpc_de_helper(double *curve,double *lpc,double amp,
- lpc_lookup *l){
- int i;
- memset(curve,0,sizeof(double)*l->ln*2);
- if(amp==0)return;
- for(i=0;i<l->m;i++){
- curve[i*2+1]=lpc[i]/(4*amp);
- curve[i*2+2]=-lpc[i]/(4*amp);
- }
- drft_backward(&l->fft,curve); /* reappropriated ;-) */
- {
- int l2=l->ln*2;
- double unit=1./amp;
- curve[0]=(1./(curve[0]*2+unit));
- for(i=1;i<l->ln;i++){
- double real=(curve[i]+curve[l2-i]);
- double imag=(curve[i]-curve[l2-i]);
- curve[i]=(1./hypot(real+unit,imag));
- }
- }
- }
- /* generate the whole freq response curve of an LPC IIR filter */
- void vorbis_lpc_to_curve(double *curve,double *lpc,double amp,lpc_lookup *l){
- double *lcurve=alloca(sizeof(double)*(l->ln*2));
- int i;
- if(amp==0){
- memset(curve,0,sizeof(double)*l->n);
- return;
- }
- _vlpc_de_helper(lcurve,lpc,amp,l);
- /*for(i=0;i<l->ln;i++)lcurve[i]/=l->barknorm[i];*/
- for(i=0;i<l->n;i++)curve[i]=lcurve[l->linearmap[i]];
- }
- /* subtract or add an lpc filter to data. Vorbis doesn't actually use this. */
- void vorbis_lpc_residue(double *coeff,double *prime,int m,
- double *data,long n){
- /* in: coeff[0...m-1] LPC coefficients
- prime[0...m-1] initial values
- data[0...n-1] data samples
- out: data[0...n-1] residuals from LPC prediction */
- long i,j;
- double *work=alloca(sizeof(double)*(m+n));
- double y;
- if(!prime)
- for(i=0;i<m;i++)
- work[i]=0;
- else
- for(i=0;i<m;i++)
- work[i]=prime[i];
- for(i=0;i<n;i++){
- y=0;
- for(j=0;j<m;j++)
- y-=work[i+j]*coeff[m-j-1];
-
- work[i+m]=data[i];
- data[i]-=y;
- }
- }
- void vorbis_lpc_predict(double *coeff,double *prime,int m,
- double *data,long n){
- /* in: coeff[0...m-1] LPC coefficients
- prime[0...m-1] initial values (allocated size of n+m-1)
- data[0...n-1] residuals from LPC prediction
- out: data[0...n-1] data samples */
- long i,j,o,p;
- double y;
- double *work=alloca(sizeof(double)*(m+n));
- if(!prime)
- for(i=0;i<m;i++)
- work[i]=0.;
- else
- for(i=0;i<m;i++)
- work[i]=prime[i];
- for(i=0;i<n;i++){
- y=data[i];
- o=i;
- p=m;
- for(j=0;j<m;j++)
- y-=work[o++]*coeff[--p];
-
- data[i]=work[o]=y;
- }
- }
|