123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181 |
- % -*- mode: latex; TeX-master: "Vorbis_I_spec"; -*-
- %!TEX root = Vorbis_I_spec.tex
- \section{Helper equations} \label{vorbis:spec:helper}
- \subsection{Overview}
- The equations below are used in multiple places by the Vorbis codec
- specification. Rather than cluttering up the main specification
- documents, they are defined here and referenced where appropriate.
- \subsection{Functions}
- \subsubsection{ilog} \label{vorbis:spec:ilog}
- The "ilog(x)" function returns the position number (1 through n) of the highest set bit in the two's complement integer value
- \varname{[x]}. Values of \varname{[x]} less than zero are defined to return zero.
- \begin{programlisting}
- 1) [return\_value] = 0;
- 2) if ( [x] is greater than zero ) {
- 3) increment [return\_value];
- 4) logical shift [x] one bit to the right, padding the MSb with zero
- 5) repeat at step 2)
- }
- 6) done
- \end{programlisting}
- Examples:
- \begin{itemize}
- \item ilog(0) = 0;
- \item ilog(1) = 1;
- \item ilog(2) = 2;
- \item ilog(3) = 2;
- \item ilog(4) = 3;
- \item ilog(7) = 3;
- \item ilog(negative number) = 0;
- \end{itemize}
- \subsubsection{float32\_unpack} \label{vorbis:spec:float32:unpack}
- "float32\_unpack(x)" is intended to translate the packed binary
- representation of a Vorbis codebook float value into the
- representation used by the decoder for floating point numbers. For
- purposes of this example, we will unpack a Vorbis float32 into a
- host-native floating point number.
- \begin{programlisting}
- 1) [mantissa] = [x] bitwise AND 0x1fffff (unsigned result)
- 2) [sign] = [x] bitwise AND 0x80000000 (unsigned result)
- 3) [exponent] = ( [x] bitwise AND 0x7fe00000) shifted right 21 bits (unsigned result)
- 4) if ( [sign] is nonzero ) then negate [mantissa]
- 5) return [mantissa] * ( 2 ^ ( [exponent] - 788 ) )
- \end{programlisting}
- \subsubsection{lookup1\_values} \label{vorbis:spec:lookup1:values}
- "lookup1\_values(codebook\_entries,codebook\_dimensions)" is used to
- compute the correct length of the value index for a codebook VQ lookup
- table of lookup type 1. The values on this list are permuted to
- construct the VQ vector lookup table of size
- \varname{[codebook\_entries]}.
- The return value for this function is defined to be 'the greatest
- integer value for which \varname{[return\_value]} to the power of
- \varname{[codebook\_dimensions]} is less than or equal to
- \varname{[codebook\_entries]}'.
- \subsubsection{low\_neighbor} \label{vorbis:spec:low:neighbor}
- "low\_neighbor(v,x)" finds the position \varname{n} in vector \varname{[v]} of
- the greatest value scalar element for which \varname{n} is less than
- \varname{[x]} and vector \varname{[v]} element \varname{n} is less
- than vector \varname{[v]} element \varname{[x]}.
- \subsubsection{high\_neighbor} \label{vorbis:spec:high:neighbor}
- "high\_neighbor(v,x)" finds the position \varname{n} in vector [v] of
- the lowest value scalar element for which \varname{n} is less than
- \varname{[x]} and vector \varname{[v]} element \varname{n} is greater
- than vector \varname{[v]} element \varname{[x]}.
- \subsubsection{render\_point} \label{vorbis:spec:render:point}
- "render\_point(x0,y0,x1,y1,X)" is used to find the Y value at point X
- along the line specified by x0, x1, y0 and y1. This function uses an
- integer algorithm to solve for the point directly without calculating
- intervening values along the line.
- \begin{programlisting}
- 1) [dy] = [y1] - [y0]
- 2) [adx] = [x1] - [x0]
- 3) [ady] = absolute value of [dy]
- 4) [err] = [ady] * ([X] - [x0])
- 5) [off] = [err] / [adx] using integer division
- 6) if ( [dy] is less than zero ) {
- 7) [Y] = [y0] - [off]
- } else {
- 8) [Y] = [y0] + [off]
- }
- 9) done
- \end{programlisting}
- \subsubsection{render\_line} \label{vorbis:spec:render:line}
- Floor decode type one uses the integer line drawing algorithm of
- "render\_line(x0, y0, x1, y1, v)" to construct an integer floor
- curve for contiguous piecewise line segments. Note that it has not
- been relevant elsewhere, but here we must define integer division as
- rounding division of both positive and negative numbers toward zero.
- \begin{programlisting}
- 1) [dy] = [y1] - [y0]
- 2) [adx] = [x1] - [x0]
- 3) [ady] = absolute value of [dy]
- 4) [base] = [dy] / [adx] using integer division
- 5) [x] = [x0]
- 6) [y] = [y0]
- 7) [err] = 0
- 8) if ( [dy] is less than 0 ) {
- 9) [sy] = [base] - 1
- } else {
- 10) [sy] = [base] + 1
- }
- 11) [ady] = [ady] - (absolute value of [base]) * [adx]
- 12) vector [v] element [x] = [y]
- 13) iterate [x] over the range [x0]+1 ... [x1]-1 {
- 14) [err] = [err] + [ady];
- 15) if ( [err] >= [adx] ) {
- 16) [err] = [err] - [adx]
- 17) [y] = [y] + [sy]
- } else {
- 18) [y] = [y] + [base]
- }
- 19) vector [v] element [x] = [y]
- }
- \end{programlisting}
|