123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149 |
- /********************************************************************
- * *
- * THIS FILE IS PART OF THE Ogg Vorbis SOFTWARE CODEC SOURCE CODE. *
- * USE, DISTRIBUTION AND REPRODUCTION OF THIS SOURCE IS GOVERNED BY *
- * THE GNU PUBLIC LICENSE 2, WHICH IS INCLUDED WITH THIS SOURCE. *
- * PLEASE READ THESE TERMS DISTRIBUTING. *
- * *
- * THE OggSQUISH SOURCE CODE IS (C) COPYRIGHT 1994-2000 *
- * by Monty <monty@xiph.org> and The XIPHOPHORUS Company *
- * http://www.xiph.org/ *
- * *
- ********************************************************************
- function: LSP (also called LSF) conversion routines
- last mod: $Id: lsp.c,v 1.9.2.3 2000/09/02 09:39:19 xiphmont Exp $
- The LSP generation code is taken (with minimal modification) from
- "On the Computation of the LSP Frequencies" by Joseph Rothweiler
- <rothwlr@altavista.net>, available at:
-
- http://www2.xtdl.com/~rothwlr/lsfpaper/lsfpage.html
- ********************************************************************/
- /* Note that the lpc-lsp conversion finds the roots of polynomial with
- an iterative root polisher (CACM algorithm 283). It *is* possible
- to confuse this algorithm into not converging; that should only
- happen with absurdly closely spaced roots (very sharp peaks in the
- LPC f response) which in turn should be impossible in our use of
- the code. If this *does* happen anyway, it's a bug in the floor
- finder; find the cause of the confusion (probably a single bin
- spike or accidental near-float-limit resolution problems) and
- correct it. */
- #include <math.h>
- #include <string.h>
- #include <stdlib.h>
- #include "lsp.h"
- #include "os.h"
- #include "misc.h"
- void vorbis_lsp_to_curve(float *curve,int n,float *lsp,int m,float amp,
- float *w){
- int i,j,k;
- float *coslsp=alloca(m*sizeof(float));
- for(i=0;i<m;i++)coslsp[i]=2*cos(lsp[i]);
- for(k=0;k<n;k++){
- double p=.5;
- double q=.5;
- for(j=0;j<m;j+=2){
- p*= w[k]-coslsp[j];
- q*= w[k]-coslsp[j+1];
- }
- curve[k]=amp/sqrt(p*p*(2.+ w[k])+q*q*(2.- w[k]));
- }
- }
- static void cheby(float *g, int ord) {
- int i, j;
- g[0] *= 0.5;
- for(i=2; i<= ord; i++) {
- for(j=ord; j >= i; j--) {
- g[j-2] -= g[j];
- g[j] += g[j];
- }
- }
- }
- static int comp(const void *a,const void *b){
- if(*(float *)a<*(float *)b)
- return(1);
- else
- return(-1);
- }
- /* CACM algorithm 283. */
- /* we require doubles here due to the huge spread between val/p and
- the required max error of 1.e-12, which is beyond the capabilities
- of floats */
- static void cacm283(float *a,int ord,float *r){
- int i, k;
- double val, p, delta, error;
- double rooti;
- for(i=0; i<ord;i++) r[i] = 2.0 * (i+0.5) / ord - 1.0;
-
- for(error=1 ; error > 1.e-12; ) {
- error = 0;
- for( i=0; i<ord; i++) { /* Update each point. */
- rooti = r[i];
- val = a[ord];
- p = a[ord];
- for(k=ord-1; k>= 0; k--) {
- val = val * rooti + a[k];
- if (k != i) p *= rooti - r[k];
- }
- delta = val/p;
- r[i] -= delta;
- error += delta*delta;
- }
- }
-
- /* Replaced the original bubble sort with a real sort. With your
- help, we can eliminate the bubble sort in our lifetime. --Monty */
-
- qsort(r,ord,sizeof(float),comp);
- }
- /* Convert lpc coefficients to lsp coefficients */
- void vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
- int order2=m/2;
- float *g1=alloca(sizeof(float)*(order2+1));
- float *g2=alloca(sizeof(float)*(order2+1));
- float *g1r=alloca(sizeof(float)*(order2+1));
- float *g2r=alloca(sizeof(float)*(order2+1));
- int i;
- /* Compute the lengths of the x polynomials. */
- /* Compute the first half of K & R F1 & F2 polynomials. */
- /* Compute half of the symmetric and antisymmetric polynomials. */
- /* Remove the roots at +1 and -1. */
-
- g1[order2] = 1.0;
- for(i=0;i<order2;i++) g1[order2-i-1] = lpc[i]+lpc[m-i-1];
- g2[order2] = 1.0;
- for(i=0;i<order2;i++) g2[order2-i-1] = lpc[i]-lpc[m-i-1];
-
- for(i=0; i<order2;i++) g1[order2-i-1] -= g1[order2-i];
- for(i=0; i<order2;i++) g2[order2-i-1] += g2[order2-i];
- /* Convert into polynomials in cos(alpha) */
- cheby(g1,order2);
- cheby(g2,order2);
- /* Find the roots of the 2 even polynomials.*/
-
- cacm283(g1,order2,g1r);
- cacm283(g2,order2,g2r);
-
- for(i=0;i<m;i+=2){
- lsp[i] = acos(g1r[i/2]);
- lsp[i+1] = acos(g2r[i/2]);
- }
- }
|