123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376 |
- /********************************************************************
- * *
- * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
- * USE, DISTRIBUTION AND REPRODUCTION OF THIS SOURCE IS GOVERNED BY *
- * THE GNU LESSER/LIBRARY PUBLIC LICENSE, WHICH IS INCLUDED WITH *
- * THIS SOURCE. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
- * *
- * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2000 *
- * by Monty <monty@xiph.org> and the XIPHOPHORUS Company *
- * http://www.xiph.org/ *
- * *
- ********************************************************************
- function: LSP (also called LSF) conversion routines
- last mod: $Id: lsp.c,v 1.10.2.4 2000/11/04 06:21:44 xiphmont Exp $
- The LSP generation code is taken (with minimal modification) from
- "On the Computation of the LSP Frequencies" by Joseph Rothweiler
- <rothwlr@altavista.net>, available at:
-
- http://www2.xtdl.com/~rothwlr/lsfpaper/lsfpage.html
- ********************************************************************/
- /* Note that the lpc-lsp conversion finds the roots of polynomial with
- an iterative root polisher (CACM algorithm 283). It *is* possible
- to confuse this algorithm into not converging; that should only
- happen with absurdly closely spaced roots (very sharp peaks in the
- LPC f response) which in turn should be impossible in our use of
- the code. If this *does* happen anyway, it's a bug in the floor
- finder; find the cause of the confusion (probably a single bin
- spike or accidental near-float-limit resolution problems) and
- correct it. */
- #include <math.h>
- #include <string.h>
- #include <stdlib.h>
- #include "lsp.h"
- #include "os.h"
- #include "misc.h"
- #include "lookup.h"
- #include "scales.h"
- /* three possible LSP to f curve functions; the exact computation
- (float), a lookup based float implementation, and an integer
- implementation. The float lookup is likely the optimal choice on
- any machine with an FPU. The integer implementation is *not* fixed
- point (due to the need for a large dynamic range and thus a
- seperately tracked exponent) and thus much more complex than the
- relatively simple float implementations. It's mostly for future
- work on a fully fixed point implementation for processors like the
- ARM family. */
- /* undefine both for the 'old' but more precise implementation */
- #define FLOAT_LOOKUP
- #undef INT_LOOKUP
- #ifdef FLOAT_LOOKUP
- #include "lookup.c" /* catch this in the build system; we #include for
- compilers (like gcc) that can't inline across
- modules */
- /* side effect: changes *lsp to cosines of lsp */
- void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
- float amp,float ampoffset){
- int i;
- float wdel=M_PI/ln;
- vorbis_fpu_control fpu;
-
- vorbis_fpu_setround(&fpu);
- for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
- i=0;
- while(i<n){
- int k=map[i];
- int qexp;
- float p=.7071067812;
- float q=.7071067812;
- float w=vorbis_coslook(wdel*k);
- float *ftmp=lsp;
- int c=m>>1;
- do{
- p*=ftmp[0]-w;
- q*=ftmp[1]-w;
- ftmp+=2;
- }while(--c);
- q=frexp(p*p*(1.+w)+q*q*(1.-w),&qexp);
- q=vorbis_fromdBlook(amp*
- vorbis_invsqlook(q)*
- vorbis_invsq2explook(qexp+m)-
- ampoffset);
- do{
- curve[i++]=q;
- }while(map[i]==k);
- }
- vorbis_fpu_restore(fpu);
- }
- #else
- #ifdef INT_LOOKUP
- #include "lookup.c" /* catch this in the build system; we #include for
- compilers (like gcc) that can't inline across
- modules */
- static int MLOOP_1[64]={
- 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
- 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
- 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
- 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
- };
- static int MLOOP_2[64]={
- 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
- 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
- 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
- 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
- };
- static int MLOOP_3[8]={0,1,2,2,3,3,3,3};
- /* side effect: changes *lsp to cosines of lsp */
- void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
- float amp,float ampoffset){
- /* 0 <= m < 256 */
- /* set up for using all int later */
- int i;
- int ampoffseti=rint(ampoffset*4096.);
- int ampi=rint(amp*16.);
- long *ilsp=alloca(m*sizeof(long));
- for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.+.5);
- i=0;
- while(i<n){
- int j,k=map[i];
- unsigned long pi=46341; /* 2**-.5 in 0.16 */
- unsigned long qi=46341;
- int qexp=0,shift;
- long wi=vorbis_coslook_i(k*65536/ln);
- pi*=labs(ilsp[0]-wi);
- qi*=labs(ilsp[1]-wi);
- for(j=2;j<m;j+=2){
- if(!(shift=MLOOP_1[(pi|qi)>>25]))
- if(!(shift=MLOOP_2[(pi|qi)>>19]))
- shift=MLOOP_3[(pi|qi)>>16];
- pi=(pi>>shift)*labs(ilsp[j]-wi);
- qi=(qi>>shift)*labs(ilsp[j+1]-wi);
- qexp+=shift;
- }
- if(!(shift=MLOOP_1[(pi|qi)>>25]))
- if(!(shift=MLOOP_2[(pi|qi)>>19]))
- shift=MLOOP_3[(pi|qi)>>16];
- pi>>=shift;
- qi>>=shift;
- qexp+=shift-7*m;
- /* pi,qi normalized collectively, both tracked using qexp */
- /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
- worth tracking step by step */
- pi=((pi*pi)>>16);
- qi=((qi*qi)>>16);
- qexp=qexp*2+m;
- qi*=(1<<14)-wi;
- pi*=(1<<14)+wi;
-
- qi=(qi+pi)>>14;
- /* we've let the normalization drift because it wasn't important;
- however, for the lookup, things must be normalized again. We
- need at most one right shift or a number of left shifts */
- if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
- qi>>=1; qexp++;
- }else
- while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
- qi<<=1; qexp--;
- }
- amp=vorbis_fromdBlook_i(ampi* /* n.4 */
- vorbis_invsqlook_i(qi,qexp)-
- /* m.8, m+n<=8 */
- ampoffseti); /* 8.12[0] */
- curve[i]=amp;
- while(map[++i]==k)curve[i]=amp;
- }
- }
- #else
- /* old, nonoptimized but simple version for any poor sap who needs to
- figure out what the hell this code does, or wants the other tiny
- fraction of a dB precision */
- /* side effect: changes *lsp to cosines of lsp */
- void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
- float amp,float ampoffset){
- int i;
- float wdel=M_PI/ln;
- for(i=0;i<m;i++)lsp[i]=2*cos(lsp[i]);
- i=0;
- while(i<n){
- int j,k=map[i];
- float p=.5;
- float q=.5;
- float w=2*cos(wdel*k);
- for(j=0;j<m;j+=2){
- p *= w-lsp[j];
- q *= w-lsp[j+1];
- }
- p*=p*(2.+w);
- q*=q*(2.-w);
- q=fromdB(amp/sqrt(p+q)-ampoffset);
- curve[i]=q;
- while(map[++i]==k)curve[i]=q;
- }
- }
- #endif
- #endif
- static void cheby(float *g, int ord) {
- int i, j;
- g[0] *= 0.5;
- for(i=2; i<= ord; i++) {
- for(j=ord; j >= i; j--) {
- g[j-2] -= g[j];
- g[j] += g[j];
- }
- }
- }
- static int comp(const void *a,const void *b){
- if(*(float *)a<*(float *)b)
- return(1);
- else
- return(-1);
- }
- /* This is one of those 'mathemeticians should not write code' kind of
- cases. Newton's method of polishing roots is straightforward
- enough... except in those cases where it just fails in the real
- world. In our case below, we're worried about a local mini/maxima
- shooting a root estimation off to infinity, or the new estimation
- chaotically oscillating about convergence (shouldn't actually be a
- problem in our usage.
- Maehly's modification (zero suppression, to prevent two tenative
- roots from collapsing to the same actual root) similarly can
- temporarily shoot a root off toward infinity. It would come
- back... if it were not for the fact that machine representation has
- limited dynamic range and resolution. This too is guarded by
- limiting delta.
- Last problem is convergence criteria; we don't know what a 'double'
- is on our hardware/compiler, and the convergence limit is bounded
- by roundoff noise. So, we hack convergence:
- Require at most 1e-6 mean squared error for all zeroes. When
- converging, start the clock ticking at 1e-6; limit our polishing to
- as many more iterations as took us to get this far, 100 max.
- Past max iters, quit when MSE is no longer decreasing *or* we go
- below ~1e-20 MSE, whichever happens first. */
- static void Newton_Raphson_Maehly(float *a,int ord,float *r){
- int i, k, count=0, maxiter=0;
- double error=1.,besterror=1.;
- double *root=alloca(ord*sizeof(double));
- for(i=0; i<ord;i++) root[i] = 2.0 * (i+0.5) / ord - 1.0;
-
- while(error>1.e-20){
- error=0;
-
- for(i=0; i<ord; i++) { /* Update each point. */
- double ac=0.,pp=0.,delta;
- double rooti=root[i];
- double p=a[ord];
- for(k=ord-1; k>= 0; k--) {
- pp= pp* rooti + p;
- p = p * rooti+ a[k];
- if (k != i) ac += 1./(rooti - root[k]);
- }
- ac=p*ac;
- delta = p/(pp-ac);
- /* don't allow the correction to scream off into infinity if we
- happened to polish right at a local mini/maximum */
- if(delta<-3)delta=-3;
- if(delta>3.)delta=3.; /* 3 is not a random choice; it's large
- enough to make sure the first pass
- can't accidentally limit two poles to
- the same value in a fatal nonelastic
- collision. */
- root[i] -= delta;
- error += delta*delta;
- }
-
- if(maxiter && count>maxiter && error>=besterror)break;
- /* anything to help out the polisher; converge using doubles */
- if(!count || error<besterror){
- for(i=0; i<ord; i++) r[i]=root[i];
- besterror=error;
- if(error<1.e-6){ /* rough minimum criteria */
- maxiter=count*2+10;
- if(maxiter>100)maxiter=100;
- }
- }
- count++;
- }
- /* Replaced the original bubble sort with a real sort. With your
- help, we can eliminate the bubble sort in our lifetime. --Monty */
-
- qsort(r,ord,sizeof(float),comp);
- }
- /* Convert lpc coefficients to lsp coefficients */
- void vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
- int order2=m/2;
- float *g1=alloca(sizeof(float)*(order2+1));
- float *g2=alloca(sizeof(float)*(order2+1));
- float *g1r=alloca(sizeof(float)*(order2+1));
- float *g2r=alloca(sizeof(float)*(order2+1));
- int i;
- /* Compute the lengths of the x polynomials. */
- /* Compute the first half of K & R F1 & F2 polynomials. */
- /* Compute half of the symmetric and antisymmetric polynomials. */
- /* Remove the roots at +1 and -1. */
-
- g1[order2] = 1.0;
- for(i=0;i<order2;i++) g1[order2-i-1] = lpc[i]+lpc[m-i-1];
- g2[order2] = 1.0;
- for(i=0;i<order2;i++) g2[order2-i-1] = lpc[i]-lpc[m-i-1];
-
- for(i=0; i<order2;i++) g1[order2-i-1] -= g1[order2-i];
- for(i=0; i<order2;i++) g2[order2-i-1] += g2[order2-i];
- /* Convert into polynomials in cos(alpha) */
- cheby(g1,order2);
- cheby(g2,order2);
- /* Find the roots of the 2 even polynomials.*/
-
- Newton_Raphson_Maehly(g1,order2,g1r);
- Newton_Raphson_Maehly(g2,order2,g2r);
-
- for(i=0;i<m;i+=2){
- lsp[i] = acos(g1r[i/2]);
- lsp[i+1] = acos(g2r[i/2]);
- }
- }
|