vorbis.html 8.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235
  1. <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
  2. <html>
  3. <head>
  4. <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-15"/>
  5. <title>Ogg Vorbis Documentation</title>
  6. <style type="text/css">
  7. body {
  8. margin: 0 18px 0 18px;
  9. padding-bottom: 30px;
  10. font-family: Verdana, Arial, Helvetica, sans-serif;
  11. color: #333333;
  12. font-size: .8em;
  13. }
  14. a {
  15. color: #3366cc;
  16. }
  17. img {
  18. border: 0;
  19. }
  20. #xiphlogo {
  21. margin: 30px 0 16px 0;
  22. }
  23. #content p {
  24. line-height: 1.4;
  25. }
  26. h1, h1 a, h2, h2 a, h3, h3 a {
  27. font-weight: bold;
  28. color: #ff9900;
  29. margin: 1.3em 0 8px 0;
  30. }
  31. h1 {
  32. font-size: 1.3em;
  33. }
  34. h2 {
  35. font-size: 1.2em;
  36. }
  37. h3 {
  38. font-size: 1.1em;
  39. }
  40. li {
  41. line-height: 1.4;
  42. }
  43. #copyright {
  44. margin-top: 30px;
  45. line-height: 1.5em;
  46. text-align: center;
  47. font-size: .8em;
  48. color: #888888;
  49. clear: both;
  50. }
  51. </style>
  52. </head>
  53. <body>
  54. <div id="xiphlogo">
  55. <a href="http://www.xiph.org/"><img src="fish_xiph_org.png" alt="Fish Logo and Xiph.org"/></a>
  56. </div>
  57. <h1>Ogg Vorbis encoding format documentation</h1>
  58. <p><img src="wait.png" alt="wait"/>As of writing, not all the below document
  59. links are live. They will be populated as we complete the documents.</p>
  60. <h2>Documents</h2>
  61. <ul>
  62. <li><a href="packet.html">Vorbis packet structure</a></li>
  63. <li><a href="envelope.html">Temporal envelope shaping and blocksize</a></li>
  64. <li><a href="mdct.html">Time domain segmentation and MDCT transform</a></li>
  65. <li><a href="resolution.html">The resolution floor</a></li>
  66. <li><a href="residuals.html">MDCT-domain fine structure</a></li>
  67. </ul>
  68. <ul>
  69. <li><a href="probmodel.html">The Vorbis probability model</a></li>
  70. <li><a href="bitpack.html">The Vorbis bitpacker</a></li>
  71. </ul>
  72. <ul>
  73. <li><a href="oggstream.html">Ogg bitstream overview</a></li>
  74. <li><a href="framing.html">Ogg logical bitstream and framing spec</a></li>
  75. <li><a href="vorbis-stream.html">Vorbis packet->Ogg bitstream mapping</a></li>
  76. </ul>
  77. <ul>
  78. <li><a href="programming.html">Programming with libvorbis</a></li>
  79. </ul>
  80. <h2>Description</h2>
  81. <p>Ogg Vorbis is a general purpose compressed audio format
  82. for high quality (44.1-48.0kHz, 16+ bit, polyphonic) audio and music
  83. at moderate fixed and variable bitrates (40-80 kb/s/channel). This
  84. places Vorbis in the same class as audio representations including
  85. MPEG-1 audio layer 3, MPEG-4 audio (AAC and TwinVQ), and PAC.</p>
  86. <p>Vorbis is the first of a planned family of Ogg multimedia coding
  87. formats being developed as part of the Xiph.org Foundation's Ogg multimedia
  88. project. See <a href="http://www.xiph.org/">http://www.xiph.org/</a>
  89. for more information.</p>
  90. <h2>Vorbis technical documents</h2>
  91. <p>A Vorbis encoder takes in overlapping (but contiguous) short-time
  92. segments of audio data. The encoder analyzes the content of the audio
  93. to determine an optimal compact representation; this phase of encoding
  94. is known as <em>analysis</em>. For each short-time block of sound,
  95. the encoder then packs an efficient representation of the signal, as
  96. determined by analysis, into a raw packet much smaller than the size
  97. required by the original signal; this phase is <em>coding</em>.
  98. Lastly, in a streaming environment, the raw packets are then
  99. structured into a continuous stream of octets; this last phase is
  100. <em>streaming</em>. Note that the stream of octets is referred to both
  101. as a 'byte-' and 'bit-'stream; the latter usage is acceptible as the
  102. stream of octets is a physical representation of a true logical
  103. bit-by-bit stream.</p>
  104. <p>A Vorbis decoder performs a mirror image process of extracting the
  105. original sequence of raw packets from an Ogg stream (<em>stream
  106. decomposition</em>), reconstructing the signal representation from the
  107. raw data in the packet (<em>decoding</em>) and them reconstituting an
  108. audio signal from the decoded representation (<em>synthesis</em>).</p>
  109. <p>The <a href="programming.html">Programming with libvorbis</a>
  110. documents discuss use of the reference Vorbis codec library
  111. (libvorbis) produced by the Xiph.org Foundation.</p>
  112. <p>The data representations and algorithms necessary at each step to
  113. encode and decode Ogg Vorbis bitstreams are described by the below
  114. documents in sufficient detail to construct a complete Vorbis codec.
  115. Note that at the time of writing, Vorbis is still in a 'Request For
  116. Comments' stage of development; despite being in advanced stages of
  117. development, input from the multimedia community is welcome.</p>
  118. <h3>Vorbis analysis and synthesis</h3>
  119. <p>Analysis begins by seperating an input audio stream into individual,
  120. overlapping short-time segments of audio data. These segments are
  121. then transformed into an alternate representation, seeking to
  122. represent the original signal in a more efficient form that codes into
  123. a smaller number of bytes. The analysis and transformation stage is
  124. the most complex element of producing a Vorbis bitstream.</p>
  125. <p>The corresponding synthesis step in the decoder is simpler; there is
  126. no analysis to perform, merely a mechanical, deterministic
  127. reconstruction of the original audio data from the transform-domain
  128. representation.</p>
  129. <ul>
  130. <li><a href="packet.html">Vorbis packet structure</a>:
  131. Describes the basic analysis components necessary to produce Vorbis
  132. packets and the structure of the packet itself.</li>
  133. <li><a href="envelope.html">Temporal envelope shaping and blocksize</a>:
  134. Use of temporal envelope shaping and variable blocksize to minimize
  135. time-domain energy leakage during wide dynamic range and spectral energy
  136. swings. Also discusses time-related principles of psychoacoustics.</li>
  137. <li><a href="mdct.html">Time domain segmentation and MDCT transform</a>:
  138. Division of time domain data into individual overlapped, windowed
  139. short-time vectors and transformation using the MDCT</li>
  140. <li><a href="resolution.html">The resolution floor</a>: Use of frequency
  141. doamin psychoacoustics, and the MDCT-domain noise, masking and resolution
  142. floors</li>
  143. <li><a href="residuals.html">MDCT-domain fine structure</a>: Production,
  144. quantization and massaging of MDCT-spectrum fine structure</li>
  145. </ul>
  146. <h3>Vorbis coding and decoding</h3>
  147. <p>Coding and decoding converts the transform-domain representation of
  148. the original audio produced by analysis to and from a bitwise packed
  149. raw data packet. Coding and decoding consist of two logically
  150. orthogonal concepts, <em>back-end coding</em> and <em>bitpacking</em>.</p>
  151. <p><em>Back-end coding</em> uses a probability model to represent the raw numbers
  152. of the audio representation in as few physical bits as possible;
  153. familiar examples of back-end coding include Huffman coding and Vector
  154. Quantization.</p>
  155. <p><em>Bitpacking</em> arranges the variable sized words of the back-end
  156. coding into a vector of octets without wasting space. The octets
  157. produced by coding a single short-time audio segment is one raw Vorbis
  158. packet.</p>
  159. <ul>
  160. <li><a href="probmodel.html">The Vorbis probability model</a></li>
  161. <li><a href="bitpack.html">The Vorbis bitpacker</a>: Arrangement of
  162. variable bit-length words into an octet-aligned packet.</li>
  163. </ul>
  164. <h3>Vorbis streaming and stream decomposition</h3>
  165. <p>Vorbis packets contain the raw, bitwise-compressed representation of a
  166. snippet of audio. These packets contain no structure and cannot be
  167. strung together directly into a stream; for streamed transmission and
  168. storage, Vorbis packets are encoded into an Ogg bitstream.</p>
  169. <ul>
  170. <li><a href="oggstream.html">Ogg bitstream overview</a>: High-level
  171. description of Ogg logical bitstreams, how logical bitstreams
  172. (of mixed media types) can be combined into physical bitstreams, and
  173. restrictions on logical-to-physical mapping. Note that this document is
  174. not specific only to Ogg Vorbis.</li>
  175. <li><a href="framing.html">Ogg logical bitstream and framing
  176. spec</a>: Low level, complete specification of Ogg logical
  177. bitstream pages. Note that this document is not specific only to Ogg
  178. Vorbis.</li>
  179. <li><a href="vorbis-stream.html">Vorbis bitstream mapping</a>:
  180. Specifically describes mapping Vorbis data into an
  181. Ogg physical bitstream.</li>
  182. </ul>
  183. <div id="copyright">
  184. The Xiph Fish Logo is a
  185. trademark (&trade;) of Xiph.Org.<br/>
  186. These pages &copy; 1994 - 2005 Xiph.Org. All rights reserved.
  187. </div>
  188. </body>
  189. </html>