123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540 |
- /********************************************************************
- * *
- * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE. *
- * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS *
- * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
- * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. *
- * *
- * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2001 *
- * by the XIPHOPHORUS Company http://www.xiph.org/ *
- ********************************************************************
- function: LSP (also called LSF) conversion routines
- last mod: $Id: lsp.c,v 1.17.2.1 2001/03/28 03:08:14 segher Exp $
- The LSP generation code is taken (with minimal modification and a
- few bugfixes) from "On the Computation of the LSP Frequencies" by
- Joseph Rothweiler <rothwlr@altavista.net>, available at:
-
- http://www2.xtdl.com/~rothwlr/lsfpaper/lsfpage.html
- ********************************************************************/
- /* Note that the lpc-lsp conversion finds the roots of polynomial with
- an iterative root polisher (CACM algorithm 283). It *is* possible
- to confuse this algorithm into not converging; that should only
- happen with absurdly closely spaced roots (very sharp peaks in the
- LPC f response) which in turn should be impossible in our use of
- the code. If this *does* happen anyway, it's a bug in the floor
- finder; find the cause of the confusion (probably a single bin
- spike or accidental near-float-limit resolution problems) and
- correct it. */
- #include <math.h>
- #include <string.h>
- #include <stdlib.h>
- #include "lsp.h"
- #include "os.h"
- #include "misc.h"
- #include "lookup.h"
- #include "scales.h"
- #define LDBTAB 12
- #define LCOSTAB 12
- #define NDBTAB (1<<LDBTAB)
- #define NCOSTAB (1<<LCOSTAB)
- #define fromdB_t1(x) (dbtab1[(*(int *)&(x) >> (32-LDBTAB)) & (NDBTAB-1)])
- #define fromdB_t2(x) (dbtab2[(*(int *)&(x) >> (32-LDBTAB)) & (NDBTAB-1)])
- #define tcos_t(x) (tcostab[(*(int *)&(x) >> (23-LCOSTAB)) & (NCOSTAB-1)])
- static float dbtab1[NDBTAB];
- static float dbtab2[NDBTAB];
- static float tcostab[NCOSTAB];
- static void initdbtab()
- {
- int i;
- float t;
- for (i = 0; i < NDBTAB; i++) {
- *(int *)&t = (i << (32-LDBTAB)) | (1 << (31-LDBTAB));
- dbtab1[i] = fromdB(1.0f/sqrt(t));
- dbtab2[i] = fromdB(-t);
- //fprintf(stderr, "%4d: %08x %12.6f %12.6f\n", i, (i << (32-LDBTAB)) | (1 << (31-LDBTAB)), dbtab1[i], dbtab2[i]);
- }
- for (i = 0; i < NCOSTAB; i++) {
- *(int *)&t = 0x40800000 | (i << (23-LCOSTAB)) | (1 << (22-LCOSTAB));
- //fprintf(stderr, "xxx %f\n", t);
- tcostab[i] = 2.f*cos(t-4.0f);
- //fprintf(stderr, "%4d: %08x %12.6f\n", i, 0x40800000 | (i << (23-LCOSTAB)) | (1 << (22-LCOSTAB)), tcostab[i]);
- }
- }
- /* three possible LSP to f curve functions; the exact computation
- (float), a lookup based float implementation, and an integer
- implementation. The float lookup is likely the optimal choice on
- any machine with an FPU. The integer implementation is *not* fixed
- point (due to the need for a large dynamic range and thus a
- seperately tracked exponent) and thus much more complex than the
- relatively simple float implementations. It's mostly for future
- work on a fully fixed point implementation for processors like the
- ARM family. */
- /* undefine both for the 'old' but more precise implementation */
- #undef FLOAT_LOOKUP
- #undef INT_LOOKUP
- #ifdef FLOAT_LOOKUP
- #include "lookup.c" /* catch this in the build system; we #include for
- compilers (like gcc) that can't inline across
- modules */
- /* side effect: changes *lsp to cosines of lsp */
- void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
- float amp,float ampoffset){
- int i;
- float wdel=M_PI/ln;
- vorbis_fpu_control fpu;
-
- vorbis_fpu_setround(&fpu);
- for(i=0;i<m;i++)lsp[i]=vorbis_coslook(lsp[i]);
- i=0;
- while(i<n){
- int k=map[i];
- int qexp;
- float p=.7071067812f;
- float q=.7071067812f;
- float w=vorbis_coslook(wdel*k);
- float *ftmp=lsp;
- int c=m>>1;
- do{
- q*=ftmp[0]-w;
- p*=ftmp[1]-w;
- ftmp+=2;
- }while(--c);
- if(m&1){
- /* odd order filter; slightly assymetric */
- /* the last coefficient */
- q*=ftmp[0]-w;
- q*=q;
- p*=p*(1.f-w*w);
- }else{
- /* even order filter; still symmetric */
- q*=q*(1.f+w);
- p*=p*(1.f-w);
- }
- q=frexp(p+q,&qexp);
- q=vorbis_fromdBlook(amp*
- vorbis_invsqlook(q)*
- vorbis_invsq2explook(qexp+m)-
- ampoffset);
- do{
- curve[i++]=q;
- }while(map[i]==k);
- }
- vorbis_fpu_restore(fpu);
- }
- #else
- #ifdef INT_LOOKUP
- #include "lookup.c" /* catch this in the build system; we #include for
- compilers (like gcc) that can't inline across
- modules */
- static int MLOOP_1[64]={
- 0,10,11,11, 12,12,12,12, 13,13,13,13, 13,13,13,13,
- 14,14,14,14, 14,14,14,14, 14,14,14,14, 14,14,14,14,
- 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
- 15,15,15,15, 15,15,15,15, 15,15,15,15, 15,15,15,15,
- };
- static int MLOOP_2[64]={
- 0,4,5,5, 6,6,6,6, 7,7,7,7, 7,7,7,7,
- 8,8,8,8, 8,8,8,8, 8,8,8,8, 8,8,8,8,
- 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
- 9,9,9,9, 9,9,9,9, 9,9,9,9, 9,9,9,9,
- };
- static int MLOOP_3[8]={0,1,2,2,3,3,3,3};
- /* side effect: changes *lsp to cosines of lsp */
- void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
- float amp,float ampoffset){
- /* 0 <= m < 256 */
- /* set up for using all int later */
- int i;
- int ampoffseti=rint(ampoffset*4096.f);
- int ampi=rint(amp*16.f);
- long *ilsp=alloca(m*sizeof(long));
- for(i=0;i<m;i++)ilsp[i]=vorbis_coslook_i(lsp[i]/M_PI*65536.f+.5f);
- i=0;
- while(i<n){
- int j,k=map[i];
- unsigned long pi=46341; /* 2**-.5 in 0.16 */
- unsigned long qi=46341;
- int qexp=0,shift;
- long wi=vorbis_coslook_i(k*65536/ln);
- qi*=labs(ilsp[0]-wi);
- pi*=labs(ilsp[1]-wi);
- for(j=3;j<m;j+=2){
- if(!(shift=MLOOP_1[(pi|qi)>>25]))
- if(!(shift=MLOOP_2[(pi|qi)>>19]))
- shift=MLOOP_3[(pi|qi)>>16];
- qi=(qi>>shift)*labs(ilsp[j-1]-wi);
- pi=(pi>>shift)*labs(ilsp[j]-wi);
- qexp+=shift;
- }
- if(!(shift=MLOOP_1[(pi|qi)>>25]))
- if(!(shift=MLOOP_2[(pi|qi)>>19]))
- shift=MLOOP_3[(pi|qi)>>16];
- /* pi,qi normalized collectively, both tracked using qexp */
- if(m&1){
- /* odd order filter; slightly assymetric */
- /* the last coefficient */
- qi=(qi>>shift)*labs(ilsp[j-1]-wi);
- pi=(pi>>shift)<<14;
- qexp+=shift;
- if(!(shift=MLOOP_1[(pi|qi)>>25]))
- if(!(shift=MLOOP_2[(pi|qi)>>19]))
- shift=MLOOP_3[(pi|qi)>>16];
-
- pi>>=shift;
- qi>>=shift;
- qexp+=shift-14*((m+1)>>1);
- pi=((pi*pi)>>16);
- qi=((qi*qi)>>16);
- qexp=qexp*2+m;
- pi*=(1<<14)-((wi*wi)>>14);
- qi+=pi>>14;
- }else{
- /* even order filter; still symmetric */
- /* p*=p(1-w), q*=q(1+w), let normalization drift because it isn't
- worth tracking step by step */
-
- pi>>=shift;
- qi>>=shift;
- qexp+=shift-7*m;
- pi=((pi*pi)>>16);
- qi=((qi*qi)>>16);
- qexp=qexp*2+m;
-
- pi*=(1<<14)-wi;
- qi*=(1<<14)+wi;
- qi=(qi+pi)>>14;
-
- }
-
- /* we've let the normalization drift because it wasn't important;
- however, for the lookup, things must be normalized again. We
- need at most one right shift or a number of left shifts */
- if(qi&0xffff0000){ /* checks for 1.xxxxxxxxxxxxxxxx */
- qi>>=1; qexp++;
- }else
- while(qi && !(qi&0x8000)){ /* checks for 0.0xxxxxxxxxxxxxxx or less*/
- qi<<=1; qexp--;
- }
- amp=vorbis_fromdBlook_i(ampi* /* n.4 */
- vorbis_invsqlook_i(qi,qexp)-
- /* m.8, m+n<=8 */
- ampoffseti); /* 8.12[0] */
- curve[i]=amp;
- while(map[++i]==k)curve[i]=amp;
- }
- }
- #else
- /* old, nonoptimized but simple version for any poor sap who needs to
- figure out what the hell this code does, or wants the other
- fraction of a dB precision */
- /* side effect: changes *lsp to cosines of lsp */
- void vorbis_lsp_to_curve(float *curve,int *map,int n,int ln,float *lsp,int m,
- float amp,float ampoffset){
- int i;
- float wdel=M_PI/ln;
- float ampm2 = 1.f/(amp*amp);
- float mamp = fromdB_t2(ampoffset);
- {static int needinit=1;if(needinit){needinit=0;initdbtab();}}
- for(i=0;i<m;i++)lsp[i]+=4.f;
- for(i=0;i<m;i++)lsp[i]=tcos_t(lsp[i]);
- i=0;
- while(i<n){
- int j,k=map[i];
- float p=.5f;
- float q=.5f;
- float p1=1.f;
- float q1=1.f;
- float w=4.f+wdel*k;
- w=tcos_t(w);
- for(j=1;j<m-2;j+=4){
- q *= w-lsp[j-1];
- p *= w-lsp[j];
- q1 *= w-lsp[j+1];
- p1 *= w-lsp[j+2];
- }
- for(;j<m;j+=2){
- q *= w-lsp[j-1];
- p *= w-lsp[j];
- }
- q *= q1;
- p *= p1;
- if(j==m){
- /* odd order filter; slightly assymetric */
- /* the last coefficient */
- q*=w-lsp[j-1];
- p*=p*(4.f-w*w);
- q*=q;
- }else{
- /* even order filter; still symmetric */
- p*=p*(2.f-w);
- q*=q*(2.f+w);
- }
- q=(p+q)*ampm2;
- q=mamp*fromdB_t1(q);
- curve[i]=q;
- while(map[++i]==k)curve[i]=q;
- }
- }
- #endif
- #endif
- static void cheby(float *g, int ord) {
- int i, j;
- g[0] *= .5f;
- for(i=2; i<= ord; i++) {
- for(j=ord; j >= i; j--) {
- g[j-2] -= g[j];
- g[j] += g[j];
- }
- }
- }
- static int comp(const void *a,const void *b){
- if(*(float *)a<*(float *)b)
- return(1);
- else
- return(-1);
- }
- /* Newton-Raphson-Maehly actually functioned as a decent root finder,
- but there are root sets for which it gets into limit cycles
- (exacerbated by zero suppression) and fails. We can't afford to
- fail, even if the failure is 1 in 100,000,000, so we now use
- Laguerre and later polish with Newton-Raphson (which can then
- afford to fail) */
- #define EPSILON 10e-7
- static int Laguerre_With_Deflation(float *a,int ord,float *r){
- int i,m;
- double lastdelta=0.f;
- double *defl=alloca(sizeof(double)*(ord+1));
- for(i=0;i<=ord;i++)defl[i]=a[i];
- for(m=ord;m>0;m--){
- double new=0.f,delta;
- /* iterate a root */
- while(1){
- double p=defl[m],pp=0.f,ppp=0.f,denom;
-
- /* eval the polynomial and its first two derivatives */
- for(i=m;i>0;i--){
- ppp = new*ppp + pp;
- pp = new*pp + p;
- p = new*p + defl[i-1];
- }
-
- /* Laguerre's method */
- denom=(m-1) * ((m-1)*pp*pp - m*p*ppp);
- if(denom<0)
- return(-1); /* complex root! The LPC generator handed us a bad filter */
- if(pp>0){
- denom = pp + sqrt(denom);
- if(denom<EPSILON)denom=EPSILON;
- }else{
- denom = pp - sqrt(denom);
- if(denom>-(EPSILON))denom=-(EPSILON);
- }
- delta = m*p/denom;
- new -= delta;
- if(delta<0.f)delta*=-1;
- if(fabs(delta/new)<10e-12)break;
- lastdelta=delta;
- }
- r[m-1]=new;
- /* forward deflation */
-
- for(i=m;i>0;i--)
- defl[i-1]+=new*defl[i];
- defl++;
- }
- return(0);
- }
- /* for spit-and-polish only */
- static int Newton_Raphson(float *a,int ord,float *r){
- int i, k, count=0;
- double error=1.f;
- double *root=alloca(ord*sizeof(double));
- for(i=0; i<ord;i++) root[i] = r[i];
-
- while(error>1e-20){
- error=0;
-
- for(i=0; i<ord; i++) { /* Update each point. */
- double pp=0.,delta;
- double rooti=root[i];
- double p=a[ord];
- for(k=ord-1; k>= 0; k--) {
- pp= pp* rooti + p;
- p = p * rooti + a[k];
- }
- delta = p/pp;
- root[i] -= delta;
- error+= delta*delta;
- }
-
- if(count>40)return(-1);
-
- count++;
- }
- /* Replaced the original bubble sort with a real sort. With your
- help, we can eliminate the bubble sort in our lifetime. --Monty */
- for(i=0; i<ord;i++) r[i] = root[i];
- return(0);
- }
- /* Convert lpc coefficients to lsp coefficients */
- int vorbis_lpc_to_lsp(float *lpc,float *lsp,int m){
- int order2=(m+1)>>1;
- int g1_order,g2_order;
- float *g1=alloca(sizeof(float)*(order2+1));
- float *g2=alloca(sizeof(float)*(order2+1));
- float *g1r=alloca(sizeof(float)*(order2+1));
- float *g2r=alloca(sizeof(float)*(order2+1));
- int i;
- /* even and odd are slightly different base cases */
- g1_order=(m+1)>>1;
- g2_order=(m) >>1;
- /* Compute the lengths of the x polynomials. */
- /* Compute the first half of K & R F1 & F2 polynomials. */
- /* Compute half of the symmetric and antisymmetric polynomials. */
- /* Remove the roots at +1 and -1. */
-
- g1[g1_order] = 1.f;
- for(i=1;i<=g1_order;i++) g1[g1_order-i] = lpc[i-1]+lpc[m-i];
- g2[g2_order] = 1.f;
- for(i=1;i<=g2_order;i++) g2[g2_order-i] = lpc[i-1]-lpc[m-i];
-
- if(g1_order>g2_order){
- for(i=2; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+2];
- }else{
- for(i=1; i<=g1_order;i++) g1[g1_order-i] -= g1[g1_order-i+1];
- for(i=1; i<=g2_order;i++) g2[g2_order-i] += g2[g2_order-i+1];
- }
- /* Convert into polynomials in cos(alpha) */
- cheby(g1,g1_order);
- cheby(g2,g2_order);
- /* Find the roots of the 2 even polynomials.*/
- if(Laguerre_With_Deflation(g1,g1_order,g1r) ||
- Laguerre_With_Deflation(g2,g2_order,g2r))
- return(-1);
- Newton_Raphson(g1,g1_order,g1r); /* if it fails, it leaves g1r alone */
- Newton_Raphson(g2,g2_order,g2r); /* if it fails, it leaves g2r alone */
- qsort(g1r,g1_order,sizeof(float),comp);
- qsort(g2r,g2_order,sizeof(float),comp);
- for(i=0;i<g1_order;i++)
- lsp[i*2] = acos(g1r[i]);
- for(i=0;i<g2_order;i++)
- lsp[i*2+1] = acos(g2r[i]);
- return(0);
- }
|