color.html 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603
  1. <HTML>
  2. <HEAD><TITLE>xiph.org: Ogg Theora documentation</TITLE></HEAD>
  3. <BODY BGCOLOR="#FFFFFF" TEXT="#202020" LINK="#006666" VLINK="#000000">
  4. <H1><FONT COLOR="#000070">
  5. Ogg Theora I specification: color space conventions
  6. </FONT></H1>
  7. <H1>Overview</H1>
  8. <P>
  9. There are a large number of different color standards used in digital video.
  10. Since Theora is a lossy codec, it restricts itself to only a few of them to
  11. simplify playback.
  12. Unlike the alternate method of describing all the parameters of the color
  13. model, this allows a few dedicated routines for color conversion to be written
  14. and heavily optimized in a decoder.
  15. More flexible conversion functions should instead be specified in an encoder,
  16. where additional computational complexity is more easily tolerated.
  17. The color spaces were selected to give a fair representation of color standards
  18. in use around the world today.
  19. Most of the standards that do not exactly match one of these can be converted
  20. to one fairly easily.
  21. </P>
  22. <P>
  23. The Theora codec identification header contains an 8-bit value that describes
  24. the color space.
  25. This merely selects one of the color spaces available from an enumerated list.
  26. Currently, only two color spaces are defined, with a third possibility that
  27. indicates the color space is "unknown".
  28. All of them are Y'C<SUB>b</SUB>C<SUB>r</SUB> color spaces with one luma channel
  29. and two chroma channels.
  30. Each channel contains 8-bit discrete values in the range 0-255, which represent
  31. non-linear gamma pre-corrected signals.
  32. </P>
  33. <H2>color space parameters</H2>
  34. <P>
  35. The parameters which describe each color space are listed below.
  36. These are the parameters needed to map colors from the encoded
  37. Y'C<SUB>b</SUB>C<SUB>r</SUB> representation to the device-independent color
  38. space CIE XYZ (1931).
  39. </P>
  40. <DL>
  41. <DT>Y'C<SUB>b</SUB>C<SUB>r</SUB> to Y'P<SUB>b</SUB>P<SUB>r</SUB></DT>
  42. <DD>
  43. <P>
  44. This conversion takes 8-bit discrete values in the range 0-255 and maps them to
  45. real values in the range [0,1] for Y and [-1/2,1/2] for P<SUB>b</SUB>
  46. and P<SUB>r</SUB>.
  47. Because some values may fall outside the offset and excursion defined for each
  48. channel in the Y'C<SUB>b</SUB>C<SUB>r</SUB> space, the results may fall
  49. outside these ranges in Y'P<SUB>b</SUB>P<SUB>r</SUB> space.
  50. No clamping should be done at this stage.
  51. </P>
  52. <P>
  53. Parameters: <EM>Offset<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB></SUB></EM>,
  54. <EM>Excursion<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB>,</SUB></EM>
  55. </P>
  56. <TABLE>
  57. <TR VALIGN="BOTTOM">
  58. <TD ALIGN="RIGHT">Y'<SUB>out</SUB></TD>
  59. <TD>=</TD>
  60. <TD ALIGN="LEFT">
  61. (Y'<SUB>in</SUB>-<EM>Offset<SUB>Y</SUB></EM>)/
  62. <EM>Excursion<SUB>Y</SUB></EM>
  63. </TD>
  64. </TR>
  65. <TR VALIGN="BOTTOM">
  66. <TD ALIGN="RIGHT">P<SUB>b</SUB></TD>
  67. <TD>=</TD>
  68. <TD ALIGN="LEFT">
  69. (C<SUB>b</SUB>-<EM>Offset<SUB>C<SUB>b</SUB></SUB></EM>)/
  70. <EM>Excursion<SUB>C<SUB>b</SUB></SUB></EM>
  71. </TD>
  72. </TR>
  73. <TR VALIGN="BOTTOM">
  74. <TD ALIGN="RIGHT">P<SUB>r</SUB></TD>
  75. <TD>=</TD>
  76. <TD ALIGN="LEFT">
  77. (C<SUB>r</SUB>-<EM>Offset<SUB>C<SUB>r</SUB></SUB></EM>)/
  78. <EM>Excursion<SUB>C<SUB>r</SUB></SUB></EM>
  79. </TD>
  80. </TR>
  81. </TABLE>
  82. </DD>
  83. <DT>Y'P<SUB>b</SUB>P<SUB>r</SUB> to R'G'B'</DT>
  84. <DD>
  85. <P>
  86. This conversion takes the one luma and two chroma channel representation and
  87. maps it to the non-linear R'G'B' space used to drive actual output devices.
  88. Values should be clamped into the range [0,1] after this stage.
  89. <P>
  90. Parameters: <EM>K<SUB>b</SUB></EM>, <EM>K<SUB>r</SUB></EM>
  91. </P>
  92. <TABLE>
  93. <TR VALIGN="BOTTOM">
  94. <TD ALIGN="RIGHT">R'</TD>
  95. <TD>=</TD>
  96. <TD ALIGN="LEFT">Y' + 2(1-<EM>K<SUB>r</SUB></EM>)P<SUB>r</SUB></TD>
  97. </TR>
  98. <TR VALIGN="BOTTOM">
  99. <TD ALIGN="RIGHT">G'</TD>
  100. <TD>=</TD>
  101. <TD ALIGN="LEFT">
  102. Y' +
  103. 2((<EM>K<SUB>b</SUB></EM>-1)<EM>K<SUB>b</SUB></EM>/
  104. (1-<EM>K<SUB>b</SUB></EM>-<EM>K<SUB>r</SUB></EM>))P<SUB>b</SUB> +
  105. 2((<EM>K<SUB>r</SUB></EM>-1)<EM>K<SUB>r</SUB></EM>/
  106. (1-<EM>K<SUB>b</SUB></EM>-<EM>K<SUB>r</SUB></EM>))P<SUB>r</SUB>
  107. </TD>
  108. </TR>
  109. <TR VALIGN="BOTTOM">
  110. <TD ALIGN="RIGHT">B'</TD>
  111. <TD>=</TD>
  112. <TD ALIGN="LEFT">Y' + 2(1-<EM>K<SUB>b</SUB></EM>)P<SUB>b</SUB></TD>
  113. </TR>
  114. </TABLE>
  115. </DD>
  116. <DT>R'G'B' to RGB (Output device gamma correction)</DT>
  117. <DD>
  118. <P>
  119. This conversion takes the non-linear R'G'B' voltage levels and maps it to the
  120. linear light levels produced by the actual output device.
  121. Note that this conversion is only that of the output device, and its inverse is
  122. <EM>not</EM> that used by the input device.
  123. Because a dim viewing environment is assumed in most television standards, the
  124. overall gamma between the input and output devices is usually around 1.1 to
  125. 1.2, and not a strict 1.0.
  126. </P>
  127. <P>
  128. For calibration with actual output devices, the model
  129. <TABLE>
  130. <TR VALIGN="BOTTOM">
  131. <TD ALIGN="RIGHT">L</TD>
  132. <TD>=</TD>
  133. <TD ALIGN="LEFT">(E'+&Delta;)<SUP><EM>&gamma;</EM></SUP></TD>
  134. </TR>
  135. </TABLE>
  136. should be used, with &Delta; the free parameter and <EM>&gamma;</EM> held
  137. fixed to the value specified in this document.
  138. The conversion function presented here is an idealized version with &Delta;=0.
  139. </P>
  140. <P>
  141. Parameters: <EM>&gamma;</EM>
  142. </P>
  143. <TABLE>
  144. <TR VALIGN="BOTTOM">
  145. <TD ALIGN="RIGHT">R</TD>
  146. <TD>=</TD>
  147. <TD ALIGN="LEFT">R'<SUP><EM>&gamma;</EM></SUP></TD>
  148. </TR>
  149. <TR VALIGN="BOTTOM">
  150. <TD ALIGN="RIGHT">G</TD>
  151. <TD>=</TD>
  152. <TD ALIGN="LEFT">G'<SUP><EM>&gamma;</EM></SUP></TD>
  153. </TR>
  154. <TR VALIGN="BOTTOM">
  155. <TD ALIGN="RIGHT">B</TD>
  156. <TD>=</TD>
  157. <TD ALIGN="LEFT">B'<SUP><EM>&gamma;</EM></SUP></TD>
  158. </TR>
  159. </TABLE>
  160. </DD>
  161. <DT>RGB to R'G'B' (Input device gamma correction)</DT>
  162. <DD>
  163. <P>
  164. This conversion takes linear light levels and maps them to the non-linear
  165. voltage levels used to drive the actual output device.
  166. This information is merely informative.
  167. It is not required for building a decoder or for converting between the various
  168. formats and the actual output capabilities of a particular device.
  169. </P>
  170. <P>
  171. A linear segment is introduced on the low end to reduce noise in dark areas of
  172. the image.
  173. The rest of the scale is adjusted so that the power segment of the curve
  174. intersects the linear segment with the proper slope, and so that it still maps
  175. 0 to 0 and 1 to 1.
  176. </P>
  177. <P>
  178. Parameters: <EM>&beta;</EM>, <EM>&alpha;</EM>, <EM>&delta;</EM>,
  179. <EM>&epsilon;</EM>
  180. </P>
  181. <TABLE>
  182. <TR VALIGN="BOTTOM">
  183. <TD ALIGN="RIGHT">R'</TD>
  184. <TD>=</TD>
  185. <TD ALIGN="LEFT">
  186. (1+<EM>&epsilon;</EM>)R<SUP>&beta;</SUP>-<EM>&epsilon;</EM>
  187. </TD>
  188. <TD>for <EM>&delta;</EM> &le; R &le; 1</TD>
  189. </TR>
  190. <TR VALIGN="BOTTOM">
  191. <TD ALIGN="RIGHT">R'</TD>
  192. <TD>=</TD>
  193. <TD ALIGN="LEFT"><EM>&alpha;</EM>R</TD>
  194. <TD>for 0 &le; R &lt; <EM>&delta;</EM></TD>
  195. </TR>
  196. <TR VALIGN="BOTTOM">
  197. <TD ALIGN="RIGHT">G'</TD>
  198. <TD>=</TD>
  199. <TD ALIGN="LEFT">
  200. (1+<EM>&epsilon;</EM>)G<SUP>&beta;</SUP>-<EM>&epsilon;</EM>
  201. </TD>
  202. <TD>for <EM>&delta;</EM> &le; G &le; 1</TD>
  203. </TR>
  204. <TR VALIGN="BOTTOM">
  205. <TD ALIGN="RIGHT">G'</TD>
  206. <TD>=</TD>
  207. <TD ALIGN="LEFT"><EM>&alpha;</EM>G</TD>
  208. <TD>for 0 &le; G &lt; <EM>&delta;</EM></TD>
  209. </TR>
  210. <TR VALIGN="BOTTOM">
  211. <TD ALIGN="RIGHT">B'</TD>
  212. <TD>=</TD>
  213. <TD ALIGN="LEFT">
  214. (1+<EM>&epsilon;</EM>)B<SUP>&beta;</SUP>-<EM>&epsilon;</EM>
  215. </TD>
  216. <TD>for <EM>&delta;</EM> &le; B &le; 1</TD>
  217. </TR>
  218. <TR VALIGN="BOTTOM">
  219. <TD ALIGN="RIGHT">B'</TD>
  220. <TD>=</TD>
  221. <TD ALIGN="LEFT"><EM>&alpha;</EM>B</TD>
  222. <TD>for 0 &le; B &lt; <EM>&delta;</EM></TD>
  223. </TR>
  224. </TABLE>
  225. </DD>
  226. <DT>RGB to CIE XYZ (1931)</DT>
  227. <DD>
  228. <P>
  229. This conversion maps a device-dependent linear RGB space to the
  230. device-independent linear CIE XYZ space.
  231. The parameters are the CIE chromaticity coordinates of the three primaries,
  232. red, green, and blue, as well as the chromaticity coordinates of the white
  233. point of the device.
  234. This is how hardware manufacturers and standards typically describe a
  235. particular RGB space.
  236. The math required to convert these parameters into a useful transformation
  237. matrix is reproduced below.
  238. </P>
  239. <P>
  240. Parameters: <EM>x<SUB>r,g,b,w</SUB></EM>, <EM>y<SUB>r,g,b,w</SUB></EM>
  241. </P>
  242. <TABLE>
  243. <TR>
  244. <TD ALIGN="RIGHT">F</TD>
  245. <TD>=</TD>
  246. <TD ALIGN="LEFT"><TABLE><TR>
  247. <TD><FONT SIZE="300%">(</FONT></TD>
  248. <TD><TABLE>
  249. <TR>
  250. <TD ALIGN="CENTER"><EM>x<SUB>r</SUB></EM>/<EM>y<SUB>r</SUB></EM></TD>
  251. <TD ALIGN="CENTER"><EM>x<SUB>g</SUB></EM>/<EM>y<SUB>g</SUB></EM></TD>
  252. <TD ALIGN="CENTER"><EM>x<SUB>b</SUB></EM>/<EM>y<SUB>b</SUB></EM></TD>
  253. </TR>
  254. <TR>
  255. <TD ALIGN="CENTER">1</TD>
  256. <TD ALIGN="CENTER">1</TD>
  257. <TD ALIGN="CENTER">1</TD>
  258. </TR>
  259. <TR>
  260. <TD ALIGN="CENTER">
  261. (1-<EM>x<SUB>r</SUB></EM>-<EM>y<SUB>r</SUB></EM>)/<EM>y<SUB>r</SUB></EM>
  262. </TD>
  263. <TD ALIGN="CENTER">
  264. (1-<EM>x<SUB>g</SUB></EM>-<EM>y<SUB>g</SUB></EM>)/<EM>y<SUB>g</SUB></EM>
  265. </TD>
  266. <TD ALIGN="CENTER">
  267. (1-<EM>x<SUB>b</SUB></EM>-<EM>y<SUB>b</SUB></EM>)/<EM>y<SUB>b</SUB></EM>
  268. </TD>
  269. </TR>
  270. </TABLE></TD>
  271. <TD<FONT SIZE="300%">)</FONT></TD>
  272. </TR></TABLE></TD>
  273. </TR>
  274. <TR>
  275. <TD ALIGN="RIGHT"><TABLE><TR>
  276. <TD><FONT SIZE="300%">(</FONT></TD>
  277. <TD><TABLE>
  278. <TR><TD ALIGN="CENTER">s<SUB>r</SUB></TD></TR>
  279. <TR><TD ALIGN="CENTER">s<SUB>g</SUB></TD></TR>
  280. <TR><TD ALIGN="CENTER">s<SUB>b</SUB></TD></TR>
  281. </TABLE></TD>
  282. <TD><FONT SIZE="300%">)</FONT></TD>
  283. </TR></TABLE></TD>
  284. <TD>=</TD>
  285. <TD ALIGN="LEFT"><TABLE><TR>
  286. <TD>F<SUP>-1</SUP><FONT SIZE="300%">(</FONT></TD>
  287. <TD><TABLE>
  288. <TR><TD ALIGN="CENTER"><EM>x<SUB>w</SUB></EM>/<EM>y<SUB>w</SUB></EM></TD></TR>
  289. <TR><TD ALIGN="CENTER">1</TD></TR>
  290. <TR><TD ALIGN="CENTER">
  291. (1-<EM>x<SUB>w</SUB></EM>-<EM>y<SUB>w</SUB></EM>)/<EM>y<SUB>w</SUB></EM>
  292. </TD></TR>
  293. </TABLE></TD>
  294. <TD><FONT SIZE="300%">)</FONT></TD>
  295. </TR></TABLE></TD>
  296. </TR>
  297. <TR>
  298. <TD ALIGN="RIGHT"><TABLE><TR>
  299. <TD><FONT SIZE="300%">(</FONT></TD>
  300. <TD><TABLE>
  301. <TR><TD ALIGN="CENTER">X</TD></TR>
  302. <TR><TD ALIGN="CENTER">Y</TD></TR>
  303. <TR><TD ALIGN="CENTER">Z</TD></TR>
  304. </TABLE></TD>
  305. <TD><FONT SIZE="300%">)</FONT></TD>
  306. </TR></TABLE></TD>
  307. <TD>=</TD>
  308. <TD ALIGN="LEFT"><TABLE><TR>
  309. <TD>F<FONT SIZE="300%">(</FONT></TD>
  310. <TD><TABLE>
  311. <TR><TD ALIGN="CENTER">s<SUB>r</SUB>R</TD></TR>
  312. <TR><TD ALIGN="CENTER">s<SUB>g</SUB>G</TD></TR>
  313. <TR><TD ALIGN="CENTER">s<SUB>b</SUB>B</TD></TR>
  314. </TABLE></TD>
  315. <TD><FONT SIZE="300%">)</FONT></TD>
  316. </TR></TABLE></TD>
  317. </TR>
  318. </TABLE>
  319. </DD>
  320. </DL>
  321. <H2>available color spaces</H2>
  322. <P>
  323. These are the color spaces currently defined for use by Ogg Theora video.
  324. Each one has a short name, with which it is referred to in this document, and
  325. a more detailed specification of the standards from which its parameters are
  326. derived.
  327. Some standards do not specify all the parameters necessary.
  328. For these unspecified parameters, this document serves as the definition of
  329. what should be used when encoding or decoding Ogg Theora video.
  330. <H3>Rec 470M (Rec. ITU-R BT.470-6 System M/NTSC with Rec. ITU-R BT.601-5)</H3>
  331. <P>
  332. This color space is used by broadcast television and DVDs in much of the
  333. Americas, Japan, Korea, and the Union of Myanmar
  334. [<A HREF="#Rec470">Rec470</A>].
  335. This color space may also be used for System M/PAL (Brazil), with an
  336. appropriate conversion supplied by the encoder to compensate for the
  337. different gamma value.
  338. See the Rec 470BG section for an appropriate gamma value to assume for M/PAL
  339. input.
  340. </P>
  341. <P>
  342. In the US, studio monitors are adjusted to a D65 white point
  343. (<EM>x<SUB>w</SUB></EM>,<EM>y<SUB>w</SUB></EM>=0.313,0.329).
  344. In Japan, studio monitors are adjusted to a D white of 9300K
  345. (<EM>x<SUB>w</SUB></EM>,<EM>y<SUB>w</SUB></EM>=0.285,0.293).
  346. </P>
  347. <P>
  348. Rec 470 does not specify a digital encoding of the color signals.
  349. For Ogg Theora, Rec. ITU-R BT.601-5 is used, starting from the R'G'B' signals
  350. specified by Rec 470 [<A HREF="#Rec601">Rec601</A>].
  351. </P>
  352. <P>
  353. <P>
  354. Rec 470 does not specify an input gamma function.
  355. For Ogg Theora, the Rec 709 input function is used.
  356. This is the same as that specified by SMPTE 170M, which claims to reflect
  357. modern practice in the creation of NTSC signals (c. 1994)
  358. [<A HREF="#SMPTE170M">SMPTE170M</A>].
  359. </P>
  360. <H4>parameters</H4>
  361. <TABLE>
  362. <TR VALIGN="BOTTOM">
  363. <TD ALIGN="RIGHT"><EM>Offset<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB></SUB></EM></TD>
  364. <TD>=</TD>
  365. <TD ALIGN="LEFT" COLSPAN="2">(16,128,128)</TD>
  366. </TR>
  367. <TR VALIGN="BOTTOM">
  368. <TD ALIGN="RIGHT">
  369. <EM>Excursion<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB></SUB></EM>
  370. </TD>
  371. <TD>=</TD>
  372. <TD ALIGN="LEFT" COLSPAN="2">(219,224,224)</TD>
  373. </TR>
  374. <TR VALIGN="BOTTOM">
  375. <TD ALIGN="RIGHT"><EM>K<SUB>b</SUB></EM></TD>
  376. <TD>=</TD>
  377. <TD ALIGN="LEFT" COLSPAN="2">0.114</TD>
  378. </TR>
  379. <TR VALIGN="BOTTOM">
  380. <TD ALIGN="RIGHT"><EM>K<SUB>r</SUB></EM></TD>
  381. <TD>=</TD>
  382. <TD ALIGN="LEFT" COLSPAN="2">0.299</TD>
  383. </TR>
  384. <TR VALIGN="BOTTOM">
  385. <TD ALIGN="RIGHT"><EM>&gamma;</EM></TD>
  386. <TD>=</TD>
  387. <TD ALIGN="LEFT">2.2</TD>
  388. </TR>
  389. <TR VALIGN="BOTTOM">
  390. <TD ALIGN="RIGHT"><EM>&beta;</EM></TD>
  391. <TD>=</TD>
  392. <TD ALIGN="LEFT">0.45</TD>
  393. </TR>
  394. <TR VALIGN="BOTTOM">
  395. <TD ALIGN="RIGHT"><EM>&alpha;</EM></TD>
  396. <TD>=</TD>
  397. <TD ALIGN="LEFT">4.5</TD>
  398. </TR>
  399. <TR VALIGN="BOTTOM">
  400. <TD ALIGN="RIGHT"><EM>&delta;</EM></TD>
  401. <TD>=</TD>
  402. <TD ALIGN="LEFT">0.018</TD>
  403. </TR>
  404. <TR VALIGN="BOTTOM">
  405. <TD ALIGN="RIGHT"><EM>&epsilon;</EM></TD>
  406. <TD>=</TD>
  407. <TD ALIGN="LEFT">0.099</TD>
  408. </TR>
  409. <TR VALIGN="BOTTOM">
  410. <TD ALIGN="RIGHT"><EM>x<SUB>r</SUB></EM>,<EM>y<SUB>r</SUB></EM></TD>
  411. <TD>=</TD>
  412. <TD>0.67,</TD>
  413. <TD>0.33</TD>
  414. </TR>
  415. <TR VALIGN="BOTTOM">
  416. <TD ALIGN="RIGHT"><EM>x<SUB>g</SUB></EM>,<EM>y<SUB>g</SUB></EM></TD>
  417. <TD>=</TD>
  418. <TD>0.21,</TD>
  419. <TD>0.71</TD>
  420. </TR>
  421. <TR VALIGN="BOTTOM">
  422. <TD ALIGN="RIGHT"><EM>x<SUB>b</SUB></EM>,<EM>y<SUB>b</SUB></EM></TD>
  423. <TD>=</TD>
  424. <TD>0.14,</TD>
  425. <TD>0.08</TD>
  426. </TR>
  427. <TR VALIGN="BOTTOM">
  428. <TD ALIGN="RIGHT">
  429. (Illuminant C) <EM>x<SUB>w</SUB></EM>,<EM>y<SUB>w</SUB></EM>
  430. </TD>
  431. <TD>=</TD>
  432. <TD>0.310,</TD>
  433. <TD>0.316</TD>
  434. </TR>
  435. </TABLE>
  436. <H3>
  437. Rec 470BG (Rec. ITU-R BT.470-6 Systems B and G with Rec. ITU-R BT.601-5)
  438. </H3>
  439. <P>
  440. This color space is used by the PAL and SECAM systems in much of the rest of
  441. the world [<A HREF="#Rec470">Rec470</A>].
  442. This can be used directly by systems (B, B1, D, D1, G, H, I, K, N)/PAL and (B,
  443. D, G, H, K, K1, L)/SECAM.
  444. </P>
  445. <P>
  446. Note that the Rec 470BG chromaticity values are different from those specified
  447. in Rec 470M.
  448. When PAL and SECAM systems were first designed, they were based upon the same
  449. primaries as NTSC.
  450. However, as methods of making color picture tubes have changed, the primaries
  451. used have changed as well.
  452. The US recommends using correction circuitry to approximate the existing,
  453. standard NTSC primaries.
  454. Current PAL and SECAM systems have standardized on primaries in accord with
  455. more recent technology.
  456. </P>
  457. <P>
  458. Rec 470 provisionally permits the use of the NTSC chromaticity values (given
  459. above) with legacy PAL and SECAM equipment.
  460. In Ogg Theora, material must be decoded assuming the new PAL and SECAM
  461. primaries.
  462. Material intended for display on old legacy devices should be converted by the
  463. decoder.
  464. </P>
  465. <P>
  466. The official Rec 470BG specifies a gamma value of <EM>&gamma;</EM>=2.8.
  467. However, in practice this value is unrealistically high
  468. [<A HREF="#RefPoy97">Poy97</A>].
  469. Rec 470BG states that the overall system gamma should be approximately
  470. <EM>&gamma;</EM>/<EM>&beta;</EM>=1.2.
  471. However, most cameras pre-correct with a gamma value of <EM>&beta;</EM>=0.45,
  472. which suggests an output device gamma of approximately <EM>&gamma;</EM>=2.67.
  473. This is the value recommended for use with PAL systems in Ogg Theora.
  474. </P>
  475. <P>
  476. Rec 470 does not specify a digital encoding of the color signals.
  477. For Ogg Theora, Rec. ITU-R BT.601-5 is used, starting from the R'G'B' signals
  478. specified by Rec 470 [<A HREF="#Rec601">Rec601</A>].
  479. </P>
  480. <P>
  481. Rec 470 does not specify an input gamma function.
  482. For Ogg Theora, the Rec 709 input function is used.
  483. </P>
  484. <H4>parameters</H4>
  485. <TABLE>
  486. <TR VALIGN="BOTTOM">
  487. <TD ALIGN="RIGHT"><EM>Offset<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB></SUB></EM></TD>
  488. <TD>=</TD>
  489. <TD ALIGN="LEFT" COLSPAN="2">(16,128,128)</TD>
  490. </TR>
  491. <TR VALIGN="BOTTOM">
  492. <TD ALIGN="RIGHT">
  493. <EM>Excursion<SUB>Y,C<SUB>b</SUB>,C<SUB>r</SUB></SUB></EM>
  494. </TD>
  495. <TD>=</TD>
  496. <TD ALIGN="LEFT" COLSPAN="2">(219,224,224)</TD>
  497. </TR>
  498. <TR VALIGN="BOTTOM">
  499. <TD ALIGN="RIGHT"><EM>K<SUB>b</SUB></EM></TD>
  500. <TD>=</TD>
  501. <TD ALIGN="LEFT" COLSPAN="2">0.114</TD>
  502. </TR>
  503. <TR VALIGN="BOTTOM">
  504. <TD ALIGN="RIGHT"><EM>K<SUB>r</SUB></EM></TD>
  505. <TD>=</TD>
  506. <TD ALIGN="LEFT" COLSPAN="2">0.299</TD>
  507. </TR>
  508. <TR VALIGN="BOTTOM">
  509. <TD ALIGN="RIGHT"><EM>&gamma;</EM></TD>
  510. <TD>=</TD>
  511. <TD ALIGN="LEFT">2.67</TD>
  512. </TR>
  513. <TR VALIGN="BOTTOM">
  514. <TD ALIGN="RIGHT"><EM>&beta;</EM></TD>
  515. <TD>=</TD>
  516. <TD ALIGN="LEFT">0.45</TD>
  517. </TR>
  518. <TR VALIGN="BOTTOM">
  519. <TD ALIGN="RIGHT"><EM>&alpha;</EM></TD>
  520. <TD>=</TD>
  521. <TD ALIGN="LEFT">4.5</TD>
  522. </TR>
  523. <TR VALIGN="BOTTOM">
  524. <TD ALIGN="RIGHT"><EM>&delta;</EM></TD>
  525. <TD>=</TD>
  526. <TD ALIGN="LEFT">0.018</TD>
  527. </TR>
  528. <TR VALIGN="BOTTOM">
  529. <TD ALIGN="RIGHT"><EM>&epsilon;</EM></TD>
  530. <TD>=</TD>
  531. <TD ALIGN="LEFT">0.099</TD>
  532. </TR>
  533. <TR VALIGN="BOTTOM">
  534. <TD ALIGN="RIGHT"><EM>x<SUB>r</SUB></EM>,<EM>y<SUB>r</SUB></EM></TD>
  535. <TD>=</TD>
  536. <TD>0.64,</TD>
  537. <TD>0.33</TD>
  538. </TR>
  539. <TR VALIGN="BOTTOM">
  540. <TD ALIGN="RIGHT"><EM>x<SUB>g</SUB></EM>,<EM>y<SUB>g</SUB></EM></TD>
  541. <TD>=</TD>
  542. <TD>0.29,</TD>
  543. <TD>0.60</TD>
  544. </TR>
  545. <TR VALIGN="BOTTOM">
  546. <TD ALIGN="RIGHT"><EM>x<SUB>b</SUB></EM>,<EM>y<SUB>b</SUB></EM></TD>
  547. <TD>=</TD>
  548. <TD>0.15,</TD>
  549. <TD>0.06</TD>
  550. </TR>
  551. <TR VALIGN="BOTTOM">
  552. <TD ALIGN="RIGHT">
  553. (D65) <EM>x<SUB>w</SUB></EM>,<EM>y<SUB>w</SUB></EM>
  554. </TD>
  555. <TD>=</TD>
  556. <TD>0.313,</TD>
  557. <TD>0.329</TD>
  558. </TR>
  559. </TABLE>
  560. <H2>references</H2>
  561. <DL>
  562. <DT>[<A NAME="Poy97">Poy97</A>]</DT>
  563. <DD>
  564. Poynton, Charles, <I>Frequently-Asked Questions about Gamma</I>.
  565. <A HREF="http://www.poynton.com/GammaFAQ.html">http://www.poynton.com/GammaFAQ/html</A>,
  566. Feb. 1997.
  567. </DD>
  568. <DT>[<A NAME="Rec470">Rec470</A>]</DT>
  569. <DD>
  570. Recommendation ITU-R BT.470-6, <I>Conventional Television Systems</I>
  571. (1970, revised 1998). International Telecommunications Union, 1211 Geneva 20,
  572. Switzerland.
  573. </DD>
  574. <DT>[<A NAME="Rec601">Rec601</A>]</DT>
  575. <DD>
  576. Recommendation ITU-R BT.601-5, <I>Studio Encoding Parameters of
  577. Digital Television for Standard 4:3 and Wide-Screen 16:9 Aspect Ratios</I>
  578. (1982, revised 1995). International Telecommunications Union, 1211 Geneva 20,
  579. Switzerland.
  580. </DD>
  581. <DT>[<A NAME="Rec709">Rec709</A>]</DT>
  582. <DD>
  583. Recommendation ITU-R BT.709-5, <I>Parameter values for the
  584. HDTV standards for production and international programme exchange</I>
  585. (1990, revised 2002). International Telecommunications Union, 1211 Geneva 20,
  586. Switzerland.
  587. </DD>
  588. <DT>[<A NAME="SMPTE170M">SMPTE170M</A>]</DT>
  589. <DD>
  590. Society of Motion Picture and Television Engineers, <I>Television &mdash;
  591. Composite Analog Video Signal &mdash; NTSC for Studio Applications</I>.
  592. SMPTE-170M, 1994
  593. </DD>
  594. <DT>[<A NAME="SMPTE240M">SMPTE240M</A>]</DT>
  595. <DD>
  596. Society of Motion Picture and Television Engineers, <I>Television &mdash;
  597. Signal Parameters &mdash; 1125-Line High-Definition Production</I>.
  598. SMPTE-240M, 1999.
  599. </DD>
  600. </DL>
  601. </BODY>
  602. </HTML>