123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178 |
- #!/usr/bin/python3
- from __future__ import print_function
- from keras.models import Sequential
- from keras.models import Model
- from keras.layers import Input
- from keras.layers import Dense
- from keras.layers import LSTM
- from keras.layers import GRU
- from keras.layers import CuDNNGRU
- from keras.layers import SimpleRNN
- from keras.layers import Dropout
- from keras import losses
- import h5py
- from keras.optimizers import Adam
- from keras.constraints import Constraint
- from keras import backend as K
- import numpy as np
- import tensorflow as tf
- from keras.backend.tensorflow_backend import set_session
- config = tf.ConfigProto()
- config.gpu_options.per_process_gpu_memory_fraction = 0.44
- set_session(tf.Session(config=config))
- def binary_crossentrop2(y_true, y_pred):
- return K.mean(2*K.abs(y_true-0.5) * K.binary_crossentropy(y_true, y_pred), axis=-1)
- def binary_accuracy2(y_true, y_pred):
- return K.mean(K.cast(K.equal(y_true, K.round(y_pred)), 'float32') + K.cast(K.equal(y_true, 0.5), 'float32'), axis=-1)
- def quant_model(model):
- weights = model.get_weights()
- for k in range(len(weights)):
- weights[k] = np.maximum(-128, np.minimum(127, np.round(128*weights[k])*0.0078125))
- model.set_weights(weights)
- class WeightClip(Constraint):
- '''Clips the weights incident to each hidden unit to be inside a range
- '''
- def __init__(self, c=2):
- self.c = c
- def __call__(self, p):
- return K.clip(p, -self.c, self.c)
- def get_config(self):
- return {'name': self.__class__.__name__,
- 'c': self.c}
- reg = 0.000001
- constraint = WeightClip(.998)
- print('Build model...')
- main_input = Input(shape=(None, 25), name='main_input')
- x = Dense(32, activation='tanh', kernel_constraint=constraint, bias_constraint=constraint)(main_input)
- #x = CuDNNGRU(24, return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(x)
- x = GRU(24, recurrent_activation='sigmoid', activation='tanh', return_sequences=True, kernel_constraint=constraint, recurrent_constraint=constraint, bias_constraint=constraint)(x)
- x = Dense(2, activation='sigmoid', kernel_constraint=constraint, bias_constraint=constraint)(x)
- model = Model(inputs=main_input, outputs=x)
- batch_size = 2048
- print('Loading data...')
- with h5py.File('features10b.h5', 'r') as hf:
- all_data = hf['data'][:]
- print('done.')
- window_size = 1500
- nb_sequences = len(all_data)//window_size
- print(nb_sequences, ' sequences')
- x_train = all_data[:nb_sequences*window_size, :-2]
- x_train = np.reshape(x_train, (nb_sequences, window_size, 25))
- y_train = np.copy(all_data[:nb_sequences*window_size, -2:])
- y_train = np.reshape(y_train, (nb_sequences, window_size, 2))
- print("Marking ignores")
- for s in y_train:
- for e in s:
- if (e[1] >= 1):
- break
- e[0] = 0.5
- all_data = 0;
- x_train = x_train.astype('float32')
- y_train = y_train.astype('float32')
- print(len(x_train), 'train sequences. x shape =', x_train.shape, 'y shape = ', y_train.shape)
- model.load_weights('newweights10a1b_ep206.hdf5')
- #weights = model.get_weights()
- #for k in range(len(weights)):
- # weights[k] = np.round(128*weights[k])*0.0078125
- #model.set_weights(weights)
- # try using different optimizers and different optimizer configs
- model.compile(loss=binary_crossentrop2,
- optimizer=Adam(0.0001),
- metrics=[binary_accuracy2])
- print('Train...')
- quant_model(model)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=10, validation_data=(x_train, y_train))
- model.save("newweights10a1c_ep10.hdf5")
- quant_model(model)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=50, initial_epoch=10)
- model.save("newweights10a1c_ep50.hdf5")
- model.compile(loss=binary_crossentrop2,
- optimizer=Adam(0.0001),
- metrics=[binary_accuracy2])
- quant_model(model)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=100, initial_epoch=50)
- model.save("newweights10a1c_ep100.hdf5")
- quant_model(model)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=150, initial_epoch=100)
- model.save("newweights10a1c_ep150.hdf5")
- quant_model(model)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=200, initial_epoch=150)
- model.save("newweights10a1c_ep200.hdf5")
- quant_model(model)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=201, initial_epoch=200)
- model.save("newweights10a1c_ep201.hdf5")
- quant_model(model)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=202, initial_epoch=201, validation_data=(x_train, y_train))
- model.save("newweights10a1c_ep202.hdf5")
- quant_model(model)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=203, initial_epoch=202, validation_data=(x_train, y_train))
- model.save("newweights10a1c_ep203.hdf5")
- quant_model(model)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=204, initial_epoch=203, validation_data=(x_train, y_train))
- model.save("newweights10a1c_ep204.hdf5")
- quant_model(model)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=205, initial_epoch=204, validation_data=(x_train, y_train))
- model.save("newweights10a1c_ep205.hdf5")
- quant_model(model)
- model.fit(x_train, y_train,
- batch_size=batch_size,
- epochs=206, initial_epoch=205, validation_data=(x_train, y_train))
- model.save("newweights10a1c_ep206.hdf5")
|