mathops.c 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210
  1. /* Copyright (c) 2002-2012 IETF Trust, Jean-Marc Valin,
  2. CSIRO, Xiph.Org Foundation. All rights reserved.
  3. Written by Jean-Marc Valin */
  4. /**
  5. @file mathops.h
  6. @brief Various math functions
  7. */
  8. /*
  9. This file is extracted from RFC6716. Please see that RFC for additional
  10. information.
  11. Redistribution and use in source and binary forms, with or without
  12. modification, are permitted provided that the following conditions
  13. are met:
  14. - Redistributions of source code must retain the above copyright
  15. notice, this list of conditions and the following disclaimer.
  16. - Redistributions in binary form must reproduce the above copyright
  17. notice, this list of conditions and the following disclaimer in the
  18. documentation and/or other materials provided with the distribution.
  19. - Neither the name of Internet Society, IETF or IETF Trust, nor the
  20. names of specific contributors, may be used to endorse or promote
  21. products derived from this software without specific prior written
  22. permission.
  23. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  24. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  25. LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  26. A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
  27. OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  28. EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  29. PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  30. PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  31. LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  32. NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  33. SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  34. */
  35. #ifdef HAVE_CONFIG_H
  36. #include "config.h"
  37. #endif
  38. #include "mathops.h"
  39. /*Compute floor(sqrt(_val)) with exact arithmetic.
  40. This has been tested on all possible 32-bit inputs.*/
  41. unsigned isqrt32(opus_uint32 _val){
  42. unsigned b;
  43. unsigned g;
  44. int bshift;
  45. /*Uses the second method from
  46. http://www.azillionmonkeys.com/qed/sqroot.html
  47. The main idea is to search for the largest binary digit b such that
  48. (g+b)*(g+b) <= _val, and add it to the solution g.*/
  49. g=0;
  50. bshift=(EC_ILOG(_val)-1)>>1;
  51. b=1U<<bshift;
  52. do{
  53. opus_uint32 t;
  54. t=(((opus_uint32)g<<1)+b)<<bshift;
  55. if(t<=_val){
  56. g+=b;
  57. _val-=t;
  58. }
  59. b>>=1;
  60. bshift--;
  61. }
  62. while(bshift>=0);
  63. return g;
  64. }
  65. #ifdef FIXED_POINT
  66. opus_val32 frac_div32(opus_val32 a, opus_val32 b)
  67. {
  68. opus_val16 rcp;
  69. opus_val32 result, rem;
  70. int shift = celt_ilog2(b)-29;
  71. a = VSHR32(a,shift);
  72. b = VSHR32(b,shift);
  73. /* 16-bit reciprocal */
  74. rcp = ROUND16(celt_rcp(ROUND16(b,16)),3);
  75. result = SHL32(MULT16_32_Q15(rcp, a),2);
  76. rem = a-MULT32_32_Q31(result, b);
  77. result += SHL32(MULT16_32_Q15(rcp, rem),2);
  78. return result;
  79. }
  80. /** Reciprocal sqrt approximation in the range [0.25,1) (Q16 in, Q14 out) */
  81. opus_val16 celt_rsqrt_norm(opus_val32 x)
  82. {
  83. opus_val16 n;
  84. opus_val16 r;
  85. opus_val16 r2;
  86. opus_val16 y;
  87. /* Range of n is [-16384,32767] ([-0.5,1) in Q15). */
  88. n = x-32768;
  89. /* Get a rough initial guess for the root.
  90. The optimal minimax quadratic approximation (using relative error) is
  91. r = 1.437799046117536+n*(-0.823394375837328+n*0.4096419668459485).
  92. Coefficients here, and the final result r, are Q14.*/
  93. r = ADD16(23557, MULT16_16_Q15(n, ADD16(-13490, MULT16_16_Q15(n, 6713))));
  94. /* We want y = x*r*r-1 in Q15, but x is 32-bit Q16 and r is Q14.
  95. We can compute the result from n and r using Q15 multiplies with some
  96. adjustment, carefully done to avoid overflow.
  97. Range of y is [-1564,1594]. */
  98. r2 = MULT16_16_Q15(r, r);
  99. y = SHL16(SUB16(ADD16(MULT16_16_Q15(r2, n), r2), 16384), 1);
  100. /* Apply a 2nd-order Householder iteration: r += r*y*(y*0.375-0.5).
  101. This yields the Q14 reciprocal square root of the Q16 x, with a maximum
  102. relative error of 1.04956E-4, a (relative) RMSE of 2.80979E-5, and a
  103. peak absolute error of 2.26591/16384. */
  104. return ADD16(r, MULT16_16_Q15(r, MULT16_16_Q15(y,
  105. SUB16(MULT16_16_Q15(y, 12288), 16384))));
  106. }
  107. /** Sqrt approximation (QX input, QX/2 output) */
  108. opus_val32 celt_sqrt(opus_val32 x)
  109. {
  110. int k;
  111. opus_val16 n;
  112. opus_val32 rt;
  113. static const opus_val16 C[5] = {23175, 11561, -3011, 1699, -664};
  114. if (x==0)
  115. return 0;
  116. k = (celt_ilog2(x)>>1)-7;
  117. x = VSHR32(x, 2*k);
  118. n = x-32768;
  119. rt = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2],
  120. MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, (C[4])))))))));
  121. rt = VSHR32(rt,7-k);
  122. return rt;
  123. }
  124. #define L1 32767
  125. #define L2 -7651
  126. #define L3 8277
  127. #define L4 -626
  128. static inline opus_val16 _celt_cos_pi_2(opus_val16 x)
  129. {
  130. opus_val16 x2;
  131. x2 = MULT16_16_P15(x,x);
  132. return ADD16(1,MIN16(32766,ADD32(SUB16(L1,x2), MULT16_16_P15(x2, ADD32(L2, MULT16_16_P15(x2, ADD32(L3, MULT16_16_P15(L4, x2
  133. ))))))));
  134. }
  135. #undef L1
  136. #undef L2
  137. #undef L3
  138. #undef L4
  139. opus_val16 celt_cos_norm(opus_val32 x)
  140. {
  141. x = x&0x0001ffff;
  142. if (x>SHL32(EXTEND32(1), 16))
  143. x = SUB32(SHL32(EXTEND32(1), 17),x);
  144. if (x&0x00007fff)
  145. {
  146. if (x<SHL32(EXTEND32(1), 15))
  147. {
  148. return _celt_cos_pi_2(EXTRACT16(x));
  149. } else {
  150. return NEG32(_celt_cos_pi_2(EXTRACT16(65536-x)));
  151. }
  152. } else {
  153. if (x&0x0000ffff)
  154. return 0;
  155. else if (x&0x0001ffff)
  156. return -32767;
  157. else
  158. return 32767;
  159. }
  160. }
  161. /** Reciprocal approximation (Q15 input, Q16 output) */
  162. opus_val32 celt_rcp(opus_val32 x)
  163. {
  164. int i;
  165. opus_val16 n;
  166. opus_val16 r;
  167. celt_assert2(x>0, "celt_rcp() only defined for positive values");
  168. i = celt_ilog2(x);
  169. /* n is Q15 with range [0,1). */
  170. n = VSHR32(x,i-15)-32768;
  171. /* Start with a linear approximation:
  172. r = 1.8823529411764706-0.9411764705882353*n.
  173. The coefficients and the result are Q14 in the range [15420,30840].*/
  174. r = ADD16(30840, MULT16_16_Q15(-15420, n));
  175. /* Perform two Newton iterations:
  176. r -= r*((r*n)-1.Q15)
  177. = r*((r*n)+(r-1.Q15)). */
  178. r = SUB16(r, MULT16_16_Q15(r,
  179. ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768))));
  180. /* We subtract an extra 1 in the second iteration to avoid overflow; it also
  181. neatly compensates for truncation error in the rest of the process. */
  182. r = SUB16(r, ADD16(1, MULT16_16_Q15(r,
  183. ADD16(MULT16_16_Q15(r, n), ADD16(r, -32768)))));
  184. /* r is now the Q15 solution to 2/(n+1), with a maximum relative error
  185. of 7.05346E-5, a (relative) RMSE of 2.14418E-5, and a peak absolute
  186. error of 1.24665/32768. */
  187. return VSHR32(EXTEND32(r),i-16);
  188. }
  189. #endif