12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- /* Copyright (c) 2001-2011 Timothy B. Terriberry
- */
- /*
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #endif
- #include "entcode.h"
- #include "arch.h"
- #if !defined(EC_CLZ)
- /*This is a fallback for systems where we don't know how to access
- a BSR or CLZ instruction (see ecintrin.h).
- If you are optimizing Opus on a new platform and it has a native CLZ or
- BZR (e.g. cell, MIPS, x86, etc) then making it available to Opus will be
- an easy performance win.*/
- int ec_ilog(opus_uint32 _v){
- /*On a Pentium M, this branchless version tested as the fastest on
- 1,000,000,000 random 32-bit integers, edging out a similar version with
- branches, and a 256-entry LUT version.*/
- int ret;
- int m;
- ret=!!_v;
- m=!!(_v&0xFFFF0000)<<4;
- _v>>=m;
- ret|=m;
- m=!!(_v&0xFF00)<<3;
- _v>>=m;
- ret|=m;
- m=!!(_v&0xF0)<<2;
- _v>>=m;
- ret|=m;
- m=!!(_v&0xC)<<1;
- _v>>=m;
- ret|=m;
- ret+=!!(_v&0x2);
- return ret;
- }
- #endif
- opus_uint32 ec_tell_frac(ec_ctx *_this){
- opus_uint32 nbits;
- opus_uint32 r;
- int l;
- int i;
- /*To handle the non-integral number of bits still left in the encoder/decoder
- state, we compute the worst-case number of bits of val that must be
- encoded to ensure that the value is inside the range for any possible
- subsequent bits.
- The computation here is independent of val itself (the decoder does not
- even track that value), even though the real number of bits used after
- ec_enc_done() may be 1 smaller if rng is a power of two and the
- corresponding trailing bits of val are all zeros.
- If we did try to track that special case, then coding a value with a
- probability of 1/(1<<n) might sometimes appear to use more than n bits.
- This may help explain the surprising result that a newly initialized
- encoder or decoder claims to have used 1 bit.*/
- nbits=_this->nbits_total<<BITRES;
- l=EC_ILOG(_this->rng);
- r=_this->rng>>(l-16);
- for(i=BITRES;i-->0;){
- int b;
- r=r*r>>15;
- b=(int)(r>>16);
- l=l<<1|b;
- r>>=b;
- }
- return nbits-l;
- }
|