mathops.h 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229
  1. /* Copyright (c) 2002-2008 Jean-Marc Valin
  2. Copyright (c) 2007-2008 CSIRO
  3. Copyright (c) 2007-2009 Xiph.Org Foundation
  4. Written by Jean-Marc Valin */
  5. /**
  6. @file mathops.h
  7. @brief Various math functions
  8. */
  9. /*
  10. Redistribution and use in source and binary forms, with or without
  11. modification, are permitted provided that the following conditions
  12. are met:
  13. - Redistributions of source code must retain the above copyright
  14. notice, this list of conditions and the following disclaimer.
  15. - Redistributions in binary form must reproduce the above copyright
  16. notice, this list of conditions and the following disclaimer in the
  17. documentation and/or other materials provided with the distribution.
  18. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  19. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  20. LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  21. A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
  22. CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  23. EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  24. PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  25. PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  26. LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  27. NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  28. SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  29. */
  30. #ifndef MATHOPS_H
  31. #define MATHOPS_H
  32. #include "arch.h"
  33. #include "entcode.h"
  34. #include "os_support.h"
  35. /* Multiplies two 16-bit fractional values. Bit-exactness of this macro is important */
  36. #define FRAC_MUL16(a,b) ((16384+((opus_int32)(opus_int16)(a)*(opus_int16)(b)))>>15)
  37. unsigned isqrt32(opus_uint32 _val);
  38. #ifndef FIXED_POINT
  39. #define PI 3.141592653f
  40. #define celt_sqrt(x) ((float)sqrt(x))
  41. #define celt_rsqrt(x) (1.f/celt_sqrt(x))
  42. #define celt_rsqrt_norm(x) (celt_rsqrt(x))
  43. #define celt_exp exp
  44. #define celt_cos_norm(x) ((float)cos((.5f*PI)*(x)))
  45. #define celt_atan atan
  46. #define celt_rcp(x) (1.f/(x))
  47. #define celt_div(a,b) ((a)/(b))
  48. #define frac_div32(a,b) ((float)(a)/(b))
  49. #ifdef FLOAT_APPROX
  50. /* Note: This assumes radix-2 floating point with the exponent at bits 23..30 and an offset of 127
  51. denorm, +/- inf and NaN are *not* handled */
  52. /** Base-2 log approximation (log2(x)). */
  53. static inline float celt_log2(float x)
  54. {
  55. int integer;
  56. float frac;
  57. union {
  58. float f;
  59. opus_uint32 i;
  60. } in;
  61. in.f = x;
  62. integer = (in.i>>23)-127;
  63. in.i -= integer<<23;
  64. frac = in.f - 1.5f;
  65. frac = -0.41445418f + frac*(0.95909232f
  66. + frac*(-0.33951290f + frac*0.16541097f));
  67. return 1+integer+frac;
  68. }
  69. /** Base-2 exponential approximation (2^x). */
  70. static inline float celt_exp2(float x)
  71. {
  72. int integer;
  73. float frac;
  74. union {
  75. float f;
  76. opus_uint32 i;
  77. } res;
  78. integer = floor(x);
  79. if (integer < -50)
  80. return 0;
  81. frac = x-integer;
  82. /* K0 = 1, K1 = log(2), K2 = 3-4*log(2), K3 = 3*log(2) - 2 */
  83. res.f = 0.99992522f + frac * (0.69583354f
  84. + frac * (0.22606716f + 0.078024523f*frac));
  85. res.i = (res.i + (integer<<23)) & 0x7fffffff;
  86. return res.f;
  87. }
  88. #else
  89. #define celt_log2(x) ((float)(1.442695040888963387*log(x)))
  90. #define celt_exp2(x) ((float)exp(0.6931471805599453094*(x)))
  91. #endif
  92. #endif
  93. #ifdef FIXED_POINT
  94. #include "os_support.h"
  95. #ifndef OVERRIDE_CELT_ILOG2
  96. /** Integer log in base2. Undefined for zero and negative numbers */
  97. static inline opus_int16 celt_ilog2(opus_int32 x)
  98. {
  99. celt_assert2(x>0, "celt_ilog2() only defined for strictly positive numbers");
  100. return EC_ILOG(x)-1;
  101. }
  102. #endif
  103. #ifndef OVERRIDE_CELT_MAXABS16
  104. static inline opus_val16 celt_maxabs16(opus_val16 *x, int len)
  105. {
  106. int i;
  107. opus_val16 maxval = 0;
  108. for (i=0;i<len;i++)
  109. maxval = MAX16(maxval, ABS16(x[i]));
  110. return maxval;
  111. }
  112. #endif
  113. /** Integer log in base2. Defined for zero, but not for negative numbers */
  114. static inline opus_int16 celt_zlog2(opus_val32 x)
  115. {
  116. return x <= 0 ? 0 : celt_ilog2(x);
  117. }
  118. opus_val16 celt_rsqrt_norm(opus_val32 x);
  119. opus_val32 celt_sqrt(opus_val32 x);
  120. opus_val16 celt_cos_norm(opus_val32 x);
  121. static inline opus_val16 celt_log2(opus_val32 x)
  122. {
  123. int i;
  124. opus_val16 n, frac;
  125. /* -0.41509302963303146, 0.9609890551383969, -0.31836011537636605,
  126. 0.15530808010959576, -0.08556153059057618 */
  127. static const opus_val16 C[5] = {-6801+(1<<(13-DB_SHIFT)), 15746, -5217, 2545, -1401};
  128. if (x==0)
  129. return -32767;
  130. i = celt_ilog2(x);
  131. n = VSHR32(x,i-15)-32768-16384;
  132. frac = ADD16(C[0], MULT16_16_Q15(n, ADD16(C[1], MULT16_16_Q15(n, ADD16(C[2], MULT16_16_Q15(n, ADD16(C[3], MULT16_16_Q15(n, C[4]))))))));
  133. return SHL16(i-13,DB_SHIFT)+SHR16(frac,14-DB_SHIFT);
  134. }
  135. /*
  136. K0 = 1
  137. K1 = log(2)
  138. K2 = 3-4*log(2)
  139. K3 = 3*log(2) - 2
  140. */
  141. #define D0 16383
  142. #define D1 22804
  143. #define D2 14819
  144. #define D3 10204
  145. /** Base-2 exponential approximation (2^x). (Q10 input, Q16 output) */
  146. static inline opus_val32 celt_exp2(opus_val16 x)
  147. {
  148. int integer;
  149. opus_val16 frac;
  150. integer = SHR16(x,10);
  151. if (integer>14)
  152. return 0x7f000000;
  153. else if (integer < -15)
  154. return 0;
  155. frac = SHL16(x-SHL16(integer,10),4);
  156. frac = ADD16(D0, MULT16_16_Q15(frac, ADD16(D1, MULT16_16_Q15(frac, ADD16(D2 , MULT16_16_Q15(D3,frac))))));
  157. return VSHR32(EXTEND32(frac), -integer-2);
  158. }
  159. opus_val32 celt_rcp(opus_val32 x);
  160. #define celt_div(a,b) MULT32_32_Q31((opus_val32)(a),celt_rcp(b))
  161. opus_val32 frac_div32(opus_val32 a, opus_val32 b);
  162. #define M1 32767
  163. #define M2 -21
  164. #define M3 -11943
  165. #define M4 4936
  166. /* Atan approximation using a 4th order polynomial. Input is in Q15 format
  167. and normalized by pi/4. Output is in Q15 format */
  168. static inline opus_val16 celt_atan01(opus_val16 x)
  169. {
  170. return MULT16_16_P15(x, ADD32(M1, MULT16_16_P15(x, ADD32(M2, MULT16_16_P15(x, ADD32(M3, MULT16_16_P15(M4, x)))))));
  171. }
  172. #undef M1
  173. #undef M2
  174. #undef M3
  175. #undef M4
  176. /* atan2() approximation valid for positive input values */
  177. static inline opus_val16 celt_atan2p(opus_val16 y, opus_val16 x)
  178. {
  179. if (y < x)
  180. {
  181. opus_val32 arg;
  182. arg = celt_div(SHL32(EXTEND32(y),15),x);
  183. if (arg >= 32767)
  184. arg = 32767;
  185. return SHR16(celt_atan01(EXTRACT16(arg)),1);
  186. } else {
  187. opus_val32 arg;
  188. arg = celt_div(SHL32(EXTEND32(x),15),y);
  189. if (arg >= 32767)
  190. arg = 32767;
  191. return 25736-SHR16(celt_atan01(EXTRACT16(arg)),1);
  192. }
  193. }
  194. #endif /* FIXED_POINT */
  195. #endif /* MATHOPS_H */