123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- /* Copyright (c) 2007-2008 CSIRO
- Copyright (c) 2007-2008 Xiph.Org Foundation
- Written by Jean-Marc Valin */
- /*
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
- OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- /* This is a simple MDCT implementation that uses a N/4 complex FFT
- to do most of the work. It should be relatively straightforward to
- plug in pretty much and FFT here.
- This replaces the Vorbis FFT (and uses the exact same API), which
- was a bit too messy and that was ending up duplicating code
- (might as well use the same FFT everywhere).
- The algorithm is similar to (and inspired from) Fabrice Bellard's
- MDCT implementation in FFMPEG, but has differences in signs, ordering
- and scaling in many places.
- */
- #ifndef __MDCT_MIPSR1_H__
- #define __MDCT_MIPSR1_H__
- #ifndef SKIP_CONFIG_H
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #endif
- #endif
- #include "mdct.h"
- #include "kiss_fft.h"
- #include "_kiss_fft_guts.h"
- #include <math.h>
- #include "os_support.h"
- #include "mathops.h"
- #include "stack_alloc.h"
- /* Forward MDCT trashes the input array */
- #define OVERRIDE_clt_mdct_forward
- void clt_mdct_forward(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
- const opus_val16 *window, int overlap, int shift, int stride)
- {
- int i;
- int N, N2, N4;
- VARDECL(kiss_fft_scalar, f);
- VARDECL(kiss_fft_cpx, f2);
- const kiss_fft_state *st = l->kfft[shift];
- const kiss_twiddle_scalar *trig;
- opus_val16 scale;
- #ifdef FIXED_POINT
- /* Allows us to scale with MULT16_32_Q16(), which is faster than
- MULT16_32_Q15() on ARM. */
- int scale_shift = st->scale_shift-1;
- #endif
- SAVE_STACK;
- scale = st->scale;
- N = l->n;
- trig = l->trig;
- for (i=0;i<shift;i++)
- {
- N >>= 1;
- trig += N;
- }
- N2 = N>>1;
- N4 = N>>2;
- ALLOC(f, N2, kiss_fft_scalar);
- ALLOC(f2, N4, kiss_fft_cpx);
- /* Consider the input to be composed of four blocks: [a, b, c, d] */
- /* Window, shuffle, fold */
- {
- /* Temp pointers to make it really clear to the compiler what we're doing */
- const kiss_fft_scalar * OPUS_RESTRICT xp1 = in+(overlap>>1);
- const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+N2-1+(overlap>>1);
- kiss_fft_scalar * OPUS_RESTRICT yp = f;
- const opus_val16 * OPUS_RESTRICT wp1 = window+(overlap>>1);
- const opus_val16 * OPUS_RESTRICT wp2 = window+(overlap>>1)-1;
- for(i=0;i<((overlap+3)>>2);i++)
- {
- /* Real part arranged as -d-cR, Imag part arranged as -b+aR*/
- *yp++ = S_MUL_ADD(*wp2, xp1[N2],*wp1,*xp2);
- *yp++ = S_MUL_SUB(*wp1, *xp1,*wp2, xp2[-N2]);
- xp1+=2;
- xp2-=2;
- wp1+=2;
- wp2-=2;
- }
- wp1 = window;
- wp2 = window+overlap-1;
- for(;i<N4-((overlap+3)>>2);i++)
- {
- /* Real part arranged as a-bR, Imag part arranged as -c-dR */
- *yp++ = *xp2;
- *yp++ = *xp1;
- xp1+=2;
- xp2-=2;
- }
- for(;i<N4;i++)
- {
- /* Real part arranged as a-bR, Imag part arranged as -c-dR */
- *yp++ = S_MUL_SUB(*wp2, *xp2, *wp1, xp1[-N2]);
- *yp++ = S_MUL_ADD(*wp2, *xp1, *wp1, xp2[N2]);
- xp1+=2;
- xp2-=2;
- wp1+=2;
- wp2-=2;
- }
- }
- /* Pre-rotation */
- {
- kiss_fft_scalar * OPUS_RESTRICT yp = f;
- const kiss_twiddle_scalar *t = &trig[0];
- for(i=0;i<N4;i++)
- {
- kiss_fft_cpx yc;
- kiss_twiddle_scalar t0, t1;
- kiss_fft_scalar re, im, yr, yi;
- t0 = t[i];
- t1 = t[N4+i];
- re = *yp++;
- im = *yp++;
- yr = S_MUL_SUB(re,t0,im,t1);
- yi = S_MUL_ADD(im,t0,re,t1);
- yc.r = yr;
- yc.i = yi;
- yc.r = PSHR32(MULT16_32_Q16(scale, yc.r), scale_shift);
- yc.i = PSHR32(MULT16_32_Q16(scale, yc.i), scale_shift);
- f2[st->bitrev[i]] = yc;
- }
- }
- /* N/4 complex FFT, does not downscale anymore */
- opus_fft_impl(st, f2);
- /* Post-rotate */
- {
- /* Temp pointers to make it really clear to the compiler what we're doing */
- const kiss_fft_cpx * OPUS_RESTRICT fp = f2;
- kiss_fft_scalar * OPUS_RESTRICT yp1 = out;
- kiss_fft_scalar * OPUS_RESTRICT yp2 = out+stride*(N2-1);
- const kiss_twiddle_scalar *t = &trig[0];
- /* Temp pointers to make it really clear to the compiler what we're doing */
- for(i=0;i<N4;i++)
- {
- kiss_fft_scalar yr, yi;
- yr = S_MUL_SUB(fp->i,t[N4+i] , fp->r,t[i]);
- yi = S_MUL_ADD(fp->r,t[N4+i] ,fp->i,t[i]);
- *yp1 = yr;
- *yp2 = yi;
- fp++;
- yp1 += 2*stride;
- yp2 -= 2*stride;
- }
- }
- RESTORE_STACK;
- }
- #define OVERRIDE_clt_mdct_backward
- void clt_mdct_backward(const mdct_lookup *l, kiss_fft_scalar *in, kiss_fft_scalar * OPUS_RESTRICT out,
- const opus_val16 * OPUS_RESTRICT window, int overlap, int shift, int stride)
- {
- int i;
- int N, N2, N4;
- const kiss_twiddle_scalar *trig;
- N = l->n;
- trig = l->trig;
- for (i=0;i<shift;i++)
- {
- N >>= 1;
- trig += N;
- }
- N2 = N>>1;
- N4 = N>>2;
- /* Pre-rotate */
- {
- /* Temp pointers to make it really clear to the compiler what we're doing */
- const kiss_fft_scalar * OPUS_RESTRICT xp1 = in;
- const kiss_fft_scalar * OPUS_RESTRICT xp2 = in+stride*(N2-1);
- kiss_fft_scalar * OPUS_RESTRICT yp = out+(overlap>>1);
- const kiss_twiddle_scalar * OPUS_RESTRICT t = &trig[0];
- const opus_int16 * OPUS_RESTRICT bitrev = l->kfft[shift]->bitrev;
- for(i=0;i<N4;i++)
- {
- int rev;
- kiss_fft_scalar yr, yi;
- rev = *bitrev++;
- yr = S_MUL_ADD(*xp2, t[i] , *xp1, t[N4+i]);
- yi = S_MUL_SUB(*xp1, t[i] , *xp2, t[N4+i]);
- /* We swap real and imag because we use an FFT instead of an IFFT. */
- yp[2*rev+1] = yr;
- yp[2*rev] = yi;
- /* Storing the pre-rotation directly in the bitrev order. */
- xp1+=2*stride;
- xp2-=2*stride;
- }
- }
- opus_fft_impl(l->kfft[shift], (kiss_fft_cpx*)(out+(overlap>>1)));
- /* Post-rotate and de-shuffle from both ends of the buffer at once to make
- it in-place. */
- {
- kiss_fft_scalar * OPUS_RESTRICT yp0 = out+(overlap>>1);
- kiss_fft_scalar * OPUS_RESTRICT yp1 = out+(overlap>>1)+N2-2;
- const kiss_twiddle_scalar *t = &trig[0];
- /* Loop to (N4+1)>>1 to handle odd N4. When N4 is odd, the
- middle pair will be computed twice. */
- for(i=0;i<(N4+1)>>1;i++)
- {
- kiss_fft_scalar re, im, yr, yi;
- kiss_twiddle_scalar t0, t1;
- /* We swap real and imag because we're using an FFT instead of an IFFT. */
- re = yp0[1];
- im = yp0[0];
- t0 = t[i];
- t1 = t[N4+i];
- /* We'd scale up by 2 here, but instead it's done when mixing the windows */
- yr = S_MUL_ADD(re,t0 , im,t1);
- yi = S_MUL_SUB(re,t1 , im,t0);
- /* We swap real and imag because we're using an FFT instead of an IFFT. */
- re = yp1[1];
- im = yp1[0];
- yp0[0] = yr;
- yp1[1] = yi;
- t0 = t[(N4-i-1)];
- t1 = t[(N2-i-1)];
- /* We'd scale up by 2 here, but instead it's done when mixing the windows */
- yr = S_MUL_ADD(re,t0,im,t1);
- yi = S_MUL_SUB(re,t1,im,t0);
- yp1[0] = yr;
- yp0[1] = yi;
- yp0 += 2;
- yp1 -= 2;
- }
- }
- /* Mirror on both sides for TDAC */
- {
- kiss_fft_scalar * OPUS_RESTRICT xp1 = out+overlap-1;
- kiss_fft_scalar * OPUS_RESTRICT yp1 = out;
- const opus_val16 * OPUS_RESTRICT wp1 = window;
- const opus_val16 * OPUS_RESTRICT wp2 = window+overlap-1;
- for(i = 0; i < overlap/2; i++)
- {
- kiss_fft_scalar x1, x2;
- x1 = *xp1;
- x2 = *yp1;
- *yp1++ = MULT16_32_Q15(*wp2, x2) - MULT16_32_Q15(*wp1, x1);
- *xp1-- = MULT16_32_Q15(*wp1, x2) + MULT16_32_Q15(*wp2, x1);
- wp1++;
- wp2--;
- }
- }
- }
- #endif /* __MDCT_MIPSR1_H__ */
|