vq.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432
  1. /* Copyright (c) 2007-2008 CSIRO
  2. Copyright (c) 2007-2009 Xiph.Org Foundation
  3. Written by Jean-Marc Valin */
  4. /*
  5. Redistribution and use in source and binary forms, with or without
  6. modification, are permitted provided that the following conditions
  7. are met:
  8. - Redistributions of source code must retain the above copyright
  9. notice, this list of conditions and the following disclaimer.
  10. - Redistributions in binary form must reproduce the above copyright
  11. notice, this list of conditions and the following disclaimer in the
  12. documentation and/or other materials provided with the distribution.
  13. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  14. ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  15. LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  16. A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
  17. CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
  18. EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
  19. PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
  20. PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
  21. LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
  22. NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
  23. SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  24. */
  25. #ifdef HAVE_CONFIG_H
  26. #include "config.h"
  27. #endif
  28. #include "mathops.h"
  29. #include "cwrs.h"
  30. #include "vq.h"
  31. #include "arch.h"
  32. #include "os_support.h"
  33. #include "bands.h"
  34. #include "rate.h"
  35. static void exp_rotation1(celt_norm *X, int len, int stride, opus_val16 c, opus_val16 s)
  36. {
  37. int i;
  38. celt_norm *Xptr;
  39. Xptr = X;
  40. for (i=0;i<len-stride;i++)
  41. {
  42. celt_norm x1, x2;
  43. x1 = Xptr[0];
  44. x2 = Xptr[stride];
  45. Xptr[stride] = EXTRACT16(SHR32(MULT16_16(c,x2) + MULT16_16(s,x1), 15));
  46. *Xptr++ = EXTRACT16(SHR32(MULT16_16(c,x1) - MULT16_16(s,x2), 15));
  47. }
  48. Xptr = &X[len-2*stride-1];
  49. for (i=len-2*stride-1;i>=0;i--)
  50. {
  51. celt_norm x1, x2;
  52. x1 = Xptr[0];
  53. x2 = Xptr[stride];
  54. Xptr[stride] = EXTRACT16(SHR32(MULT16_16(c,x2) + MULT16_16(s,x1), 15));
  55. *Xptr-- = EXTRACT16(SHR32(MULT16_16(c,x1) - MULT16_16(s,x2), 15));
  56. }
  57. }
  58. static void exp_rotation(celt_norm *X, int len, int dir, int stride, int K, int spread)
  59. {
  60. static const int SPREAD_FACTOR[3]={15,10,5};
  61. int i;
  62. opus_val16 c, s;
  63. opus_val16 gain, theta;
  64. int stride2=0;
  65. int factor;
  66. /*int i;
  67. if (len>=30)
  68. {
  69. for (i=0;i<len;i++)
  70. X[i] = 0;
  71. X[14] = 1;
  72. K=5;
  73. }*/
  74. if (2*K>=len || spread==SPREAD_NONE)
  75. return;
  76. factor = SPREAD_FACTOR[spread-1];
  77. gain = celt_div((opus_val32)MULT16_16(Q15_ONE,len),(opus_val32)(len+factor*K));
  78. theta = HALF16(MULT16_16_Q15(gain,gain));
  79. c = celt_cos_norm(EXTEND32(theta));
  80. s = celt_cos_norm(EXTEND32(SUB16(Q15ONE,theta))); /* sin(theta) */
  81. if (len>=8*stride)
  82. {
  83. stride2 = 1;
  84. /* This is just a simple way of computing sqrt(len/stride) with rounding.
  85. It's basically incrementing long as (stride2+0.5)^2 < len/stride.
  86. I _think_ it is bit-exact */
  87. while ((stride2*stride2+stride2)*stride + (stride>>2) < len)
  88. stride2++;
  89. }
  90. /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
  91. extract_collapse_mask().*/
  92. len /= stride;
  93. for (i=0;i<stride;i++)
  94. {
  95. if (dir < 0)
  96. {
  97. if (stride2)
  98. exp_rotation1(X+i*len, len, stride2, s, c);
  99. exp_rotation1(X+i*len, len, 1, c, s);
  100. } else {
  101. exp_rotation1(X+i*len, len, 1, c, -s);
  102. if (stride2)
  103. exp_rotation1(X+i*len, len, stride2, s, -c);
  104. }
  105. }
  106. /*if (len>=30)
  107. {
  108. for (i=0;i<len;i++)
  109. printf ("%f ", X[i]);
  110. printf ("\n");
  111. exit(0);
  112. }*/
  113. }
  114. /** Takes the pitch vector and the decoded residual vector, computes the gain
  115. that will give ||p+g*y||=1 and mixes the residual with the pitch. */
  116. static void normalise_residual(int * restrict iy, celt_norm * restrict X,
  117. int N, opus_val32 Ryy, opus_val16 gain)
  118. {
  119. int i;
  120. #ifdef FIXED_POINT
  121. int k;
  122. #endif
  123. opus_val32 t;
  124. opus_val16 g;
  125. #ifdef FIXED_POINT
  126. k = celt_ilog2(Ryy)>>1;
  127. #endif
  128. t = VSHR32(Ryy, (k-7)<<1);
  129. g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
  130. i=0;
  131. do
  132. X[i] = EXTRACT16(PSHR32(MULT16_16(g, iy[i]), k+1));
  133. while (++i < N);
  134. }
  135. static unsigned extract_collapse_mask(int *iy, int N, int B)
  136. {
  137. unsigned collapse_mask;
  138. int N0;
  139. int i;
  140. if (B<=1)
  141. return 1;
  142. /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
  143. exp_rotation().*/
  144. N0 = N/B;
  145. collapse_mask = 0;
  146. i=0; do {
  147. int j;
  148. j=0; do {
  149. collapse_mask |= (iy[i*N0+j]!=0)<<i;
  150. } while (++j<N0);
  151. } while (++i<B);
  152. return collapse_mask;
  153. }
  154. unsigned alg_quant(celt_norm *X, int N, int K, int spread, int B, ec_enc *enc
  155. #ifdef RESYNTH
  156. , opus_val16 gain
  157. #endif
  158. )
  159. {
  160. VARDECL(celt_norm, y);
  161. VARDECL(int, iy);
  162. VARDECL(opus_val16, signx);
  163. int i, j;
  164. opus_val16 s;
  165. int pulsesLeft;
  166. opus_val32 sum;
  167. opus_val32 xy;
  168. opus_val16 yy;
  169. unsigned collapse_mask;
  170. SAVE_STACK;
  171. celt_assert2(K>0, "alg_quant() needs at least one pulse");
  172. celt_assert2(N>1, "alg_quant() needs at least two dimensions");
  173. ALLOC(y, N, celt_norm);
  174. ALLOC(iy, N, int);
  175. ALLOC(signx, N, opus_val16);
  176. exp_rotation(X, N, 1, B, K, spread);
  177. /* Get rid of the sign */
  178. sum = 0;
  179. j=0; do {
  180. if (X[j]>0)
  181. signx[j]=1;
  182. else {
  183. signx[j]=-1;
  184. X[j]=-X[j];
  185. }
  186. iy[j] = 0;
  187. y[j] = 0;
  188. } while (++j<N);
  189. xy = yy = 0;
  190. pulsesLeft = K;
  191. /* Do a pre-search by projecting on the pyramid */
  192. if (K > (N>>1))
  193. {
  194. opus_val16 rcp;
  195. j=0; do {
  196. sum += X[j];
  197. } while (++j<N);
  198. /* If X is too small, just replace it with a pulse at 0 */
  199. #ifdef FIXED_POINT
  200. if (sum <= K)
  201. #else
  202. /* Prevents infinities and NaNs from causing too many pulses
  203. to be allocated. 64 is an approximation of infinity here. */
  204. if (!(sum > EPSILON && sum < 64))
  205. #endif
  206. {
  207. X[0] = QCONST16(1.f,14);
  208. j=1; do
  209. X[j]=0;
  210. while (++j<N);
  211. sum = QCONST16(1.f,14);
  212. }
  213. /* Do we have sufficient accuracy here? */
  214. rcp = EXTRACT16(MULT16_32_Q16(K-1, celt_rcp(sum)));
  215. j=0; do {
  216. #ifdef FIXED_POINT
  217. /* It's really important to round *towards zero* here */
  218. iy[j] = MULT16_16_Q15(X[j],rcp);
  219. #else
  220. iy[j] = (int)floor(rcp*X[j]);
  221. #endif
  222. y[j] = (celt_norm)iy[j];
  223. yy = MAC16_16(yy, y[j],y[j]);
  224. xy = MAC16_16(xy, X[j],y[j]);
  225. y[j] *= 2;
  226. pulsesLeft -= iy[j];
  227. } while (++j<N);
  228. }
  229. celt_assert2(pulsesLeft>=1, "Allocated too many pulses in the quick pass");
  230. /* This should never happen, but just in case it does (e.g. on silence)
  231. we fill the first bin with pulses. */
  232. #ifdef FIXED_POINT_DEBUG
  233. celt_assert2(pulsesLeft<=N+3, "Not enough pulses in the quick pass");
  234. #endif
  235. if (pulsesLeft > N+3)
  236. {
  237. opus_val16 tmp = pulsesLeft;
  238. yy = MAC16_16(yy, tmp, tmp);
  239. yy = MAC16_16(yy, tmp, y[0]);
  240. iy[0] += pulsesLeft;
  241. pulsesLeft=0;
  242. }
  243. s = 1;
  244. for (i=0;i<pulsesLeft;i++)
  245. {
  246. int best_id;
  247. opus_val32 best_num = -VERY_LARGE16;
  248. opus_val16 best_den = 0;
  249. #ifdef FIXED_POINT
  250. int rshift;
  251. #endif
  252. #ifdef FIXED_POINT
  253. rshift = 1+celt_ilog2(K-pulsesLeft+i+1);
  254. #endif
  255. best_id = 0;
  256. /* The squared magnitude term gets added anyway, so we might as well
  257. add it outside the loop */
  258. yy = ADD32(yy, 1);
  259. j=0;
  260. do {
  261. opus_val16 Rxy, Ryy;
  262. /* Temporary sums of the new pulse(s) */
  263. Rxy = EXTRACT16(SHR32(ADD32(xy, EXTEND32(X[j])),rshift));
  264. /* We're multiplying y[j] by two so we don't have to do it here */
  265. Ryy = ADD16(yy, y[j]);
  266. /* Approximate score: we maximise Rxy/sqrt(Ryy) (we're guaranteed that
  267. Rxy is positive because the sign is pre-computed) */
  268. Rxy = MULT16_16_Q15(Rxy,Rxy);
  269. /* The idea is to check for num/den >= best_num/best_den, but that way
  270. we can do it without any division */
  271. /* OPT: Make sure to use conditional moves here */
  272. if (MULT16_16(best_den, Rxy) > MULT16_16(Ryy, best_num))
  273. {
  274. best_den = Ryy;
  275. best_num = Rxy;
  276. best_id = j;
  277. }
  278. } while (++j<N);
  279. /* Updating the sums of the new pulse(s) */
  280. xy = ADD32(xy, EXTEND32(X[best_id]));
  281. /* We're multiplying y[j] by two so we don't have to do it here */
  282. yy = ADD16(yy, y[best_id]);
  283. /* Only now that we've made the final choice, update y/iy */
  284. /* Multiplying y[j] by 2 so we don't have to do it everywhere else */
  285. y[best_id] += 2*s;
  286. iy[best_id]++;
  287. }
  288. /* Put the original sign back */
  289. j=0;
  290. do {
  291. X[j] = MULT16_16(signx[j],X[j]);
  292. if (signx[j] < 0)
  293. iy[j] = -iy[j];
  294. } while (++j<N);
  295. encode_pulses(iy, N, K, enc);
  296. #ifdef RESYNTH
  297. normalise_residual(iy, X, N, yy, gain);
  298. exp_rotation(X, N, -1, B, K, spread);
  299. #endif
  300. collapse_mask = extract_collapse_mask(iy, N, B);
  301. RESTORE_STACK;
  302. return collapse_mask;
  303. }
  304. /** Decode pulse vector and combine the result with the pitch vector to produce
  305. the final normalised signal in the current band. */
  306. unsigned alg_unquant(celt_norm *X, int N, int K, int spread, int B,
  307. ec_dec *dec, opus_val16 gain)
  308. {
  309. int i;
  310. opus_val32 Ryy;
  311. unsigned collapse_mask;
  312. VARDECL(int, iy);
  313. SAVE_STACK;
  314. celt_assert2(K>0, "alg_unquant() needs at least one pulse");
  315. celt_assert2(N>1, "alg_unquant() needs at least two dimensions");
  316. ALLOC(iy, N, int);
  317. decode_pulses(iy, N, K, dec);
  318. Ryy = 0;
  319. i=0;
  320. do {
  321. Ryy = MAC16_16(Ryy, iy[i], iy[i]);
  322. } while (++i < N);
  323. normalise_residual(iy, X, N, Ryy, gain);
  324. exp_rotation(X, N, -1, B, K, spread);
  325. collapse_mask = extract_collapse_mask(iy, N, B);
  326. RESTORE_STACK;
  327. return collapse_mask;
  328. }
  329. void renormalise_vector(celt_norm *X, int N, opus_val16 gain)
  330. {
  331. int i;
  332. #ifdef FIXED_POINT
  333. int k;
  334. #endif
  335. opus_val32 E = EPSILON;
  336. opus_val16 g;
  337. opus_val32 t;
  338. celt_norm *xptr = X;
  339. for (i=0;i<N;i++)
  340. {
  341. E = MAC16_16(E, *xptr, *xptr);
  342. xptr++;
  343. }
  344. #ifdef FIXED_POINT
  345. k = celt_ilog2(E)>>1;
  346. #endif
  347. t = VSHR32(E, (k-7)<<1);
  348. g = MULT16_16_P15(celt_rsqrt_norm(t),gain);
  349. xptr = X;
  350. for (i=0;i<N;i++)
  351. {
  352. *xptr = EXTRACT16(PSHR32(MULT16_16(g, *xptr), k+1));
  353. xptr++;
  354. }
  355. /*return celt_sqrt(E);*/
  356. }
  357. int stereo_itheta(celt_norm *X, celt_norm *Y, int stereo, int N)
  358. {
  359. int i;
  360. int itheta;
  361. opus_val16 mid, side;
  362. opus_val32 Emid, Eside;
  363. Emid = Eside = EPSILON;
  364. if (stereo)
  365. {
  366. for (i=0;i<N;i++)
  367. {
  368. celt_norm m, s;
  369. m = ADD16(SHR16(X[i],1),SHR16(Y[i],1));
  370. s = SUB16(SHR16(X[i],1),SHR16(Y[i],1));
  371. Emid = MAC16_16(Emid, m, m);
  372. Eside = MAC16_16(Eside, s, s);
  373. }
  374. } else {
  375. for (i=0;i<N;i++)
  376. {
  377. celt_norm m, s;
  378. m = X[i];
  379. s = Y[i];
  380. Emid = MAC16_16(Emid, m, m);
  381. Eside = MAC16_16(Eside, s, s);
  382. }
  383. }
  384. mid = celt_sqrt(Emid);
  385. side = celt_sqrt(Eside);
  386. #ifdef FIXED_POINT
  387. /* 0.63662 = 2/pi */
  388. itheta = MULT16_16_Q15(QCONST16(0.63662f,15),celt_atan2p(side, mid));
  389. #else
  390. itheta = (int)floor(.5f+16384*0.63662f*atan2(side,mid));
  391. #endif
  392. return itheta;
  393. }