123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645 |
- /* Copyright (c) 2007-2008 CSIRO
- Copyright (c) 2007-2009 Xiph.Org Foundation
- Copyright (c) 2007-2009 Timothy B. Terriberry
- Written by Timothy B. Terriberry and Jean-Marc Valin */
- /*
- Redistribution and use in source and binary forms, with or without
- modification, are permitted provided that the following conditions
- are met:
- - Redistributions of source code must retain the above copyright
- notice, this list of conditions and the following disclaimer.
- - Redistributions in binary form must reproduce the above copyright
- notice, this list of conditions and the following disclaimer in the
- documentation and/or other materials provided with the distribution.
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
- CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
- LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
- #ifdef HAVE_CONFIG_H
- #include "config.h"
- #endif
- #include "os_support.h"
- #include "cwrs.h"
- #include "mathops.h"
- #include "arch.h"
- #ifdef CUSTOM_MODES
- /*Guaranteed to return a conservatively large estimate of the binary logarithm
- with frac bits of fractional precision.
- Tested for all possible 32-bit inputs with frac=4, where the maximum
- overestimation is 0.06254243 bits.*/
- int log2_frac(opus_uint32 val, int frac)
- {
- int l;
- l=EC_ILOG(val);
- if(val&(val-1)){
- /*This is (val>>l-16), but guaranteed to round up, even if adding a bias
- before the shift would cause overflow (e.g., for 0xFFFFxxxx).*/
- if(l>16)val=(val>>(l-16))+(((val&((1<<(l-16))-1))+(1<<(l-16))-1)>>(l-16));
- else val<<=16-l;
- l=(l-1)<<frac;
- /*Note that we always need one iteration, since the rounding up above means
- that we might need to adjust the integer part of the logarithm.*/
- do{
- int b;
- b=(int)(val>>16);
- l+=b<<frac;
- val=(val+b)>>b;
- val=(val*val+0x7FFF)>>15;
- }
- while(frac-->0);
- /*If val is not exactly 0x8000, then we have to round up the remainder.*/
- return l+(val>0x8000);
- }
- /*Exact powers of two require no rounding.*/
- else return (l-1)<<frac;
- }
- #endif
- #ifndef SMALL_FOOTPRINT
- #define MASK32 (0xFFFFFFFF)
- /*INV_TABLE[i] holds the multiplicative inverse of (2*i+1) mod 2**32.*/
- static const opus_uint32 INV_TABLE[53]={
- 0x00000001,0xAAAAAAAB,0xCCCCCCCD,0xB6DB6DB7,
- 0x38E38E39,0xBA2E8BA3,0xC4EC4EC5,0xEEEEEEEF,
- 0xF0F0F0F1,0x286BCA1B,0x3CF3CF3D,0xE9BD37A7,
- 0xC28F5C29,0x684BDA13,0x4F72C235,0xBDEF7BDF,
- 0x3E0F83E1,0x8AF8AF8B,0x914C1BAD,0x96F96F97,
- 0xC18F9C19,0x2FA0BE83,0xA4FA4FA5,0x677D46CF,
- 0x1A1F58D1,0xFAFAFAFB,0x8C13521D,0x586FB587,
- 0xB823EE09,0xA08AD8F3,0xC10C9715,0xBEFBEFBF,
- 0xC0FC0FC1,0x07A44C6B,0xA33F128D,0xE327A977,
- 0xC7E3F1F9,0x962FC963,0x3F2B3885,0x613716AF,
- 0x781948B1,0x2B2E43DB,0xFCFCFCFD,0x6FD0EB67,
- 0xFA3F47E9,0xD2FD2FD3,0x3F4FD3F5,0xD4E25B9F,
- 0x5F02A3A1,0xBF5A814B,0x7C32B16D,0xD3431B57,
- 0xD8FD8FD9,
- };
- /*Computes (_a*_b-_c)/(2*_d+1) when the quotient is known to be exact.
- _a, _b, _c, and _d may be arbitrary so long as the arbitrary precision result
- fits in 32 bits, but currently the table for multiplicative inverses is only
- valid for _d<=52.*/
- static inline opus_uint32 imusdiv32odd(opus_uint32 _a,opus_uint32 _b,
- opus_uint32 _c,int _d){
- celt_assert(_d<=52);
- return (_a*_b-_c)*INV_TABLE[_d]&MASK32;
- }
- /*Computes (_a*_b-_c)/_d when the quotient is known to be exact.
- _d does not actually have to be even, but imusdiv32odd will be faster when
- it's odd, so you should use that instead.
- _a and _d are assumed to be small (e.g., _a*_d fits in 32 bits; currently the
- table for multiplicative inverses is only valid for _d<=54).
- _b and _c may be arbitrary so long as the arbitrary precision reuslt fits in
- 32 bits.*/
- static inline opus_uint32 imusdiv32even(opus_uint32 _a,opus_uint32 _b,
- opus_uint32 _c,int _d){
- opus_uint32 inv;
- int mask;
- int shift;
- int one;
- celt_assert(_d>0);
- celt_assert(_d<=54);
- shift=EC_ILOG(_d^(_d-1));
- inv=INV_TABLE[(_d-1)>>shift];
- shift--;
- one=1<<shift;
- mask=one-1;
- return (_a*(_b>>shift)-(_c>>shift)+
- ((_a*(_b&mask)+one-(_c&mask))>>shift)-1)*inv&MASK32;
- }
- #endif /* SMALL_FOOTPRINT */
- /*Although derived separately, the pulse vector coding scheme is equivalent to
- a Pyramid Vector Quantizer \cite{Fis86}.
- Some additional notes about an early version appear at
- http://people.xiph.org/~tterribe/notes/cwrs.html, but the codebook ordering
- and the definitions of some terms have evolved since that was written.
- The conversion from a pulse vector to an integer index (encoding) and back
- (decoding) is governed by two related functions, V(N,K) and U(N,K).
- V(N,K) = the number of combinations, with replacement, of N items, taken K
- at a time, when a sign bit is added to each item taken at least once (i.e.,
- the number of N-dimensional unit pulse vectors with K pulses).
- One way to compute this is via
- V(N,K) = K>0 ? sum(k=1...K,2**k*choose(N,k)*choose(K-1,k-1)) : 1,
- where choose() is the binomial function.
- A table of values for N<10 and K<10 looks like:
- V[10][10] = {
- {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {1, 2, 2, 2, 2, 2, 2, 2, 2, 2},
- {1, 4, 8, 12, 16, 20, 24, 28, 32, 36},
- {1, 6, 18, 38, 66, 102, 146, 198, 258, 326},
- {1, 8, 32, 88, 192, 360, 608, 952, 1408, 1992},
- {1, 10, 50, 170, 450, 1002, 1970, 3530, 5890, 9290},
- {1, 12, 72, 292, 912, 2364, 5336, 10836, 20256, 35436},
- {1, 14, 98, 462, 1666, 4942, 12642, 28814, 59906, 115598},
- {1, 16, 128, 688, 2816, 9424, 27008, 68464, 157184, 332688},
- {1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 864146}
- };
- U(N,K) = the number of such combinations wherein N-1 objects are taken at
- most K-1 at a time.
- This is given by
- U(N,K) = sum(k=0...K-1,V(N-1,k))
- = K>0 ? (V(N-1,K-1) + V(N,K-1))/2 : 0.
- The latter expression also makes clear that U(N,K) is half the number of such
- combinations wherein the first object is taken at least once.
- Although it may not be clear from either of these definitions, U(N,K) is the
- natural function to work with when enumerating the pulse vector codebooks,
- not V(N,K).
- U(N,K) is not well-defined for N=0, but with the extension
- U(0,K) = K>0 ? 0 : 1,
- the function becomes symmetric: U(N,K) = U(K,N), with a similar table:
- U[10][10] = {
- {1, 0, 0, 0, 0, 0, 0, 0, 0, 0},
- {0, 1, 1, 1, 1, 1, 1, 1, 1, 1},
- {0, 1, 3, 5, 7, 9, 11, 13, 15, 17},
- {0, 1, 5, 13, 25, 41, 61, 85, 113, 145},
- {0, 1, 7, 25, 63, 129, 231, 377, 575, 833},
- {0, 1, 9, 41, 129, 321, 681, 1289, 2241, 3649},
- {0, 1, 11, 61, 231, 681, 1683, 3653, 7183, 13073},
- {0, 1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081},
- {0, 1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545},
- {0, 1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729}
- };
- With this extension, V(N,K) may be written in terms of U(N,K):
- V(N,K) = U(N,K) + U(N,K+1)
- for all N>=0, K>=0.
- Thus U(N,K+1) represents the number of combinations where the first element
- is positive or zero, and U(N,K) represents the number of combinations where
- it is negative.
- With a large enough table of U(N,K) values, we could write O(N) encoding
- and O(min(N*log(K),N+K)) decoding routines, but such a table would be
- prohibitively large for small embedded devices (K may be as large as 32767
- for small N, and N may be as large as 200).
- Both functions obey the same recurrence relation:
- V(N,K) = V(N-1,K) + V(N,K-1) + V(N-1,K-1),
- U(N,K) = U(N-1,K) + U(N,K-1) + U(N-1,K-1),
- for all N>0, K>0, with different initial conditions at N=0 or K=0.
- This allows us to construct a row of one of the tables above given the
- previous row or the next row.
- Thus we can derive O(NK) encoding and decoding routines with O(K) memory
- using only addition and subtraction.
- When encoding, we build up from the U(2,K) row and work our way forwards.
- When decoding, we need to start at the U(N,K) row and work our way backwards,
- which requires a means of computing U(N,K).
- U(N,K) may be computed from two previous values with the same N:
- U(N,K) = ((2*N-1)*U(N,K-1) - U(N,K-2))/(K-1) + U(N,K-2)
- for all N>1, and since U(N,K) is symmetric, a similar relation holds for two
- previous values with the same K:
- U(N,K>1) = ((2*K-1)*U(N-1,K) - U(N-2,K))/(N-1) + U(N-2,K)
- for all K>1.
- This allows us to construct an arbitrary row of the U(N,K) table by starting
- with the first two values, which are constants.
- This saves roughly 2/3 the work in our O(NK) decoding routine, but costs O(K)
- multiplications.
- Similar relations can be derived for V(N,K), but are not used here.
- For N>0 and K>0, U(N,K) and V(N,K) take on the form of an (N-1)-degree
- polynomial for fixed N.
- The first few are
- U(1,K) = 1,
- U(2,K) = 2*K-1,
- U(3,K) = (2*K-2)*K+1,
- U(4,K) = (((4*K-6)*K+8)*K-3)/3,
- U(5,K) = ((((2*K-4)*K+10)*K-8)*K+3)/3,
- and
- V(1,K) = 2,
- V(2,K) = 4*K,
- V(3,K) = 4*K*K+2,
- V(4,K) = 8*(K*K+2)*K/3,
- V(5,K) = ((4*K*K+20)*K*K+6)/3,
- for all K>0.
- This allows us to derive O(N) encoding and O(N*log(K)) decoding routines for
- small N (and indeed decoding is also O(N) for N<3).
- @ARTICLE{Fis86,
- author="Thomas R. Fischer",
- title="A Pyramid Vector Quantizer",
- journal="IEEE Transactions on Information Theory",
- volume="IT-32",
- number=4,
- pages="568--583",
- month=Jul,
- year=1986
- }*/
- #ifndef SMALL_FOOTPRINT
- /*Compute U(2,_k).
- Note that this may be called with _k=32768 (maxK[2]+1).*/
- static inline unsigned ucwrs2(unsigned _k){
- celt_assert(_k>0);
- return _k+(_k-1);
- }
- /*Compute V(2,_k).*/
- static inline opus_uint32 ncwrs2(int _k){
- celt_assert(_k>0);
- return 4*(opus_uint32)_k;
- }
- /*Compute U(3,_k).
- Note that this may be called with _k=32768 (maxK[3]+1).*/
- static inline opus_uint32 ucwrs3(unsigned _k){
- celt_assert(_k>0);
- return (2*(opus_uint32)_k-2)*_k+1;
- }
- /*Compute V(3,_k).*/
- static inline opus_uint32 ncwrs3(int _k){
- celt_assert(_k>0);
- return 2*(2*(unsigned)_k*(opus_uint32)_k+1);
- }
- /*Compute U(4,_k).*/
- static inline opus_uint32 ucwrs4(int _k){
- celt_assert(_k>0);
- return imusdiv32odd(2*_k,(2*_k-3)*(opus_uint32)_k+4,3,1);
- }
- /*Compute V(4,_k).*/
- static inline opus_uint32 ncwrs4(int _k){
- celt_assert(_k>0);
- return ((_k*(opus_uint32)_k+2)*_k)/3<<3;
- }
- #endif /* SMALL_FOOTPRINT */
- /*Computes the next row/column of any recurrence that obeys the relation
- u[i][j]=u[i-1][j]+u[i][j-1]+u[i-1][j-1].
- _ui0 is the base case for the new row/column.*/
- static inline void unext(opus_uint32 *_ui,unsigned _len,opus_uint32 _ui0){
- opus_uint32 ui1;
- unsigned j;
- /*This do-while will overrun the array if we don't have storage for at least
- 2 values.*/
- j=1; do {
- ui1=UADD32(UADD32(_ui[j],_ui[j-1]),_ui0);
- _ui[j-1]=_ui0;
- _ui0=ui1;
- } while (++j<_len);
- _ui[j-1]=_ui0;
- }
- /*Computes the previous row/column of any recurrence that obeys the relation
- u[i-1][j]=u[i][j]-u[i][j-1]-u[i-1][j-1].
- _ui0 is the base case for the new row/column.*/
- static inline void uprev(opus_uint32 *_ui,unsigned _n,opus_uint32 _ui0){
- opus_uint32 ui1;
- unsigned j;
- /*This do-while will overrun the array if we don't have storage for at least
- 2 values.*/
- j=1; do {
- ui1=USUB32(USUB32(_ui[j],_ui[j-1]),_ui0);
- _ui[j-1]=_ui0;
- _ui0=ui1;
- } while (++j<_n);
- _ui[j-1]=_ui0;
- }
- /*Compute V(_n,_k), as well as U(_n,0..._k+1).
- _u: On exit, _u[i] contains U(_n,i) for i in [0..._k+1].*/
- static opus_uint32 ncwrs_urow(unsigned _n,unsigned _k,opus_uint32 *_u){
- opus_uint32 um2;
- unsigned len;
- unsigned k;
- len=_k+2;
- /*We require storage at least 3 values (e.g., _k>0).*/
- celt_assert(len>=3);
- _u[0]=0;
- _u[1]=um2=1;
- #ifndef SMALL_FOOTPRINT
- /*_k>52 doesn't work in the false branch due to the limits of INV_TABLE,
- but _k isn't tested here because k<=52 for n=7*/
- if(_n<=6)
- #endif
- {
- /*If _n==0, _u[0] should be 1 and the rest should be 0.*/
- /*If _n==1, _u[i] should be 1 for i>1.*/
- celt_assert(_n>=2);
- /*If _k==0, the following do-while loop will overflow the buffer.*/
- celt_assert(_k>0);
- k=2;
- do _u[k]=(k<<1)-1;
- while(++k<len);
- for(k=2;k<_n;k++)unext(_u+1,_k+1,1);
- }
- #ifndef SMALL_FOOTPRINT
- else{
- opus_uint32 um1;
- opus_uint32 n2m1;
- _u[2]=n2m1=um1=(_n<<1)-1;
- for(k=3;k<len;k++){
- /*U(N,K) = ((2*N-1)*U(N,K-1)-U(N,K-2))/(K-1) + U(N,K-2)*/
- _u[k]=um2=imusdiv32even(n2m1,um1,um2,k-1)+um2;
- if(++k>=len)break;
- _u[k]=um1=imusdiv32odd(n2m1,um2,um1,(k-1)>>1)+um1;
- }
- }
- #endif /* SMALL_FOOTPRINT */
- return _u[_k]+_u[_k+1];
- }
- #ifndef SMALL_FOOTPRINT
- /*Returns the _i'th combination of _k elements (at most 32767) chosen from a
- set of size 1 with associated sign bits.
- _y: Returns the vector of pulses.*/
- static inline void cwrsi1(int _k,opus_uint32 _i,int *_y){
- int s;
- s=-(int)_i;
- _y[0]=(_k+s)^s;
- }
- /*Returns the _i'th combination of _k elements (at most 32767) chosen from a
- set of size 2 with associated sign bits.
- _y: Returns the vector of pulses.*/
- static inline void cwrsi2(int _k,opus_uint32 _i,int *_y){
- opus_uint32 p;
- int s;
- int yj;
- p=ucwrs2(_k+1U);
- s=-(_i>=p);
- _i-=p&s;
- yj=_k;
- _k=(_i+1)>>1;
- p=_k?ucwrs2(_k):0;
- _i-=p;
- yj-=_k;
- _y[0]=(yj+s)^s;
- cwrsi1(_k,_i,_y+1);
- }
- /*Returns the _i'th combination of _k elements (at most 32767) chosen from a
- set of size 3 with associated sign bits.
- _y: Returns the vector of pulses.*/
- static void cwrsi3(int _k,opus_uint32 _i,int *_y){
- opus_uint32 p;
- int s;
- int yj;
- p=ucwrs3(_k+1U);
- s=-(_i>=p);
- _i-=p&s;
- yj=_k;
- /*Finds the maximum _k such that ucwrs3(_k)<=_i (tested for all
- _i<2147418113=U(3,32768)).*/
- _k=_i>0?(isqrt32(2*_i-1)+1)>>1:0;
- p=_k?ucwrs3(_k):0;
- _i-=p;
- yj-=_k;
- _y[0]=(yj+s)^s;
- cwrsi2(_k,_i,_y+1);
- }
- /*Returns the _i'th combination of _k elements (at most 1172) chosen from a set
- of size 4 with associated sign bits.
- _y: Returns the vector of pulses.*/
- static void cwrsi4(int _k,opus_uint32 _i,int *_y){
- opus_uint32 p;
- int s;
- int yj;
- int kl;
- int kr;
- p=ucwrs4(_k+1);
- s=-(_i>=p);
- _i-=p&s;
- yj=_k;
- /*We could solve a cubic for k here, but the form of the direct solution does
- not lend itself well to exact integer arithmetic.
- Instead we do a binary search on U(4,K).*/
- kl=0;
- kr=_k;
- for(;;){
- _k=(kl+kr)>>1;
- p=_k?ucwrs4(_k):0;
- if(p<_i){
- if(_k>=kr)break;
- kl=_k+1;
- }
- else if(p>_i)kr=_k-1;
- else break;
- }
- _i-=p;
- yj-=_k;
- _y[0]=(yj+s)^s;
- cwrsi3(_k,_i,_y+1);
- }
- #endif /* SMALL_FOOTPRINT */
- /*Returns the _i'th combination of _k elements chosen from a set of size _n
- with associated sign bits.
- _y: Returns the vector of pulses.
- _u: Must contain entries [0..._k+1] of row _n of U() on input.
- Its contents will be destructively modified.*/
- static void cwrsi(int _n,int _k,opus_uint32 _i,int *_y,opus_uint32 *_u){
- int j;
- celt_assert(_n>0);
- j=0;
- do{
- opus_uint32 p;
- int s;
- int yj;
- p=_u[_k+1];
- s=-(_i>=p);
- _i-=p&s;
- yj=_k;
- p=_u[_k];
- while(p>_i)p=_u[--_k];
- _i-=p;
- yj-=_k;
- _y[j]=(yj+s)^s;
- uprev(_u,_k+2,0);
- }
- while(++j<_n);
- }
- /*Returns the index of the given combination of K elements chosen from a set
- of size 1 with associated sign bits.
- _y: The vector of pulses, whose sum of absolute values is K.
- _k: Returns K.*/
- static inline opus_uint32 icwrs1(const int *_y,int *_k){
- *_k=abs(_y[0]);
- return _y[0]<0;
- }
- #ifndef SMALL_FOOTPRINT
- /*Returns the index of the given combination of K elements chosen from a set
- of size 2 with associated sign bits.
- _y: The vector of pulses, whose sum of absolute values is K.
- _k: Returns K.*/
- static inline opus_uint32 icwrs2(const int *_y,int *_k){
- opus_uint32 i;
- int k;
- i=icwrs1(_y+1,&k);
- i+=k?ucwrs2(k):0;
- k+=abs(_y[0]);
- if(_y[0]<0)i+=ucwrs2(k+1U);
- *_k=k;
- return i;
- }
- /*Returns the index of the given combination of K elements chosen from a set
- of size 3 with associated sign bits.
- _y: The vector of pulses, whose sum of absolute values is K.
- _k: Returns K.*/
- static inline opus_uint32 icwrs3(const int *_y,int *_k){
- opus_uint32 i;
- int k;
- i=icwrs2(_y+1,&k);
- i+=k?ucwrs3(k):0;
- k+=abs(_y[0]);
- if(_y[0]<0)i+=ucwrs3(k+1U);
- *_k=k;
- return i;
- }
- /*Returns the index of the given combination of K elements chosen from a set
- of size 4 with associated sign bits.
- _y: The vector of pulses, whose sum of absolute values is K.
- _k: Returns K.*/
- static inline opus_uint32 icwrs4(const int *_y,int *_k){
- opus_uint32 i;
- int k;
- i=icwrs3(_y+1,&k);
- i+=k?ucwrs4(k):0;
- k+=abs(_y[0]);
- if(_y[0]<0)i+=ucwrs4(k+1);
- *_k=k;
- return i;
- }
- #endif /* SMALL_FOOTPRINT */
- /*Returns the index of the given combination of K elements chosen from a set
- of size _n with associated sign bits.
- _y: The vector of pulses, whose sum of absolute values must be _k.
- _nc: Returns V(_n,_k).*/
- static inline opus_uint32 icwrs(int _n,int _k,opus_uint32 *_nc,const int *_y,
- opus_uint32 *_u){
- opus_uint32 i;
- int j;
- int k;
- /*We can't unroll the first two iterations of the loop unless _n>=2.*/
- celt_assert(_n>=2);
- _u[0]=0;
- for(k=1;k<=_k+1;k++)_u[k]=(k<<1)-1;
- i=icwrs1(_y+_n-1,&k);
- j=_n-2;
- i+=_u[k];
- k+=abs(_y[j]);
- if(_y[j]<0)i+=_u[k+1];
- while(j-->0){
- unext(_u,_k+2,0);
- i+=_u[k];
- k+=abs(_y[j]);
- if(_y[j]<0)i+=_u[k+1];
- }
- *_nc=_u[k]+_u[k+1];
- return i;
- }
- #ifdef CUSTOM_MODES
- void get_required_bits(opus_int16 *_bits,int _n,int _maxk,int _frac){
- int k;
- /*_maxk==0 => there's nothing to do.*/
- celt_assert(_maxk>0);
- _bits[0]=0;
- if (_n==1)
- {
- for (k=1;k<=_maxk;k++)
- _bits[k] = 1<<_frac;
- }
- else {
- VARDECL(opus_uint32,u);
- SAVE_STACK;
- ALLOC(u,_maxk+2U,opus_uint32);
- ncwrs_urow(_n,_maxk,u);
- for(k=1;k<=_maxk;k++)
- _bits[k]=log2_frac(u[k]+u[k+1],_frac);
- RESTORE_STACK;
- }
- }
- #endif /* CUSTOM_MODES */
- void encode_pulses(const int *_y,int _n,int _k,ec_enc *_enc){
- opus_uint32 i;
- celt_assert(_k>0);
- #ifndef SMALL_FOOTPRINT
- switch(_n){
- case 2:{
- i=icwrs2(_y,&_k);
- ec_enc_uint(_enc,i,ncwrs2(_k));
- }break;
- case 3:{
- i=icwrs3(_y,&_k);
- ec_enc_uint(_enc,i,ncwrs3(_k));
- }break;
- case 4:{
- i=icwrs4(_y,&_k);
- ec_enc_uint(_enc,i,ncwrs4(_k));
- }break;
- default:
- {
- #endif
- VARDECL(opus_uint32,u);
- opus_uint32 nc;
- SAVE_STACK;
- ALLOC(u,_k+2U,opus_uint32);
- i=icwrs(_n,_k,&nc,_y,u);
- ec_enc_uint(_enc,i,nc);
- RESTORE_STACK;
- #ifndef SMALL_FOOTPRINT
- }
- break;
- }
- #endif
- }
- void decode_pulses(int *_y,int _n,int _k,ec_dec *_dec)
- {
- celt_assert(_k>0);
- #ifndef SMALL_FOOTPRINT
- switch(_n){
- case 2:cwrsi2(_k,ec_dec_uint(_dec,ncwrs2(_k)),_y);break;
- case 3:cwrsi3(_k,ec_dec_uint(_dec,ncwrs3(_k)),_y);break;
- case 4:cwrsi4(_k,ec_dec_uint(_dec,ncwrs4(_k)),_y);break;
- default:
- {
- #endif
- VARDECL(opus_uint32,u);
- SAVE_STACK;
- ALLOC(u,_k+2U,opus_uint32);
- cwrsi(_n,_k,ec_dec_uint(_dec,ncwrs_urow(_n,_k,u)),_y,u);
- RESTORE_STACK;
- #ifndef SMALL_FOOTPRINT
- }
- break;
- }
- #endif
- }
|