theoretical_results.lyx 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731
  1. #LyX 2.1 created this file. For more info see http://www.lyx.org/
  2. \lyxformat 474
  3. \begin_document
  4. \begin_header
  5. \textclass article
  6. \use_default_options true
  7. \maintain_unincluded_children false
  8. \language english
  9. \language_package default
  10. \inputencoding auto
  11. \fontencoding global
  12. \font_roman default
  13. \font_sans default
  14. \font_typewriter default
  15. \font_math auto
  16. \font_default_family default
  17. \use_non_tex_fonts false
  18. \font_sc false
  19. \font_osf false
  20. \font_sf_scale 100
  21. \font_tt_scale 100
  22. \graphics default
  23. \default_output_format default
  24. \output_sync 0
  25. \bibtex_command default
  26. \index_command default
  27. \paperfontsize default
  28. \spacing single
  29. \use_hyperref false
  30. \papersize default
  31. \use_geometry true
  32. \use_package amsmath 1
  33. \use_package amssymb 1
  34. \use_package cancel 1
  35. \use_package esint 1
  36. \use_package mathdots 1
  37. \use_package mathtools 1
  38. \use_package mhchem 1
  39. \use_package stackrel 1
  40. \use_package stmaryrd 1
  41. \use_package undertilde 1
  42. \cite_engine basic
  43. \cite_engine_type default
  44. \biblio_style plain
  45. \use_bibtopic false
  46. \use_indices false
  47. \paperorientation portrait
  48. \suppress_date false
  49. \justification true
  50. \use_refstyle 1
  51. \index Index
  52. \shortcut idx
  53. \color #008000
  54. \end_index
  55. \leftmargin 3cm
  56. \topmargin 3cm
  57. \rightmargin 3cm
  58. \bottommargin 3cm
  59. \secnumdepth 3
  60. \tocdepth 3
  61. \paragraph_separation indent
  62. \paragraph_indentation default
  63. \quotes_language english
  64. \papercolumns 1
  65. \papersides 1
  66. \paperpagestyle default
  67. \tracking_changes false
  68. \output_changes false
  69. \html_math_output 0
  70. \html_css_as_file 0
  71. \html_be_strict false
  72. \end_header
  73. \begin_body
  74. \begin_layout Title
  75. Jmspeex' Journal of Dubious Theoretical Results
  76. \end_layout
  77. \begin_layout Abstract
  78. This is a log of theoretical calculations and approximations that are used
  79. in some of the Daala code.
  80. Some approximations are likely to be too coarse, some assumptions may not
  81. correspond to the observable universe and some calculations may just be
  82. plain wrong.
  83. You have been warned.
  84. \end_layout
  85. \begin_layout Part
  86. Relationship Between
  87. \begin_inset Formula $\lambda$
  88. \end_inset
  89. and
  90. \begin_inset Formula $Q$
  91. \end_inset
  92. in RDO
  93. \end_layout
  94. \begin_layout Standard
  95. When using a high-rate scalar quantizer, the distortion is given by
  96. \begin_inset Formula
  97. \[
  98. D=\frac{Q^{2}}{12}\ ,
  99. \]
  100. \end_inset
  101. where
  102. \begin_inset Formula $Q$
  103. \end_inset
  104. is the quantizer's interval between two levels (not the maximum error like
  105. in some other work).
  106. The rate required to code the quantized values (assuming round-to-nearest)
  107. is
  108. \begin_inset Formula
  109. \[
  110. R=-\log_{2}Q+C
  111. \]
  112. \end_inset
  113. where
  114. \begin_inset Formula $C$
  115. \end_inset
  116. is a constant that does not depend on Q.
  117. Starting from a known
  118. \begin_inset Formula $\lambda$
  119. \end_inset
  120. we want to find the quantization interval
  121. \begin_inset Formula $Q$
  122. \end_inset
  123. that minimizes the rate-distortion curve, so
  124. \begin_inset Formula
  125. \begin{align*}
  126. \frac{\partial}{\partial Q}\left(D+\lambda R\right) & =0\\
  127. \frac{\partial}{\partial Q}\left(\frac{Q^{2}}{12}-\lambda\log_{2}Q-\lambda C\right) & =0\\
  128. \frac{Q}{6}-\frac{\lambda}{Q\log2} & =0\\
  129. Q & =\sqrt{\frac{6\lambda}{\log2}}
  130. \end{align*}
  131. \end_inset
  132. Or, if
  133. \begin_inset Formula $Q$
  134. \end_inset
  135. is known, then
  136. \begin_inset Formula
  137. \[
  138. \lambda=\frac{Q^{2}\log2}{6}
  139. \]
  140. \end_inset
  141. \end_layout
  142. \begin_layout Part
  143. Rate-Distortion Analysis of a Quantized Laplace Distribution
  144. \end_layout
  145. \begin_layout Standard
  146. Here we assume that the quantization step size has already been taken into
  147. account and that
  148. \begin_inset Formula $\sigma$
  149. \end_inset
  150. is the normalized standard deviation of a DCT coefficient.
  151. The post-quantization distribution of a Laplace-distributed variable with
  152. non-zero quantization threshold
  153. \begin_inset Formula $\theta$
  154. \end_inset
  155. is:
  156. \begin_inset Formula
  157. \[
  158. p\left(n\right)=\begin{cases}
  159. 1-r^{\theta} & n=0\\
  160. r^{\theta}\left(1-r\right)r^{n-1} & n>0
  161. \end{cases}
  162. \]
  163. \end_inset
  164. where
  165. \begin_inset Formula $\theta=\frac{1}{2}$
  166. \end_inset
  167. for round-to-nearest and
  168. \begin_inset Formula $r=e^{-\sqrt{2}/\sigma}$
  169. \end_inset
  170. .
  171. The entropy (rate)
  172. \begin_inset Formula $R$
  173. \end_inset
  174. of the quantized Laplace distribution is:
  175. \begin_inset Formula
  176. \[
  177. R=\overset{\mathrm{sign}}{\overbrace{r^{\theta}}}+\overset{\mathrm{non-zero}}{\overbrace{H\left(r^{\theta}\right)}}+\overset{\mathrm{tail}}{\overbrace{\frac{r^{\theta}H\left(r\right)}{1-r}}}
  178. \]
  179. \end_inset
  180. \end_layout
  181. \begin_layout Standard
  182. \begin_inset Formula
  183. \begin{align*}
  184. D(r) & =-\log r\left(\int_{0}^{\theta}x^{2}r^{x}dx+\sum_{k=1}^{\infty}\int_{\theta-1}^{\theta}x^{2}r^{k}r^{x}dx\right)\\
  185. & =I\left(r,\theta\right)-I\left(r,0\right)+\frac{r}{1-r}\left(I\left(r,\theta\right)-I\left(r,\theta-1\right)\right)
  186. \end{align*}
  187. \end_inset
  188. where
  189. \begin_inset Formula
  190. \begin{align*}
  191. I\left(r,x\right) & =-\log r\int x^{2}r^{x}dx\\
  192. & =r^{x}\frac{2x\log r-x^{2}\log^{2}r-2}{\log^{2}r}+C
  193. \end{align*}
  194. \end_inset
  195. \end_layout
  196. \begin_layout Standard
  197. When
  198. \begin_inset Formula $\sigma$
  199. \end_inset
  200. is much smaller than the quantization step size (everything quantizes to
  201. zero), then the distortion is simply
  202. \begin_inset Formula $\sigma^{2}$
  203. \end_inset
  204. and when
  205. \begin_inset Formula $\sigma$
  206. \end_inset
  207. is very large (flat distribution), then the distortion is that of a scalar
  208. quantizer:
  209. \begin_inset Formula $1/12$
  210. \end_inset
  211. .
  212. So in the general case we can approximate with
  213. \begin_inset Formula
  214. \[
  215. D=\min\left(\sigma^{2},\frac{1}{12}\right)
  216. \]
  217. \end_inset
  218. which tends to overestimate
  219. \begin_inset Formula $D$
  220. \end_inset
  221. in the region where
  222. \begin_inset Formula $\sigma^{2}$
  223. \end_inset
  224. is close to
  225. \begin_inset Formula $1/12$
  226. \end_inset
  227. .
  228. Assuming high-rate RDO, we have
  229. \begin_inset Formula
  230. \[
  231. \lambda=\frac{Q^{2}\log(2)}{6}=\frac{\log(2)}{6}\ .
  232. \]
  233. \end_inset
  234. The total RD-cost (expressed as a rate) becomes
  235. \begin_inset Formula
  236. \[
  237. R+\frac{D}{\lambda}=r^{\theta}+H\left(r^{\theta}\right)+\frac{r^{\theta}H\left(r\right)}{1-r}+\min\left(\frac{6\sigma^{2}}{\log(2)},\frac{1}{2\log(2)}\right)
  238. \]
  239. \end_inset
  240. This cost function can be approximated by the (smoother) cost function
  241. \begin_inset Formula
  242. \[
  243. C=\frac{1}{2}\log_{2}\left(1+\left(6.33\sigma\right)^{2}\right)
  244. \]
  245. \end_inset
  246. \end_layout
  247. \begin_layout Part
  248. PVQ Distortion
  249. \end_layout
  250. \begin_layout Standard
  251. Let
  252. \begin_inset Formula $\mathbf{X}=g\mathbf{z}$
  253. \end_inset
  254. and
  255. \begin_inset Formula $\hat{\mathbf{X}}=\hat{g}\hat{\mathbf{z}}$
  256. \end_inset
  257. be the unquantized and quantized coefficient vector, respectively.
  258. The quantization distortion is
  259. \begin_inset Formula
  260. \begin{align}
  261. D & =\left(\mathbf{X}-\hat{\mathbf{X}}\right)^{T}\left(\mathbf{X}-\hat{\mathbf{X}}\right)\nonumber \\
  262. & =\mathbf{X}^{T}\mathbf{X}+\hat{\mathbf{X}}^{T}\hat{\mathbf{X}}-2\hat{\mathbf{X}}^{T}\mathbf{X}\nonumber \\
  263. & =g^{2}+\hat{g}^{2}-2g\hat{g}\mathbf{z}\hat{\mathbf{z}}\nonumber \\
  264. & =\left(g-\hat{g}\right)^{2}+2g\hat{g}-2g\hat{g}\mathbf{z}\hat{\mathbf{z}}\nonumber \\
  265. & =\left(g-\hat{g}\right)^{2}+g\hat{g}\left(2-2\mathbf{z}\hat{\mathbf{z}}\right)\ .\label{eq:distance_v1}
  266. \end{align}
  267. \end_inset
  268. Let
  269. \begin_inset Formula $D_{z}$
  270. \end_inset
  271. be the distance between
  272. \family roman
  273. \series medium
  274. \shape up
  275. \size normal
  276. \emph off
  277. \bar no
  278. \strikeout off
  279. \uuline off
  280. \uwave off
  281. \noun off
  282. \color none
  283. \begin_inset Formula $\mathbf{z}$
  284. \end_inset
  285. and
  286. \begin_inset Formula $\hat{\mathbf{z}}$
  287. \end_inset
  288. ,
  289. \begin_inset Formula
  290. \begin{align}
  291. D_{z} & =\left(\mathbf{z}-\hat{\mathbf{z}}\right)^{T}\left(\mathbf{z}-\hat{\mathbf{z}}\right)\nonumber \\
  292. & =2-2\mathbf{z}^{T}\hat{\mathbf{z}}\ .\label{eq:distance-Dz}
  293. \end{align}
  294. \end_inset
  295. We can then rewrite
  296. \begin_inset CommandInset ref
  297. LatexCommand eqref
  298. reference "eq:distance_v1"
  299. \end_inset
  300. as
  301. \begin_inset Formula
  302. \begin{equation}
  303. D=\left(g-\hat{g}\right)^{2}+g\hat{g}D_{z}\ ,\label{eq:pvq_distortion}
  304. \end{equation}
  305. \end_inset
  306. which separates the gain quantization from the quantization of the unit
  307. vector
  308. \begin_inset Formula $\mathbf{z}$
  309. \end_inset
  310. .
  311. \end_layout
  312. \begin_layout Part
  313. Distortion from theta PVQ
  314. \end_layout
  315. \begin_layout Standard
  316. Let the normalized theta-PVQ vector be
  317. \begin_inset Formula
  318. \[
  319. \mathbf{z}=\left[\begin{array}{c}
  320. \cos\theta\\
  321. \mathbf{x}\sin\theta
  322. \end{array}\right]\ ,
  323. \]
  324. \end_inset
  325. where
  326. \begin_inset Formula $\mathbf{x}$
  327. \end_inset
  328. is the unit-vector coded with the PVQ quantizer, the distortion
  329. \begin_inset Formula $D$
  330. \end_inset
  331. between the unquantized
  332. \begin_inset Formula $\mathbf{z}$
  333. \end_inset
  334. and its quantized version
  335. \begin_inset Formula $\hat{\mathbf{z}}$
  336. \end_inset
  337. is
  338. \begin_inset Formula
  339. \begin{align}
  340. D_{z} & =\left(\mathbf{z}-\hat{\mathbf{z}}\right)^{T}\left(\mathbf{z}-\hat{\mathbf{z}}\right)\nonumber \\
  341. & =\left(\cos\theta-\cos\hat{\theta}\right)^{2}+\left(\mathbf{x}\sin\theta-\hat{\mathbf{x}}\sin\hat{\theta}\right)^{T}\left(\mathbf{x}\sin\theta-\hat{\mathbf{x}}\sin\hat{\theta}\right)\nonumber \\
  342. & =\cos^{2}\theta-2\cos\theta\cos\hat{\theta}+\cos^{2}\hat{\theta}+\sin^{2}\theta+\sin^{2}\hat{\theta}-2\sin\theta\sin\hat{\theta}\mathbf{x}^{T}\hat{\mathbf{x}}\nonumber \\
  343. & =2-2\cos\theta\cos\hat{\theta}-2\sin\theta\sin\hat{\theta}\mathbf{x}^{T}\hat{\mathbf{x}}\ .\label{eq:distortion-1}
  344. \end{align}
  345. \end_inset
  346. \family roman
  347. \series medium
  348. \shape up
  349. \size normal
  350. \emph off
  351. \bar no
  352. \strikeout off
  353. \uuline off
  354. \uwave off
  355. \noun off
  356. \color none
  357. Using the identity
  358. \begin_inset CommandInset ref
  359. LatexCommand eqref
  360. reference "eq:distance-Dz"
  361. \end_inset
  362. , we can then rewrite
  363. \begin_inset CommandInset ref
  364. LatexCommand eqref
  365. reference "eq:distortion-1"
  366. \end_inset
  367. as
  368. \begin_inset Formula
  369. \begin{align}
  370. D_{z} & =2-2\cos\theta\cos\hat{\theta}-\sin\theta\sin\hat{\theta}\left(2-D_{x}\right)\nonumber \\
  371. & =2-2\cos\left(\theta-\hat{\theta}\right)+\sin\theta\sin\hat{\theta}D_{x}\nonumber \\
  372. & =D_{\theta}+\sin\theta\sin\hat{\theta}D_{x}\ ,\label{eq:distortion-final}
  373. \end{align}
  374. \end_inset
  375. where
  376. \begin_inset Formula $D_{\theta}=2-2\cos\left(\theta-\hat{\theta}\right)$
  377. \end_inset
  378. is the mean square error due to quantizing
  379. \begin_inset Formula $\theta$
  380. \end_inset
  381. .
  382. So essentially, the total error is the sum of the error due to quantization
  383. of
  384. \begin_inset Formula $\theta$
  385. \end_inset
  386. and the error in the PVQ quantization assuming a radius that's the geometric
  387. mean of the quantized and unquantized radius.
  388. \end_layout
  389. \begin_layout Standard
  390. Putting
  391. \begin_inset CommandInset ref
  392. LatexCommand eqref
  393. reference "eq:distortion-final"
  394. \end_inset
  395. into
  396. \begin_inset CommandInset ref
  397. LatexCommand eqref
  398. reference "eq:pvq_distortion"
  399. \end_inset
  400. , we obtain
  401. \begin_inset Formula
  402. \begin{equation}
  403. D=\left(g-\hat{g}\right)^{2}+g\hat{g}\left(D_{\theta}+\sin\theta\sin\hat{\theta}D_{x}\right)\ .\label{eq:total_pvq_theta_dist}
  404. \end{equation}
  405. \end_inset
  406. \end_layout
  407. \begin_layout Part
  408. Biorthogonality and quantization noise
  409. \end_layout
  410. \begin_layout Standard
  411. A biorthogonal transform defined as
  412. \begin_inset Formula
  413. \[
  414. \mathbf{H}\mathbf{G}^{T}=I
  415. \]
  416. \end_inset
  417. where the columns of
  418. \begin_inset Formula $\mathbf{G}$
  419. \end_inset
  420. are the analysis basis functions and the columns of
  421. \begin_inset Formula $\mathbf{H}$
  422. \end_inset
  423. are the columns of the synthesis basis functions.
  424. We define the diagonal matrix
  425. \begin_inset Formula $\mathbf{S}$
  426. \end_inset
  427. such that the diagonal elements
  428. \begin_inset Formula $s_{i,i}=\sqrt{\mathbf{h}_{i}^{T}\mathbf{h}_{i}}$
  429. \end_inset
  430. are the magnitudes of the synthesis basis functions.
  431. For an input vector
  432. \begin_inset Formula $\mathbf{x}$
  433. \end_inset
  434. , the quantization process can be modeled as adding an uncorrelated noise
  435. vector
  436. \begin_inset Formula $\mathbf{n}$
  437. \end_inset
  438. such that the reconstruction
  439. \begin_inset Formula $\mathbf{y}$
  440. \end_inset
  441. is
  442. \begin_inset Formula
  443. \begin{align*}
  444. \mathbf{y} & =\mathbf{H}\mathbf{S}^{-1}\left(\mathbf{S}\mathbf{G}^{T}\mathbf{x}+\mathbf{n}\right)\\
  445. & =\mathbf{x}+\mathbf{H}\mathbf{S}^{-1}\mathbf{n}
  446. \end{align*}
  447. \end_inset
  448. \end_layout
  449. \begin_layout Standard
  450. The distortion due to quantization is
  451. \begin_inset Formula
  452. \begin{align*}
  453. D & =\left(\mathbf{x}-\mathbf{y}\right)^{T}\left(\mathbf{x}-\mathbf{y}\right)\\
  454. & =\left(\mathbf{H}\mathbf{S}^{-1}\mathbf{n}\right)^{T}\mathbf{H}\mathbf{S}^{-1}\mathbf{n}\\
  455. & =\mathbf{n}^{T}\left(\mathbf{S}^{T}\right)^{-1}\mathbf{H}^{T}\mathbf{H}\mathbf{S}^{-1}\mathbf{n}\\
  456. & =\mathbf{n}^{T}\mathbf{R}\mathbf{n}
  457. \end{align*}
  458. \end_inset
  459. where
  460. \begin_inset Formula $\mathbf{R}=\left(\mathbf{S}^{-1}\right)^{T}\mathbf{H}^{T}\mathbf{H}\mathbf{S}^{-1}$
  461. \end_inset
  462. .
  463. Rewriting
  464. \begin_inset Formula $D$
  465. \end_inset
  466. as a summation, we have
  467. \begin_inset Formula
  468. \[
  469. D=\sum_{i}\sum_{j}r_{i,i}n_{i}n_{j}
  470. \]
  471. \end_inset
  472. This is different from the orthonormal case where
  473. \begin_inset Formula
  474. \[
  475. D=\sum_{i}n_{i}^{2}
  476. \]
  477. \end_inset
  478. due to
  479. \begin_inset Formula $\mathbf{R}$
  480. \end_inset
  481. being the identity matrix (also known as Parseval's theorem).
  482. \end_layout
  483. \begin_layout Standard
  484. Since the noise is uncorrelated and since the diagonal of
  485. \begin_inset Formula $\mathbf{R}$
  486. \end_inset
  487. is equal to 1, then the expectation of the noise power is
  488. \begin_inset Formula $E\{D\}=E\{\mathbf{n}^{T}\mathbf{n}\}$
  489. \end_inset
  490. , like in the orthonormal case.
  491. This shows that multiplying each transformed coefficient
  492. \begin_inset Formula $x_{i}$
  493. \end_inset
  494. by the magnitude of the corresponding synthesis function
  495. \begin_inset Formula $s_{i,i}$
  496. \end_inset
  497. prior to quantization is sufficient to obtain the same
  498. \emph on
  499. average
  500. \emph default
  501. noise behaviour.
  502. In practice, it
  503. \emph on
  504. may
  505. \emph default
  506. be possible to do some clever trick in the quantization search to obtain
  507. a smaller distortion than the orthonormal case, partially compensating
  508. for the entropy cost of the biorthogonal transform.
  509. \end_layout
  510. \begin_layout Standard
  511. The average distortion we find also supports the use of the squared magnitude
  512. of the synthesis basis function in the computation of the coding gain.
  513. \end_layout
  514. \begin_layout Part
  515. Temporal RDO
  516. \end_layout
  517. \begin_layout Standard
  518. Let's assume two sequences of
  519. \begin_inset Formula $N$
  520. \end_inset
  521. samples each being quantized with a resolution
  522. \begin_inset Formula $Q$
  523. \end_inset
  524. .
  525. One sequence is constant, while the other isn't.
  526. The total distortion will be
  527. \begin_inset Formula
  528. \[
  529. D=\frac{2NQ^{2}}{12}\ .
  530. \]
  531. \end_inset
  532. \end_layout
  533. \begin_layout Standard
  534. If we assume that we can skip encoding of the constant sequence at no cost
  535. and shift
  536. \begin_inset Formula $b$
  537. \end_inset
  538. bits away from the variable sequence to the constant one, it costs only
  539. \begin_inset Formula $b/N$
  540. \end_inset
  541. bits per sample on the variable sequence and we get a distortion
  542. \begin_inset Formula
  543. \begin{align*}
  544. D & =N\frac{\left(2^{-b}Q\right)^{2}}{12}+N\frac{\left(2^{b/N}Q\right)^{2}}{12}\\
  545. & =\frac{NQ^{2}}{12}\left(2^{-2b}+2^{2b/N}\right)
  546. \end{align*}
  547. \end_inset
  548. We solve for
  549. \begin_inset Formula $\partial D/\partial b=0$
  550. \end_inset
  551. to minimize distortion:
  552. \begin_inset Formula
  553. \begin{gather*}
  554. \frac{\partial D}{\partial b}=\frac{NQ^{2}}{12}\left(-2b\log22^{-2b}+\frac{2b\log2}{N}2^{2b/N}\right)=0\\
  555. \frac{2b2^{2b/N}\log2}{N}=2b2^{-2b}\log2\\
  556. \frac{2^{2b/N}}{N}=2^{-2b}
  557. \end{gather*}
  558. \end_inset
  559. Taking the base-2 log on both side:
  560. \begin_inset Formula
  561. \begin{align*}
  562. 2b/N-\log_{2}N & =-2b\\
  563. \frac{2b\left(N+1\right)}{N} & =\log_{2}N\\
  564. b & =\frac{N\log_{2}N}{2\left(N+1\right)}
  565. \end{align*}
  566. \end_inset
  567. \end_layout
  568. \begin_layout Section*
  569. Slowly varying sequence
  570. \end_layout
  571. \begin_layout Standard
  572. Let's see what happens with a slowly varying sequence rather than a constant
  573. one...
  574. \end_layout
  575. \end_body
  576. \end_document