fsl_dma.c 31 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2010 Freescale Semiconductor, Inc.
  7. *
  8. * This file is licensed under the terms of the GNU General Public License
  9. * version 2. This program is licensed "as is" without any warranty of any
  10. * kind, whether express or implied.
  11. *
  12. * This driver implements ASoC support for the Elo DMA controller, which is
  13. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  14. * the PCM driver is what handles the DMA buffer.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/init.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/delay.h>
  22. #include <linux/gfp.h>
  23. #include <linux/of_platform.h>
  24. #include <linux/list.h>
  25. #include <linux/slab.h>
  26. #include <sound/core.h>
  27. #include <sound/pcm.h>
  28. #include <sound/pcm_params.h>
  29. #include <sound/soc.h>
  30. #include <asm/io.h>
  31. #include "fsl_dma.h"
  32. #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
  33. /*
  34. * The formats that the DMA controller supports, which is anything
  35. * that is 8, 16, or 32 bits.
  36. */
  37. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  38. SNDRV_PCM_FMTBIT_U8 | \
  39. SNDRV_PCM_FMTBIT_S16_LE | \
  40. SNDRV_PCM_FMTBIT_S16_BE | \
  41. SNDRV_PCM_FMTBIT_U16_LE | \
  42. SNDRV_PCM_FMTBIT_U16_BE | \
  43. SNDRV_PCM_FMTBIT_S24_LE | \
  44. SNDRV_PCM_FMTBIT_S24_BE | \
  45. SNDRV_PCM_FMTBIT_U24_LE | \
  46. SNDRV_PCM_FMTBIT_U24_BE | \
  47. SNDRV_PCM_FMTBIT_S32_LE | \
  48. SNDRV_PCM_FMTBIT_S32_BE | \
  49. SNDRV_PCM_FMTBIT_U32_LE | \
  50. SNDRV_PCM_FMTBIT_U32_BE)
  51. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  52. SNDRV_PCM_RATE_CONTINUOUS)
  53. struct dma_object {
  54. struct snd_soc_platform_driver dai;
  55. dma_addr_t ssi_stx_phys;
  56. dma_addr_t ssi_srx_phys;
  57. unsigned int ssi_fifo_depth;
  58. struct ccsr_dma_channel __iomem *channel;
  59. unsigned int irq;
  60. bool assigned;
  61. char path[1];
  62. };
  63. /*
  64. * The number of DMA links to use. Two is the bare minimum, but if you
  65. * have really small links you might need more.
  66. */
  67. #define NUM_DMA_LINKS 2
  68. /** fsl_dma_private: p-substream DMA data
  69. *
  70. * Each substream has a 1-to-1 association with a DMA channel.
  71. *
  72. * The link[] array is first because it needs to be aligned on a 32-byte
  73. * boundary, so putting it first will ensure alignment without padding the
  74. * structure.
  75. *
  76. * @link[]: array of link descriptors
  77. * @dma_channel: pointer to the DMA channel's registers
  78. * @irq: IRQ for this DMA channel
  79. * @substream: pointer to the substream object, needed by the ISR
  80. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  81. * @ld_buf_phys: physical address of the LD buffer
  82. * @current_link: index into link[] of the link currently being processed
  83. * @dma_buf_phys: physical address of the DMA buffer
  84. * @dma_buf_next: physical address of the next period to process
  85. * @dma_buf_end: physical address of the byte after the end of the DMA
  86. * @buffer period_size: the size of a single period
  87. * @num_periods: the number of periods in the DMA buffer
  88. */
  89. struct fsl_dma_private {
  90. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  91. struct ccsr_dma_channel __iomem *dma_channel;
  92. unsigned int irq;
  93. struct snd_pcm_substream *substream;
  94. dma_addr_t ssi_sxx_phys;
  95. unsigned int ssi_fifo_depth;
  96. dma_addr_t ld_buf_phys;
  97. unsigned int current_link;
  98. dma_addr_t dma_buf_phys;
  99. dma_addr_t dma_buf_next;
  100. dma_addr_t dma_buf_end;
  101. size_t period_size;
  102. unsigned int num_periods;
  103. };
  104. /**
  105. * fsl_dma_hardare: define characteristics of the PCM hardware.
  106. *
  107. * The PCM hardware is the Freescale DMA controller. This structure defines
  108. * the capabilities of that hardware.
  109. *
  110. * Since the sampling rate and data format are not controlled by the DMA
  111. * controller, we specify no limits for those values. The only exception is
  112. * period_bytes_min, which is set to a reasonably low value to prevent the
  113. * DMA controller from generating too many interrupts per second.
  114. *
  115. * Since each link descriptor has a 32-bit byte count field, we set
  116. * period_bytes_max to the largest 32-bit number. We also have no maximum
  117. * number of periods.
  118. *
  119. * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
  120. * limitation in the SSI driver requires the sample rates for playback and
  121. * capture to be the same.
  122. */
  123. static const struct snd_pcm_hardware fsl_dma_hardware = {
  124. .info = SNDRV_PCM_INFO_INTERLEAVED |
  125. SNDRV_PCM_INFO_MMAP |
  126. SNDRV_PCM_INFO_MMAP_VALID |
  127. SNDRV_PCM_INFO_JOINT_DUPLEX |
  128. SNDRV_PCM_INFO_PAUSE,
  129. .formats = FSLDMA_PCM_FORMATS,
  130. .rates = FSLDMA_PCM_RATES,
  131. .rate_min = 5512,
  132. .rate_max = 192000,
  133. .period_bytes_min = 512, /* A reasonable limit */
  134. .period_bytes_max = (u32) -1,
  135. .periods_min = NUM_DMA_LINKS,
  136. .periods_max = (unsigned int) -1,
  137. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  138. };
  139. /**
  140. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  141. *
  142. * This function should be called by the ISR whenever the DMA controller
  143. * halts data transfer.
  144. */
  145. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  146. {
  147. unsigned long flags;
  148. snd_pcm_stream_lock_irqsave(substream, flags);
  149. if (snd_pcm_running(substream))
  150. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  151. snd_pcm_stream_unlock_irqrestore(substream, flags);
  152. }
  153. /**
  154. * fsl_dma_update_pointers - update LD pointers to point to the next period
  155. *
  156. * As each period is completed, this function changes the the link
  157. * descriptor pointers for that period to point to the next period.
  158. */
  159. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  160. {
  161. struct fsl_dma_link_descriptor *link =
  162. &dma_private->link[dma_private->current_link];
  163. /* Update our link descriptors to point to the next period. On a 36-bit
  164. * system, we also need to update the ESAD bits. We also set (keep) the
  165. * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
  166. */
  167. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  168. link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
  169. #ifdef CONFIG_PHYS_64BIT
  170. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  171. upper_32_bits(dma_private->dma_buf_next));
  172. #endif
  173. } else {
  174. link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
  175. #ifdef CONFIG_PHYS_64BIT
  176. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  177. upper_32_bits(dma_private->dma_buf_next));
  178. #endif
  179. }
  180. /* Update our variables for next time */
  181. dma_private->dma_buf_next += dma_private->period_size;
  182. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  183. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  184. if (++dma_private->current_link >= NUM_DMA_LINKS)
  185. dma_private->current_link = 0;
  186. }
  187. /**
  188. * fsl_dma_isr: interrupt handler for the DMA controller
  189. *
  190. * @irq: IRQ of the DMA channel
  191. * @dev_id: pointer to the dma_private structure for this DMA channel
  192. */
  193. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  194. {
  195. struct fsl_dma_private *dma_private = dev_id;
  196. struct snd_pcm_substream *substream = dma_private->substream;
  197. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  198. struct device *dev = rtd->platform->dev;
  199. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  200. irqreturn_t ret = IRQ_NONE;
  201. u32 sr, sr2 = 0;
  202. /* We got an interrupt, so read the status register to see what we
  203. were interrupted for.
  204. */
  205. sr = in_be32(&dma_channel->sr);
  206. if (sr & CCSR_DMA_SR_TE) {
  207. dev_err(dev, "dma transmit error\n");
  208. fsl_dma_abort_stream(substream);
  209. sr2 |= CCSR_DMA_SR_TE;
  210. ret = IRQ_HANDLED;
  211. }
  212. if (sr & CCSR_DMA_SR_CH)
  213. ret = IRQ_HANDLED;
  214. if (sr & CCSR_DMA_SR_PE) {
  215. dev_err(dev, "dma programming error\n");
  216. fsl_dma_abort_stream(substream);
  217. sr2 |= CCSR_DMA_SR_PE;
  218. ret = IRQ_HANDLED;
  219. }
  220. if (sr & CCSR_DMA_SR_EOLNI) {
  221. sr2 |= CCSR_DMA_SR_EOLNI;
  222. ret = IRQ_HANDLED;
  223. }
  224. if (sr & CCSR_DMA_SR_CB)
  225. ret = IRQ_HANDLED;
  226. if (sr & CCSR_DMA_SR_EOSI) {
  227. /* Tell ALSA we completed a period. */
  228. snd_pcm_period_elapsed(substream);
  229. /*
  230. * Update our link descriptors to point to the next period. We
  231. * only need to do this if the number of periods is not equal to
  232. * the number of links.
  233. */
  234. if (dma_private->num_periods != NUM_DMA_LINKS)
  235. fsl_dma_update_pointers(dma_private);
  236. sr2 |= CCSR_DMA_SR_EOSI;
  237. ret = IRQ_HANDLED;
  238. }
  239. if (sr & CCSR_DMA_SR_EOLSI) {
  240. sr2 |= CCSR_DMA_SR_EOLSI;
  241. ret = IRQ_HANDLED;
  242. }
  243. /* Clear the bits that we set */
  244. if (sr2)
  245. out_be32(&dma_channel->sr, sr2);
  246. return ret;
  247. }
  248. /**
  249. * fsl_dma_new: initialize this PCM driver.
  250. *
  251. * This function is called when the codec driver calls snd_soc_new_pcms(),
  252. * once for each .dai_link in the machine driver's snd_soc_card
  253. * structure.
  254. *
  255. * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
  256. * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
  257. * is specified. Therefore, any DMA buffers we allocate will always be in low
  258. * memory, but we support for 36-bit physical addresses anyway.
  259. *
  260. * Regardless of where the memory is actually allocated, since the device can
  261. * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
  262. */
  263. static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
  264. struct snd_pcm *pcm)
  265. {
  266. static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
  267. int ret;
  268. if (!card->dev->dma_mask)
  269. card->dev->dma_mask = &fsl_dma_dmamask;
  270. if (!card->dev->coherent_dma_mask)
  271. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  272. /* Some codecs have separate DAIs for playback and capture, so we
  273. * should allocate a DMA buffer only for the streams that are valid.
  274. */
  275. if (pcm->streams[0].substream) {
  276. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  277. fsl_dma_hardware.buffer_bytes_max,
  278. &pcm->streams[0].substream->dma_buffer);
  279. if (ret) {
  280. dev_err(card->dev, "can't alloc playback dma buffer\n");
  281. return ret;
  282. }
  283. }
  284. if (pcm->streams[1].substream) {
  285. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  286. fsl_dma_hardware.buffer_bytes_max,
  287. &pcm->streams[1].substream->dma_buffer);
  288. if (ret) {
  289. dev_err(card->dev, "can't alloc capture dma buffer\n");
  290. snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
  291. return ret;
  292. }
  293. }
  294. return 0;
  295. }
  296. /**
  297. * fsl_dma_open: open a new substream.
  298. *
  299. * Each substream has its own DMA buffer.
  300. *
  301. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  302. * descriptors that ping-pong from one period to the next. For example, if
  303. * there are six periods and two link descriptors, this is how they look
  304. * before playback starts:
  305. *
  306. * The last link descriptor
  307. * ____________ points back to the first
  308. * | |
  309. * V |
  310. * ___ ___ |
  311. * | |->| |->|
  312. * |___| |___|
  313. * | |
  314. * | |
  315. * V V
  316. * _________________________________________
  317. * | | | | | | | The DMA buffer is
  318. * | | | | | | | divided into 6 parts
  319. * |______|______|______|______|______|______|
  320. *
  321. * and here's how they look after the first period is finished playing:
  322. *
  323. * ____________
  324. * | |
  325. * V |
  326. * ___ ___ |
  327. * | |->| |->|
  328. * |___| |___|
  329. * | |
  330. * |______________
  331. * | |
  332. * V V
  333. * _________________________________________
  334. * | | | | | | |
  335. * | | | | | | |
  336. * |______|______|______|______|______|______|
  337. *
  338. * The first link descriptor now points to the third period. The DMA
  339. * controller is currently playing the second period. When it finishes, it
  340. * will jump back to the first descriptor and play the third period.
  341. *
  342. * There are four reasons we do this:
  343. *
  344. * 1. The only way to get the DMA controller to automatically restart the
  345. * transfer when it gets to the end of the buffer is to use chaining
  346. * mode. Basic direct mode doesn't offer that feature.
  347. * 2. We need to receive an interrupt at the end of every period. The DMA
  348. * controller can generate an interrupt at the end of every link transfer
  349. * (aka segment). Making each period into a DMA segment will give us the
  350. * interrupts we need.
  351. * 3. By creating only two link descriptors, regardless of the number of
  352. * periods, we do not need to reallocate the link descriptors if the
  353. * number of periods changes.
  354. * 4. All of the audio data is still stored in a single, contiguous DMA
  355. * buffer, which is what ALSA expects. We're just dividing it into
  356. * contiguous parts, and creating a link descriptor for each one.
  357. */
  358. static int fsl_dma_open(struct snd_pcm_substream *substream)
  359. {
  360. struct snd_pcm_runtime *runtime = substream->runtime;
  361. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  362. struct device *dev = rtd->platform->dev;
  363. struct dma_object *dma =
  364. container_of(rtd->platform->driver, struct dma_object, dai);
  365. struct fsl_dma_private *dma_private;
  366. struct ccsr_dma_channel __iomem *dma_channel;
  367. dma_addr_t ld_buf_phys;
  368. u64 temp_link; /* Pointer to next link descriptor */
  369. u32 mr;
  370. unsigned int channel;
  371. int ret = 0;
  372. unsigned int i;
  373. /*
  374. * Reject any DMA buffer whose size is not a multiple of the period
  375. * size. We need to make sure that the DMA buffer can be evenly divided
  376. * into periods.
  377. */
  378. ret = snd_pcm_hw_constraint_integer(runtime,
  379. SNDRV_PCM_HW_PARAM_PERIODS);
  380. if (ret < 0) {
  381. dev_err(dev, "invalid buffer size\n");
  382. return ret;
  383. }
  384. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  385. if (dma->assigned) {
  386. dev_err(dev, "dma channel already assigned\n");
  387. return -EBUSY;
  388. }
  389. dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
  390. &ld_buf_phys, GFP_KERNEL);
  391. if (!dma_private) {
  392. dev_err(dev, "can't allocate dma private data\n");
  393. return -ENOMEM;
  394. }
  395. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  396. dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
  397. else
  398. dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
  399. dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
  400. dma_private->dma_channel = dma->channel;
  401. dma_private->irq = dma->irq;
  402. dma_private->substream = substream;
  403. dma_private->ld_buf_phys = ld_buf_phys;
  404. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  405. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "fsldma-audio",
  406. dma_private);
  407. if (ret) {
  408. dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
  409. dma_private->irq, ret);
  410. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  411. dma_private, dma_private->ld_buf_phys);
  412. return ret;
  413. }
  414. dma->assigned = 1;
  415. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  416. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  417. runtime->private_data = dma_private;
  418. /* Program the fixed DMA controller parameters */
  419. dma_channel = dma_private->dma_channel;
  420. temp_link = dma_private->ld_buf_phys +
  421. sizeof(struct fsl_dma_link_descriptor);
  422. for (i = 0; i < NUM_DMA_LINKS; i++) {
  423. dma_private->link[i].next = cpu_to_be64(temp_link);
  424. temp_link += sizeof(struct fsl_dma_link_descriptor);
  425. }
  426. /* The last link descriptor points to the first */
  427. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  428. /* Tell the DMA controller where the first link descriptor is */
  429. out_be32(&dma_channel->clndar,
  430. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  431. out_be32(&dma_channel->eclndar,
  432. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  433. /* The manual says the BCR must be clear before enabling EMP */
  434. out_be32(&dma_channel->bcr, 0);
  435. /*
  436. * Program the mode register for interrupts, external master control,
  437. * and source/destination hold. Also clear the Channel Abort bit.
  438. */
  439. mr = in_be32(&dma_channel->mr) &
  440. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  441. /*
  442. * We want External Master Start and External Master Pause enabled,
  443. * because the SSI is controlling the DMA controller. We want the DMA
  444. * controller to be set up in advance, and then we signal only the SSI
  445. * to start transferring.
  446. *
  447. * We want End-Of-Segment Interrupts enabled, because this will generate
  448. * an interrupt at the end of each segment (each link descriptor
  449. * represents one segment). Each DMA segment is the same thing as an
  450. * ALSA period, so this is how we get an interrupt at the end of every
  451. * period.
  452. *
  453. * We want Error Interrupt enabled, so that we can get an error if
  454. * the DMA controller is mis-programmed somehow.
  455. */
  456. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  457. CCSR_DMA_MR_EMS_EN;
  458. /* For playback, we want the destination address to be held. For
  459. capture, set the source address to be held. */
  460. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  461. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  462. out_be32(&dma_channel->mr, mr);
  463. return 0;
  464. }
  465. /**
  466. * fsl_dma_hw_params: continue initializing the DMA links
  467. *
  468. * This function obtains hardware parameters about the opened stream and
  469. * programs the DMA controller accordingly.
  470. *
  471. * One drawback of big-endian is that when copying integers of different
  472. * sizes to a fixed-sized register, the address to which the integer must be
  473. * copied is dependent on the size of the integer.
  474. *
  475. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  476. * integer, then X should be copied to address P. However, if X is a 16-bit
  477. * integer, then it should be copied to P+2. If X is an 8-bit register,
  478. * then it should be copied to P+3.
  479. *
  480. * So for playback of 8-bit samples, the DMA controller must transfer single
  481. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  482. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  483. *
  484. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  485. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  486. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  487. * 24-bit data must be padded to 32 bits.
  488. */
  489. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  490. struct snd_pcm_hw_params *hw_params)
  491. {
  492. struct snd_pcm_runtime *runtime = substream->runtime;
  493. struct fsl_dma_private *dma_private = runtime->private_data;
  494. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  495. struct device *dev = rtd->platform->dev;
  496. /* Number of bits per sample */
  497. unsigned int sample_bits =
  498. snd_pcm_format_physical_width(params_format(hw_params));
  499. /* Number of bytes per frame */
  500. unsigned int sample_bytes = sample_bits / 8;
  501. /* Bus address of SSI STX register */
  502. dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
  503. /* Size of the DMA buffer, in bytes */
  504. size_t buffer_size = params_buffer_bytes(hw_params);
  505. /* Number of bytes per period */
  506. size_t period_size = params_period_bytes(hw_params);
  507. /* Pointer to next period */
  508. dma_addr_t temp_addr = substream->dma_buffer.addr;
  509. /* Pointer to DMA controller */
  510. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  511. u32 mr; /* DMA Mode Register */
  512. unsigned int i;
  513. /* Initialize our DMA tracking variables */
  514. dma_private->period_size = period_size;
  515. dma_private->num_periods = params_periods(hw_params);
  516. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  517. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  518. (NUM_DMA_LINKS * period_size);
  519. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  520. /* This happens if the number of periods == NUM_DMA_LINKS */
  521. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  522. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  523. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  524. /* Due to a quirk of the SSI's STX register, the target address
  525. * for the DMA operations depends on the sample size. So we calculate
  526. * that offset here. While we're at it, also tell the DMA controller
  527. * how much data to transfer per sample.
  528. */
  529. switch (sample_bits) {
  530. case 8:
  531. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  532. ssi_sxx_phys += 3;
  533. break;
  534. case 16:
  535. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  536. ssi_sxx_phys += 2;
  537. break;
  538. case 32:
  539. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  540. break;
  541. default:
  542. /* We should never get here */
  543. dev_err(dev, "unsupported sample size %u\n", sample_bits);
  544. return -EINVAL;
  545. }
  546. /*
  547. * BWC determines how many bytes are sent/received before the DMA
  548. * controller checks the SSI to see if it needs to stop. BWC should
  549. * always be a multiple of the frame size, so that we always transmit
  550. * whole frames. Each frame occupies two slots in the FIFO. The
  551. * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
  552. * (MR[BWC] can only represent even powers of two).
  553. *
  554. * To simplify the process, we set BWC to the largest value that is
  555. * less than or equal to the FIFO watermark. For playback, this ensures
  556. * that we transfer the maximum amount without overrunning the FIFO.
  557. * For capture, this ensures that we transfer the maximum amount without
  558. * underrunning the FIFO.
  559. *
  560. * f = SSI FIFO depth
  561. * w = SSI watermark value (which equals f - 2)
  562. * b = DMA bandwidth count (in bytes)
  563. * s = sample size (in bytes, which equals frame_size * 2)
  564. *
  565. * For playback, we never transmit more than the transmit FIFO
  566. * watermark, otherwise we might write more data than the FIFO can hold.
  567. * The watermark is equal to the FIFO depth minus two.
  568. *
  569. * For capture, two equations must hold:
  570. * w > f - (b / s)
  571. * w >= b / s
  572. *
  573. * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
  574. * b = s * w, which is equal to
  575. * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
  576. */
  577. mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
  578. out_be32(&dma_channel->mr, mr);
  579. for (i = 0; i < NUM_DMA_LINKS; i++) {
  580. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  581. link->count = cpu_to_be32(period_size);
  582. /* The snoop bit tells the DMA controller whether it should tell
  583. * the ECM to snoop during a read or write to an address. For
  584. * audio, we use DMA to transfer data between memory and an I/O
  585. * device (the SSI's STX0 or SRX0 register). Snooping is only
  586. * needed if there is a cache, so we need to snoop memory
  587. * addresses only. For playback, that means we snoop the source
  588. * but not the destination. For capture, we snoop the
  589. * destination but not the source.
  590. *
  591. * Note that failing to snoop properly is unlikely to cause
  592. * cache incoherency if the period size is larger than the
  593. * size of L1 cache. This is because filling in one period will
  594. * flush out the data for the previous period. So if you
  595. * increased period_bytes_min to a large enough size, you might
  596. * get more performance by not snooping, and you'll still be
  597. * okay. You'll need to update fsl_dma_update_pointers() also.
  598. */
  599. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  600. link->source_addr = cpu_to_be32(temp_addr);
  601. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  602. upper_32_bits(temp_addr));
  603. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  604. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  605. upper_32_bits(ssi_sxx_phys));
  606. } else {
  607. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  608. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  609. upper_32_bits(ssi_sxx_phys));
  610. link->dest_addr = cpu_to_be32(temp_addr);
  611. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  612. upper_32_bits(temp_addr));
  613. }
  614. temp_addr += period_size;
  615. }
  616. return 0;
  617. }
  618. /**
  619. * fsl_dma_pointer: determine the current position of the DMA transfer
  620. *
  621. * This function is called by ALSA when ALSA wants to know where in the
  622. * stream buffer the hardware currently is.
  623. *
  624. * For playback, the SAR register contains the physical address of the most
  625. * recent DMA transfer. For capture, the value is in the DAR register.
  626. *
  627. * The base address of the buffer is stored in the source_addr field of the
  628. * first link descriptor.
  629. */
  630. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  631. {
  632. struct snd_pcm_runtime *runtime = substream->runtime;
  633. struct fsl_dma_private *dma_private = runtime->private_data;
  634. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  635. struct device *dev = rtd->platform->dev;
  636. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  637. dma_addr_t position;
  638. snd_pcm_uframes_t frames;
  639. /* Obtain the current DMA pointer, but don't read the ESAD bits if we
  640. * only have 32-bit DMA addresses. This function is typically called
  641. * in interrupt context, so we need to optimize it.
  642. */
  643. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  644. position = in_be32(&dma_channel->sar);
  645. #ifdef CONFIG_PHYS_64BIT
  646. position |= (u64)(in_be32(&dma_channel->satr) &
  647. CCSR_DMA_ATR_ESAD_MASK) << 32;
  648. #endif
  649. } else {
  650. position = in_be32(&dma_channel->dar);
  651. #ifdef CONFIG_PHYS_64BIT
  652. position |= (u64)(in_be32(&dma_channel->datr) &
  653. CCSR_DMA_ATR_ESAD_MASK) << 32;
  654. #endif
  655. }
  656. /*
  657. * When capture is started, the SSI immediately starts to fill its FIFO.
  658. * This means that the DMA controller is not started until the FIFO is
  659. * full. However, ALSA calls this function before that happens, when
  660. * MR.DAR is still zero. In this case, just return zero to indicate
  661. * that nothing has been received yet.
  662. */
  663. if (!position)
  664. return 0;
  665. if ((position < dma_private->dma_buf_phys) ||
  666. (position > dma_private->dma_buf_end)) {
  667. dev_err(dev, "dma pointer is out of range, halting stream\n");
  668. return SNDRV_PCM_POS_XRUN;
  669. }
  670. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  671. /*
  672. * If the current address is just past the end of the buffer, wrap it
  673. * around.
  674. */
  675. if (frames == runtime->buffer_size)
  676. frames = 0;
  677. return frames;
  678. }
  679. /**
  680. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  681. *
  682. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  683. * registers.
  684. *
  685. * This function can be called multiple times.
  686. */
  687. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  688. {
  689. struct snd_pcm_runtime *runtime = substream->runtime;
  690. struct fsl_dma_private *dma_private = runtime->private_data;
  691. if (dma_private) {
  692. struct ccsr_dma_channel __iomem *dma_channel;
  693. dma_channel = dma_private->dma_channel;
  694. /* Stop the DMA */
  695. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  696. out_be32(&dma_channel->mr, 0);
  697. /* Reset all the other registers */
  698. out_be32(&dma_channel->sr, -1);
  699. out_be32(&dma_channel->clndar, 0);
  700. out_be32(&dma_channel->eclndar, 0);
  701. out_be32(&dma_channel->satr, 0);
  702. out_be32(&dma_channel->sar, 0);
  703. out_be32(&dma_channel->datr, 0);
  704. out_be32(&dma_channel->dar, 0);
  705. out_be32(&dma_channel->bcr, 0);
  706. out_be32(&dma_channel->nlndar, 0);
  707. out_be32(&dma_channel->enlndar, 0);
  708. }
  709. return 0;
  710. }
  711. /**
  712. * fsl_dma_close: close the stream.
  713. */
  714. static int fsl_dma_close(struct snd_pcm_substream *substream)
  715. {
  716. struct snd_pcm_runtime *runtime = substream->runtime;
  717. struct fsl_dma_private *dma_private = runtime->private_data;
  718. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  719. struct device *dev = rtd->platform->dev;
  720. struct dma_object *dma =
  721. container_of(rtd->platform->driver, struct dma_object, dai);
  722. if (dma_private) {
  723. if (dma_private->irq)
  724. free_irq(dma_private->irq, dma_private);
  725. if (dma_private->ld_buf_phys) {
  726. dma_unmap_single(dev, dma_private->ld_buf_phys,
  727. sizeof(dma_private->link),
  728. DMA_TO_DEVICE);
  729. }
  730. /* Deallocate the fsl_dma_private structure */
  731. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  732. dma_private, dma_private->ld_buf_phys);
  733. substream->runtime->private_data = NULL;
  734. }
  735. dma->assigned = 0;
  736. return 0;
  737. }
  738. /*
  739. * Remove this PCM driver.
  740. */
  741. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  742. {
  743. struct snd_pcm_substream *substream;
  744. unsigned int i;
  745. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  746. substream = pcm->streams[i].substream;
  747. if (substream) {
  748. snd_dma_free_pages(&substream->dma_buffer);
  749. substream->dma_buffer.area = NULL;
  750. substream->dma_buffer.addr = 0;
  751. }
  752. }
  753. }
  754. /**
  755. * find_ssi_node -- returns the SSI node that points to his DMA channel node
  756. *
  757. * Although this DMA driver attempts to operate independently of the other
  758. * devices, it still needs to determine some information about the SSI device
  759. * that it's working with. Unfortunately, the device tree does not contain
  760. * a pointer from the DMA channel node to the SSI node -- the pointer goes the
  761. * other way. So we need to scan the device tree for SSI nodes until we find
  762. * the one that points to the given DMA channel node. It's ugly, but at least
  763. * it's contained in this one function.
  764. */
  765. static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
  766. {
  767. struct device_node *ssi_np, *np;
  768. for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
  769. /* Check each DMA phandle to see if it points to us. We
  770. * assume that device_node pointers are a valid comparison.
  771. */
  772. np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
  773. if (np == dma_channel_np)
  774. return ssi_np;
  775. np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
  776. if (np == dma_channel_np)
  777. return ssi_np;
  778. }
  779. return NULL;
  780. }
  781. static struct snd_pcm_ops fsl_dma_ops = {
  782. .open = fsl_dma_open,
  783. .close = fsl_dma_close,
  784. .ioctl = snd_pcm_lib_ioctl,
  785. .hw_params = fsl_dma_hw_params,
  786. .hw_free = fsl_dma_hw_free,
  787. .pointer = fsl_dma_pointer,
  788. };
  789. static int __devinit fsl_soc_dma_probe(struct platform_device *pdev)
  790. {
  791. struct dma_object *dma;
  792. struct device_node *np = pdev->dev.of_node;
  793. struct device_node *ssi_np;
  794. struct resource res;
  795. const uint32_t *iprop;
  796. int ret;
  797. /* Find the SSI node that points to us. */
  798. ssi_np = find_ssi_node(np);
  799. if (!ssi_np) {
  800. dev_err(&pdev->dev, "cannot find parent SSI node\n");
  801. return -ENODEV;
  802. }
  803. ret = of_address_to_resource(ssi_np, 0, &res);
  804. if (ret) {
  805. dev_err(&pdev->dev, "could not determine resources for %s\n",
  806. ssi_np->full_name);
  807. of_node_put(ssi_np);
  808. return ret;
  809. }
  810. dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
  811. if (!dma) {
  812. dev_err(&pdev->dev, "could not allocate dma object\n");
  813. of_node_put(ssi_np);
  814. return -ENOMEM;
  815. }
  816. strcpy(dma->path, np->full_name);
  817. dma->dai.ops = &fsl_dma_ops;
  818. dma->dai.pcm_new = fsl_dma_new;
  819. dma->dai.pcm_free = fsl_dma_free_dma_buffers;
  820. /* Store the SSI-specific information that we need */
  821. dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
  822. dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
  823. iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
  824. if (iprop)
  825. dma->ssi_fifo_depth = *iprop;
  826. else
  827. /* Older 8610 DTs didn't have the fifo-depth property */
  828. dma->ssi_fifo_depth = 8;
  829. of_node_put(ssi_np);
  830. ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
  831. if (ret) {
  832. dev_err(&pdev->dev, "could not register platform\n");
  833. kfree(dma);
  834. return ret;
  835. }
  836. dma->channel = of_iomap(np, 0);
  837. dma->irq = irq_of_parse_and_map(np, 0);
  838. dev_set_drvdata(&pdev->dev, dma);
  839. return 0;
  840. }
  841. static int __devexit fsl_soc_dma_remove(struct platform_device *pdev)
  842. {
  843. struct dma_object *dma = dev_get_drvdata(&pdev->dev);
  844. snd_soc_unregister_platform(&pdev->dev);
  845. iounmap(dma->channel);
  846. irq_dispose_mapping(dma->irq);
  847. kfree(dma);
  848. return 0;
  849. }
  850. static const struct of_device_id fsl_soc_dma_ids[] = {
  851. { .compatible = "fsl,ssi-dma-channel", },
  852. {}
  853. };
  854. MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
  855. static struct platform_driver fsl_soc_dma_driver = {
  856. .driver = {
  857. .name = "fsl-pcm-audio",
  858. .owner = THIS_MODULE,
  859. .of_match_table = fsl_soc_dma_ids,
  860. },
  861. .probe = fsl_soc_dma_probe,
  862. .remove = __devexit_p(fsl_soc_dma_remove),
  863. };
  864. static int __init fsl_soc_dma_init(void)
  865. {
  866. pr_info("Freescale Elo DMA ASoC PCM Driver\n");
  867. return platform_driver_register(&fsl_soc_dma_driver);
  868. }
  869. static void __exit fsl_soc_dma_exit(void)
  870. {
  871. platform_driver_unregister(&fsl_soc_dma_driver);
  872. }
  873. module_init(fsl_soc_dma_init);
  874. module_exit(fsl_soc_dma_exit);
  875. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  876. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
  877. MODULE_LICENSE("GPL v2");