rpc_rdma.c 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883
  1. /*
  2. * Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the BSD-type
  8. * license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or without
  11. * modification, are permitted provided that the following conditions
  12. * are met:
  13. *
  14. * Redistributions of source code must retain the above copyright
  15. * notice, this list of conditions and the following disclaimer.
  16. *
  17. * Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials provided
  20. * with the distribution.
  21. *
  22. * Neither the name of the Network Appliance, Inc. nor the names of
  23. * its contributors may be used to endorse or promote products
  24. * derived from this software without specific prior written
  25. * permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38. */
  39. /*
  40. * rpc_rdma.c
  41. *
  42. * This file contains the guts of the RPC RDMA protocol, and
  43. * does marshaling/unmarshaling, etc. It is also where interfacing
  44. * to the Linux RPC framework lives.
  45. */
  46. #include "xprt_rdma.h"
  47. #include <linux/highmem.h>
  48. #ifdef RPC_DEBUG
  49. # define RPCDBG_FACILITY RPCDBG_TRANS
  50. #endif
  51. enum rpcrdma_chunktype {
  52. rpcrdma_noch = 0,
  53. rpcrdma_readch,
  54. rpcrdma_areadch,
  55. rpcrdma_writech,
  56. rpcrdma_replych
  57. };
  58. #ifdef RPC_DEBUG
  59. static const char transfertypes[][12] = {
  60. "pure inline", /* no chunks */
  61. " read chunk", /* some argument via rdma read */
  62. "*read chunk", /* entire request via rdma read */
  63. "write chunk", /* some result via rdma write */
  64. "reply chunk" /* entire reply via rdma write */
  65. };
  66. #endif
  67. /*
  68. * Chunk assembly from upper layer xdr_buf.
  69. *
  70. * Prepare the passed-in xdr_buf into representation as RPC/RDMA chunk
  71. * elements. Segments are then coalesced when registered, if possible
  72. * within the selected memreg mode.
  73. *
  74. * Note, this routine is never called if the connection's memory
  75. * registration strategy is 0 (bounce buffers).
  76. */
  77. static int
  78. rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
  79. enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs)
  80. {
  81. int len, n = 0, p;
  82. int page_base;
  83. struct page **ppages;
  84. if (pos == 0 && xdrbuf->head[0].iov_len) {
  85. seg[n].mr_page = NULL;
  86. seg[n].mr_offset = xdrbuf->head[0].iov_base;
  87. seg[n].mr_len = xdrbuf->head[0].iov_len;
  88. ++n;
  89. }
  90. len = xdrbuf->page_len;
  91. ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
  92. page_base = xdrbuf->page_base & ~PAGE_MASK;
  93. p = 0;
  94. while (len && n < nsegs) {
  95. seg[n].mr_page = ppages[p];
  96. seg[n].mr_offset = (void *)(unsigned long) page_base;
  97. seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
  98. BUG_ON(seg[n].mr_len > PAGE_SIZE);
  99. len -= seg[n].mr_len;
  100. ++n;
  101. ++p;
  102. page_base = 0; /* page offset only applies to first page */
  103. }
  104. /* Message overflows the seg array */
  105. if (len && n == nsegs)
  106. return 0;
  107. if (xdrbuf->tail[0].iov_len) {
  108. /* the rpcrdma protocol allows us to omit any trailing
  109. * xdr pad bytes, saving the server an RDMA operation. */
  110. if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
  111. return n;
  112. if (n == nsegs)
  113. /* Tail remains, but we're out of segments */
  114. return 0;
  115. seg[n].mr_page = NULL;
  116. seg[n].mr_offset = xdrbuf->tail[0].iov_base;
  117. seg[n].mr_len = xdrbuf->tail[0].iov_len;
  118. ++n;
  119. }
  120. return n;
  121. }
  122. /*
  123. * Create read/write chunk lists, and reply chunks, for RDMA
  124. *
  125. * Assume check against THRESHOLD has been done, and chunks are required.
  126. * Assume only encoding one list entry for read|write chunks. The NFSv3
  127. * protocol is simple enough to allow this as it only has a single "bulk
  128. * result" in each procedure - complicated NFSv4 COMPOUNDs are not. (The
  129. * RDMA/Sessions NFSv4 proposal addresses this for future v4 revs.)
  130. *
  131. * When used for a single reply chunk (which is a special write
  132. * chunk used for the entire reply, rather than just the data), it
  133. * is used primarily for READDIR and READLINK which would otherwise
  134. * be severely size-limited by a small rdma inline read max. The server
  135. * response will come back as an RDMA Write, followed by a message
  136. * of type RDMA_NOMSG carrying the xid and length. As a result, reply
  137. * chunks do not provide data alignment, however they do not require
  138. * "fixup" (moving the response to the upper layer buffer) either.
  139. *
  140. * Encoding key for single-list chunks (HLOO = Handle32 Length32 Offset64):
  141. *
  142. * Read chunklist (a linked list):
  143. * N elements, position P (same P for all chunks of same arg!):
  144. * 1 - PHLOO - 1 - PHLOO - ... - 1 - PHLOO - 0
  145. *
  146. * Write chunklist (a list of (one) counted array):
  147. * N elements:
  148. * 1 - N - HLOO - HLOO - ... - HLOO - 0
  149. *
  150. * Reply chunk (a counted array):
  151. * N elements:
  152. * 1 - N - HLOO - HLOO - ... - HLOO
  153. */
  154. static unsigned int
  155. rpcrdma_create_chunks(struct rpc_rqst *rqst, struct xdr_buf *target,
  156. struct rpcrdma_msg *headerp, enum rpcrdma_chunktype type)
  157. {
  158. struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
  159. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_task->tk_xprt);
  160. int nsegs, nchunks = 0;
  161. unsigned int pos;
  162. struct rpcrdma_mr_seg *seg = req->rl_segments;
  163. struct rpcrdma_read_chunk *cur_rchunk = NULL;
  164. struct rpcrdma_write_array *warray = NULL;
  165. struct rpcrdma_write_chunk *cur_wchunk = NULL;
  166. __be32 *iptr = headerp->rm_body.rm_chunks;
  167. if (type == rpcrdma_readch || type == rpcrdma_areadch) {
  168. /* a read chunk - server will RDMA Read our memory */
  169. cur_rchunk = (struct rpcrdma_read_chunk *) iptr;
  170. } else {
  171. /* a write or reply chunk - server will RDMA Write our memory */
  172. *iptr++ = xdr_zero; /* encode a NULL read chunk list */
  173. if (type == rpcrdma_replych)
  174. *iptr++ = xdr_zero; /* a NULL write chunk list */
  175. warray = (struct rpcrdma_write_array *) iptr;
  176. cur_wchunk = (struct rpcrdma_write_chunk *) (warray + 1);
  177. }
  178. if (type == rpcrdma_replych || type == rpcrdma_areadch)
  179. pos = 0;
  180. else
  181. pos = target->head[0].iov_len;
  182. nsegs = rpcrdma_convert_iovs(target, pos, type, seg, RPCRDMA_MAX_SEGS);
  183. if (nsegs == 0)
  184. return 0;
  185. do {
  186. /* bind/register the memory, then build chunk from result. */
  187. int n = rpcrdma_register_external(seg, nsegs,
  188. cur_wchunk != NULL, r_xprt);
  189. if (n <= 0)
  190. goto out;
  191. if (cur_rchunk) { /* read */
  192. cur_rchunk->rc_discrim = xdr_one;
  193. /* all read chunks have the same "position" */
  194. cur_rchunk->rc_position = htonl(pos);
  195. cur_rchunk->rc_target.rs_handle = htonl(seg->mr_rkey);
  196. cur_rchunk->rc_target.rs_length = htonl(seg->mr_len);
  197. xdr_encode_hyper(
  198. (__be32 *)&cur_rchunk->rc_target.rs_offset,
  199. seg->mr_base);
  200. dprintk("RPC: %s: read chunk "
  201. "elem %d@0x%llx:0x%x pos %u (%s)\n", __func__,
  202. seg->mr_len, (unsigned long long)seg->mr_base,
  203. seg->mr_rkey, pos, n < nsegs ? "more" : "last");
  204. cur_rchunk++;
  205. r_xprt->rx_stats.read_chunk_count++;
  206. } else { /* write/reply */
  207. cur_wchunk->wc_target.rs_handle = htonl(seg->mr_rkey);
  208. cur_wchunk->wc_target.rs_length = htonl(seg->mr_len);
  209. xdr_encode_hyper(
  210. (__be32 *)&cur_wchunk->wc_target.rs_offset,
  211. seg->mr_base);
  212. dprintk("RPC: %s: %s chunk "
  213. "elem %d@0x%llx:0x%x (%s)\n", __func__,
  214. (type == rpcrdma_replych) ? "reply" : "write",
  215. seg->mr_len, (unsigned long long)seg->mr_base,
  216. seg->mr_rkey, n < nsegs ? "more" : "last");
  217. cur_wchunk++;
  218. if (type == rpcrdma_replych)
  219. r_xprt->rx_stats.reply_chunk_count++;
  220. else
  221. r_xprt->rx_stats.write_chunk_count++;
  222. r_xprt->rx_stats.total_rdma_request += seg->mr_len;
  223. }
  224. nchunks++;
  225. seg += n;
  226. nsegs -= n;
  227. } while (nsegs);
  228. /* success. all failures return above */
  229. req->rl_nchunks = nchunks;
  230. BUG_ON(nchunks == 0);
  231. BUG_ON((r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_FRMR)
  232. && (nchunks > 3));
  233. /*
  234. * finish off header. If write, marshal discrim and nchunks.
  235. */
  236. if (cur_rchunk) {
  237. iptr = (__be32 *) cur_rchunk;
  238. *iptr++ = xdr_zero; /* finish the read chunk list */
  239. *iptr++ = xdr_zero; /* encode a NULL write chunk list */
  240. *iptr++ = xdr_zero; /* encode a NULL reply chunk */
  241. } else {
  242. warray->wc_discrim = xdr_one;
  243. warray->wc_nchunks = htonl(nchunks);
  244. iptr = (__be32 *) cur_wchunk;
  245. if (type == rpcrdma_writech) {
  246. *iptr++ = xdr_zero; /* finish the write chunk list */
  247. *iptr++ = xdr_zero; /* encode a NULL reply chunk */
  248. }
  249. }
  250. /*
  251. * Return header size.
  252. */
  253. return (unsigned char *)iptr - (unsigned char *)headerp;
  254. out:
  255. for (pos = 0; nchunks--;)
  256. pos += rpcrdma_deregister_external(
  257. &req->rl_segments[pos], r_xprt, NULL);
  258. return 0;
  259. }
  260. /*
  261. * Copy write data inline.
  262. * This function is used for "small" requests. Data which is passed
  263. * to RPC via iovecs (or page list) is copied directly into the
  264. * pre-registered memory buffer for this request. For small amounts
  265. * of data, this is efficient. The cutoff value is tunable.
  266. */
  267. static int
  268. rpcrdma_inline_pullup(struct rpc_rqst *rqst, int pad)
  269. {
  270. int i, npages, curlen;
  271. int copy_len;
  272. unsigned char *srcp, *destp;
  273. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(rqst->rq_xprt);
  274. int page_base;
  275. struct page **ppages;
  276. destp = rqst->rq_svec[0].iov_base;
  277. curlen = rqst->rq_svec[0].iov_len;
  278. destp += curlen;
  279. /*
  280. * Do optional padding where it makes sense. Alignment of write
  281. * payload can help the server, if our setting is accurate.
  282. */
  283. pad -= (curlen + 36/*sizeof(struct rpcrdma_msg_padded)*/);
  284. if (pad < 0 || rqst->rq_slen - curlen < RPCRDMA_INLINE_PAD_THRESH)
  285. pad = 0; /* don't pad this request */
  286. dprintk("RPC: %s: pad %d destp 0x%p len %d hdrlen %d\n",
  287. __func__, pad, destp, rqst->rq_slen, curlen);
  288. copy_len = rqst->rq_snd_buf.page_len;
  289. if (rqst->rq_snd_buf.tail[0].iov_len) {
  290. curlen = rqst->rq_snd_buf.tail[0].iov_len;
  291. if (destp + copy_len != rqst->rq_snd_buf.tail[0].iov_base) {
  292. memmove(destp + copy_len,
  293. rqst->rq_snd_buf.tail[0].iov_base, curlen);
  294. r_xprt->rx_stats.pullup_copy_count += curlen;
  295. }
  296. dprintk("RPC: %s: tail destp 0x%p len %d\n",
  297. __func__, destp + copy_len, curlen);
  298. rqst->rq_svec[0].iov_len += curlen;
  299. }
  300. r_xprt->rx_stats.pullup_copy_count += copy_len;
  301. page_base = rqst->rq_snd_buf.page_base;
  302. ppages = rqst->rq_snd_buf.pages + (page_base >> PAGE_SHIFT);
  303. page_base &= ~PAGE_MASK;
  304. npages = PAGE_ALIGN(page_base+copy_len) >> PAGE_SHIFT;
  305. for (i = 0; copy_len && i < npages; i++) {
  306. curlen = PAGE_SIZE - page_base;
  307. if (curlen > copy_len)
  308. curlen = copy_len;
  309. dprintk("RPC: %s: page %d destp 0x%p len %d curlen %d\n",
  310. __func__, i, destp, copy_len, curlen);
  311. srcp = kmap_atomic(ppages[i], KM_SKB_SUNRPC_DATA);
  312. memcpy(destp, srcp+page_base, curlen);
  313. kunmap_atomic(srcp, KM_SKB_SUNRPC_DATA);
  314. rqst->rq_svec[0].iov_len += curlen;
  315. destp += curlen;
  316. copy_len -= curlen;
  317. page_base = 0;
  318. }
  319. /* header now contains entire send message */
  320. return pad;
  321. }
  322. /*
  323. * Marshal a request: the primary job of this routine is to choose
  324. * the transfer modes. See comments below.
  325. *
  326. * Uses multiple RDMA IOVs for a request:
  327. * [0] -- RPC RDMA header, which uses memory from the *start* of the
  328. * preregistered buffer that already holds the RPC data in
  329. * its middle.
  330. * [1] -- the RPC header/data, marshaled by RPC and the NFS protocol.
  331. * [2] -- optional padding.
  332. * [3] -- if padded, header only in [1] and data here.
  333. */
  334. int
  335. rpcrdma_marshal_req(struct rpc_rqst *rqst)
  336. {
  337. struct rpc_xprt *xprt = rqst->rq_task->tk_xprt;
  338. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  339. struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
  340. char *base;
  341. size_t hdrlen, rpclen, padlen;
  342. enum rpcrdma_chunktype rtype, wtype;
  343. struct rpcrdma_msg *headerp;
  344. /*
  345. * rpclen gets amount of data in first buffer, which is the
  346. * pre-registered buffer.
  347. */
  348. base = rqst->rq_svec[0].iov_base;
  349. rpclen = rqst->rq_svec[0].iov_len;
  350. /* build RDMA header in private area at front */
  351. headerp = (struct rpcrdma_msg *) req->rl_base;
  352. /* don't htonl XID, it's already done in request */
  353. headerp->rm_xid = rqst->rq_xid;
  354. headerp->rm_vers = xdr_one;
  355. headerp->rm_credit = htonl(r_xprt->rx_buf.rb_max_requests);
  356. headerp->rm_type = htonl(RDMA_MSG);
  357. /*
  358. * Chunks needed for results?
  359. *
  360. * o If the expected result is under the inline threshold, all ops
  361. * return as inline (but see later).
  362. * o Large non-read ops return as a single reply chunk.
  363. * o Large read ops return data as write chunk(s), header as inline.
  364. *
  365. * Note: the NFS code sending down multiple result segments implies
  366. * the op is one of read, readdir[plus], readlink or NFSv4 getacl.
  367. */
  368. /*
  369. * This code can handle read chunks, write chunks OR reply
  370. * chunks -- only one type. If the request is too big to fit
  371. * inline, then we will choose read chunks. If the request is
  372. * a READ, then use write chunks to separate the file data
  373. * into pages; otherwise use reply chunks.
  374. */
  375. if (rqst->rq_rcv_buf.buflen <= RPCRDMA_INLINE_READ_THRESHOLD(rqst))
  376. wtype = rpcrdma_noch;
  377. else if (rqst->rq_rcv_buf.page_len == 0)
  378. wtype = rpcrdma_replych;
  379. else if (rqst->rq_rcv_buf.flags & XDRBUF_READ)
  380. wtype = rpcrdma_writech;
  381. else
  382. wtype = rpcrdma_replych;
  383. /*
  384. * Chunks needed for arguments?
  385. *
  386. * o If the total request is under the inline threshold, all ops
  387. * are sent as inline.
  388. * o Large non-write ops are sent with the entire message as a
  389. * single read chunk (protocol 0-position special case).
  390. * o Large write ops transmit data as read chunk(s), header as
  391. * inline.
  392. *
  393. * Note: the NFS code sending down multiple argument segments
  394. * implies the op is a write.
  395. * TBD check NFSv4 setacl
  396. */
  397. if (rqst->rq_snd_buf.len <= RPCRDMA_INLINE_WRITE_THRESHOLD(rqst))
  398. rtype = rpcrdma_noch;
  399. else if (rqst->rq_snd_buf.page_len == 0)
  400. rtype = rpcrdma_areadch;
  401. else
  402. rtype = rpcrdma_readch;
  403. /* The following simplification is not true forever */
  404. if (rtype != rpcrdma_noch && wtype == rpcrdma_replych)
  405. wtype = rpcrdma_noch;
  406. BUG_ON(rtype != rpcrdma_noch && wtype != rpcrdma_noch);
  407. if (r_xprt->rx_ia.ri_memreg_strategy == RPCRDMA_BOUNCEBUFFERS &&
  408. (rtype != rpcrdma_noch || wtype != rpcrdma_noch)) {
  409. /* forced to "pure inline"? */
  410. dprintk("RPC: %s: too much data (%d/%d) for inline\n",
  411. __func__, rqst->rq_rcv_buf.len, rqst->rq_snd_buf.len);
  412. return -1;
  413. }
  414. hdrlen = 28; /*sizeof *headerp;*/
  415. padlen = 0;
  416. /*
  417. * Pull up any extra send data into the preregistered buffer.
  418. * When padding is in use and applies to the transfer, insert
  419. * it and change the message type.
  420. */
  421. if (rtype == rpcrdma_noch) {
  422. padlen = rpcrdma_inline_pullup(rqst,
  423. RPCRDMA_INLINE_PAD_VALUE(rqst));
  424. if (padlen) {
  425. headerp->rm_type = htonl(RDMA_MSGP);
  426. headerp->rm_body.rm_padded.rm_align =
  427. htonl(RPCRDMA_INLINE_PAD_VALUE(rqst));
  428. headerp->rm_body.rm_padded.rm_thresh =
  429. htonl(RPCRDMA_INLINE_PAD_THRESH);
  430. headerp->rm_body.rm_padded.rm_pempty[0] = xdr_zero;
  431. headerp->rm_body.rm_padded.rm_pempty[1] = xdr_zero;
  432. headerp->rm_body.rm_padded.rm_pempty[2] = xdr_zero;
  433. hdrlen += 2 * sizeof(u32); /* extra words in padhdr */
  434. BUG_ON(wtype != rpcrdma_noch);
  435. } else {
  436. headerp->rm_body.rm_nochunks.rm_empty[0] = xdr_zero;
  437. headerp->rm_body.rm_nochunks.rm_empty[1] = xdr_zero;
  438. headerp->rm_body.rm_nochunks.rm_empty[2] = xdr_zero;
  439. /* new length after pullup */
  440. rpclen = rqst->rq_svec[0].iov_len;
  441. /*
  442. * Currently we try to not actually use read inline.
  443. * Reply chunks have the desirable property that
  444. * they land, packed, directly in the target buffers
  445. * without headers, so they require no fixup. The
  446. * additional RDMA Write op sends the same amount
  447. * of data, streams on-the-wire and adds no overhead
  448. * on receive. Therefore, we request a reply chunk
  449. * for non-writes wherever feasible and efficient.
  450. */
  451. if (wtype == rpcrdma_noch &&
  452. r_xprt->rx_ia.ri_memreg_strategy > RPCRDMA_REGISTER)
  453. wtype = rpcrdma_replych;
  454. }
  455. }
  456. /*
  457. * Marshal chunks. This routine will return the header length
  458. * consumed by marshaling.
  459. */
  460. if (rtype != rpcrdma_noch) {
  461. hdrlen = rpcrdma_create_chunks(rqst,
  462. &rqst->rq_snd_buf, headerp, rtype);
  463. wtype = rtype; /* simplify dprintk */
  464. } else if (wtype != rpcrdma_noch) {
  465. hdrlen = rpcrdma_create_chunks(rqst,
  466. &rqst->rq_rcv_buf, headerp, wtype);
  467. }
  468. if (hdrlen == 0)
  469. return -1;
  470. dprintk("RPC: %s: %s: hdrlen %zd rpclen %zd padlen %zd"
  471. " headerp 0x%p base 0x%p lkey 0x%x\n",
  472. __func__, transfertypes[wtype], hdrlen, rpclen, padlen,
  473. headerp, base, req->rl_iov.lkey);
  474. /*
  475. * initialize send_iov's - normally only two: rdma chunk header and
  476. * single preregistered RPC header buffer, but if padding is present,
  477. * then use a preregistered (and zeroed) pad buffer between the RPC
  478. * header and any write data. In all non-rdma cases, any following
  479. * data has been copied into the RPC header buffer.
  480. */
  481. req->rl_send_iov[0].addr = req->rl_iov.addr;
  482. req->rl_send_iov[0].length = hdrlen;
  483. req->rl_send_iov[0].lkey = req->rl_iov.lkey;
  484. req->rl_send_iov[1].addr = req->rl_iov.addr + (base - req->rl_base);
  485. req->rl_send_iov[1].length = rpclen;
  486. req->rl_send_iov[1].lkey = req->rl_iov.lkey;
  487. req->rl_niovs = 2;
  488. if (padlen) {
  489. struct rpcrdma_ep *ep = &r_xprt->rx_ep;
  490. req->rl_send_iov[2].addr = ep->rep_pad.addr;
  491. req->rl_send_iov[2].length = padlen;
  492. req->rl_send_iov[2].lkey = ep->rep_pad.lkey;
  493. req->rl_send_iov[3].addr = req->rl_send_iov[1].addr + rpclen;
  494. req->rl_send_iov[3].length = rqst->rq_slen - rpclen;
  495. req->rl_send_iov[3].lkey = req->rl_iov.lkey;
  496. req->rl_niovs = 4;
  497. }
  498. return 0;
  499. }
  500. /*
  501. * Chase down a received write or reply chunklist to get length
  502. * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
  503. */
  504. static int
  505. rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp)
  506. {
  507. unsigned int i, total_len;
  508. struct rpcrdma_write_chunk *cur_wchunk;
  509. i = ntohl(**iptrp); /* get array count */
  510. if (i > max)
  511. return -1;
  512. cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
  513. total_len = 0;
  514. while (i--) {
  515. struct rpcrdma_segment *seg = &cur_wchunk->wc_target;
  516. ifdebug(FACILITY) {
  517. u64 off;
  518. xdr_decode_hyper((__be32 *)&seg->rs_offset, &off);
  519. dprintk("RPC: %s: chunk %d@0x%llx:0x%x\n",
  520. __func__,
  521. ntohl(seg->rs_length),
  522. (unsigned long long)off,
  523. ntohl(seg->rs_handle));
  524. }
  525. total_len += ntohl(seg->rs_length);
  526. ++cur_wchunk;
  527. }
  528. /* check and adjust for properly terminated write chunk */
  529. if (wrchunk) {
  530. __be32 *w = (__be32 *) cur_wchunk;
  531. if (*w++ != xdr_zero)
  532. return -1;
  533. cur_wchunk = (struct rpcrdma_write_chunk *) w;
  534. }
  535. if ((char *) cur_wchunk > rep->rr_base + rep->rr_len)
  536. return -1;
  537. *iptrp = (__be32 *) cur_wchunk;
  538. return total_len;
  539. }
  540. /*
  541. * Scatter inline received data back into provided iov's.
  542. */
  543. static void
  544. rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
  545. {
  546. int i, npages, curlen, olen;
  547. char *destp;
  548. struct page **ppages;
  549. int page_base;
  550. curlen = rqst->rq_rcv_buf.head[0].iov_len;
  551. if (curlen > copy_len) { /* write chunk header fixup */
  552. curlen = copy_len;
  553. rqst->rq_rcv_buf.head[0].iov_len = curlen;
  554. }
  555. dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
  556. __func__, srcp, copy_len, curlen);
  557. /* Shift pointer for first receive segment only */
  558. rqst->rq_rcv_buf.head[0].iov_base = srcp;
  559. srcp += curlen;
  560. copy_len -= curlen;
  561. olen = copy_len;
  562. i = 0;
  563. rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
  564. page_base = rqst->rq_rcv_buf.page_base;
  565. ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
  566. page_base &= ~PAGE_MASK;
  567. if (copy_len && rqst->rq_rcv_buf.page_len) {
  568. npages = PAGE_ALIGN(page_base +
  569. rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
  570. for (; i < npages; i++) {
  571. curlen = PAGE_SIZE - page_base;
  572. if (curlen > copy_len)
  573. curlen = copy_len;
  574. dprintk("RPC: %s: page %d"
  575. " srcp 0x%p len %d curlen %d\n",
  576. __func__, i, srcp, copy_len, curlen);
  577. destp = kmap_atomic(ppages[i], KM_SKB_SUNRPC_DATA);
  578. memcpy(destp + page_base, srcp, curlen);
  579. flush_dcache_page(ppages[i]);
  580. kunmap_atomic(destp, KM_SKB_SUNRPC_DATA);
  581. srcp += curlen;
  582. copy_len -= curlen;
  583. if (copy_len == 0)
  584. break;
  585. page_base = 0;
  586. }
  587. rqst->rq_rcv_buf.page_len = olen - copy_len;
  588. } else
  589. rqst->rq_rcv_buf.page_len = 0;
  590. if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) {
  591. curlen = copy_len;
  592. if (curlen > rqst->rq_rcv_buf.tail[0].iov_len)
  593. curlen = rqst->rq_rcv_buf.tail[0].iov_len;
  594. if (rqst->rq_rcv_buf.tail[0].iov_base != srcp)
  595. memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen);
  596. dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n",
  597. __func__, srcp, copy_len, curlen);
  598. rqst->rq_rcv_buf.tail[0].iov_len = curlen;
  599. copy_len -= curlen; ++i;
  600. } else
  601. rqst->rq_rcv_buf.tail[0].iov_len = 0;
  602. if (pad) {
  603. /* implicit padding on terminal chunk */
  604. unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
  605. while (pad--)
  606. p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
  607. }
  608. if (copy_len)
  609. dprintk("RPC: %s: %d bytes in"
  610. " %d extra segments (%d lost)\n",
  611. __func__, olen, i, copy_len);
  612. /* TBD avoid a warning from call_decode() */
  613. rqst->rq_private_buf = rqst->rq_rcv_buf;
  614. }
  615. /*
  616. * This function is called when an async event is posted to
  617. * the connection which changes the connection state. All it
  618. * does at this point is mark the connection up/down, the rpc
  619. * timers do the rest.
  620. */
  621. void
  622. rpcrdma_conn_func(struct rpcrdma_ep *ep)
  623. {
  624. struct rpc_xprt *xprt = ep->rep_xprt;
  625. spin_lock_bh(&xprt->transport_lock);
  626. if (++xprt->connect_cookie == 0) /* maintain a reserved value */
  627. ++xprt->connect_cookie;
  628. if (ep->rep_connected > 0) {
  629. if (!xprt_test_and_set_connected(xprt))
  630. xprt_wake_pending_tasks(xprt, 0);
  631. } else {
  632. if (xprt_test_and_clear_connected(xprt))
  633. xprt_wake_pending_tasks(xprt, -ENOTCONN);
  634. }
  635. spin_unlock_bh(&xprt->transport_lock);
  636. }
  637. /*
  638. * This function is called when memory window unbind which we are waiting
  639. * for completes. Just use rr_func (zeroed by upcall) to signal completion.
  640. */
  641. static void
  642. rpcrdma_unbind_func(struct rpcrdma_rep *rep)
  643. {
  644. wake_up(&rep->rr_unbind);
  645. }
  646. /*
  647. * Called as a tasklet to do req/reply match and complete a request
  648. * Errors must result in the RPC task either being awakened, or
  649. * allowed to timeout, to discover the errors at that time.
  650. */
  651. void
  652. rpcrdma_reply_handler(struct rpcrdma_rep *rep)
  653. {
  654. struct rpcrdma_msg *headerp;
  655. struct rpcrdma_req *req;
  656. struct rpc_rqst *rqst;
  657. struct rpc_xprt *xprt = rep->rr_xprt;
  658. struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
  659. __be32 *iptr;
  660. int i, rdmalen, status;
  661. /* Check status. If bad, signal disconnect and return rep to pool */
  662. if (rep->rr_len == ~0U) {
  663. rpcrdma_recv_buffer_put(rep);
  664. if (r_xprt->rx_ep.rep_connected == 1) {
  665. r_xprt->rx_ep.rep_connected = -EIO;
  666. rpcrdma_conn_func(&r_xprt->rx_ep);
  667. }
  668. return;
  669. }
  670. if (rep->rr_len < 28) {
  671. dprintk("RPC: %s: short/invalid reply\n", __func__);
  672. goto repost;
  673. }
  674. headerp = (struct rpcrdma_msg *) rep->rr_base;
  675. if (headerp->rm_vers != xdr_one) {
  676. dprintk("RPC: %s: invalid version %d\n",
  677. __func__, ntohl(headerp->rm_vers));
  678. goto repost;
  679. }
  680. /* Get XID and try for a match. */
  681. spin_lock(&xprt->transport_lock);
  682. rqst = xprt_lookup_rqst(xprt, headerp->rm_xid);
  683. if (rqst == NULL) {
  684. spin_unlock(&xprt->transport_lock);
  685. dprintk("RPC: %s: reply 0x%p failed "
  686. "to match any request xid 0x%08x len %d\n",
  687. __func__, rep, headerp->rm_xid, rep->rr_len);
  688. repost:
  689. r_xprt->rx_stats.bad_reply_count++;
  690. rep->rr_func = rpcrdma_reply_handler;
  691. if (rpcrdma_ep_post_recv(&r_xprt->rx_ia, &r_xprt->rx_ep, rep))
  692. rpcrdma_recv_buffer_put(rep);
  693. return;
  694. }
  695. /* get request object */
  696. req = rpcr_to_rdmar(rqst);
  697. dprintk("RPC: %s: reply 0x%p completes request 0x%p\n"
  698. " RPC request 0x%p xid 0x%08x\n",
  699. __func__, rep, req, rqst, headerp->rm_xid);
  700. BUG_ON(!req || req->rl_reply);
  701. /* from here on, the reply is no longer an orphan */
  702. req->rl_reply = rep;
  703. /* check for expected message types */
  704. /* The order of some of these tests is important. */
  705. switch (headerp->rm_type) {
  706. case htonl(RDMA_MSG):
  707. /* never expect read chunks */
  708. /* never expect reply chunks (two ways to check) */
  709. /* never expect write chunks without having offered RDMA */
  710. if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
  711. (headerp->rm_body.rm_chunks[1] == xdr_zero &&
  712. headerp->rm_body.rm_chunks[2] != xdr_zero) ||
  713. (headerp->rm_body.rm_chunks[1] != xdr_zero &&
  714. req->rl_nchunks == 0))
  715. goto badheader;
  716. if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
  717. /* count any expected write chunks in read reply */
  718. /* start at write chunk array count */
  719. iptr = &headerp->rm_body.rm_chunks[2];
  720. rdmalen = rpcrdma_count_chunks(rep,
  721. req->rl_nchunks, 1, &iptr);
  722. /* check for validity, and no reply chunk after */
  723. if (rdmalen < 0 || *iptr++ != xdr_zero)
  724. goto badheader;
  725. rep->rr_len -=
  726. ((unsigned char *)iptr - (unsigned char *)headerp);
  727. status = rep->rr_len + rdmalen;
  728. r_xprt->rx_stats.total_rdma_reply += rdmalen;
  729. /* special case - last chunk may omit padding */
  730. if (rdmalen &= 3) {
  731. rdmalen = 4 - rdmalen;
  732. status += rdmalen;
  733. }
  734. } else {
  735. /* else ordinary inline */
  736. rdmalen = 0;
  737. iptr = (__be32 *)((unsigned char *)headerp + 28);
  738. rep->rr_len -= 28; /*sizeof *headerp;*/
  739. status = rep->rr_len;
  740. }
  741. /* Fix up the rpc results for upper layer */
  742. rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen);
  743. break;
  744. case htonl(RDMA_NOMSG):
  745. /* never expect read or write chunks, always reply chunks */
  746. if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
  747. headerp->rm_body.rm_chunks[1] != xdr_zero ||
  748. headerp->rm_body.rm_chunks[2] != xdr_one ||
  749. req->rl_nchunks == 0)
  750. goto badheader;
  751. iptr = (__be32 *)((unsigned char *)headerp + 28);
  752. rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr);
  753. if (rdmalen < 0)
  754. goto badheader;
  755. r_xprt->rx_stats.total_rdma_reply += rdmalen;
  756. /* Reply chunk buffer already is the reply vector - no fixup. */
  757. status = rdmalen;
  758. break;
  759. badheader:
  760. default:
  761. dprintk("%s: invalid rpcrdma reply header (type %d):"
  762. " chunks[012] == %d %d %d"
  763. " expected chunks <= %d\n",
  764. __func__, ntohl(headerp->rm_type),
  765. headerp->rm_body.rm_chunks[0],
  766. headerp->rm_body.rm_chunks[1],
  767. headerp->rm_body.rm_chunks[2],
  768. req->rl_nchunks);
  769. status = -EIO;
  770. r_xprt->rx_stats.bad_reply_count++;
  771. break;
  772. }
  773. /* If using mw bind, start the deregister process now. */
  774. /* (Note: if mr_free(), cannot perform it here, in tasklet context) */
  775. if (req->rl_nchunks) switch (r_xprt->rx_ia.ri_memreg_strategy) {
  776. case RPCRDMA_MEMWINDOWS:
  777. for (i = 0; req->rl_nchunks-- > 1;)
  778. i += rpcrdma_deregister_external(
  779. &req->rl_segments[i], r_xprt, NULL);
  780. /* Optionally wait (not here) for unbinds to complete */
  781. rep->rr_func = rpcrdma_unbind_func;
  782. (void) rpcrdma_deregister_external(&req->rl_segments[i],
  783. r_xprt, rep);
  784. break;
  785. case RPCRDMA_MEMWINDOWS_ASYNC:
  786. for (i = 0; req->rl_nchunks--;)
  787. i += rpcrdma_deregister_external(&req->rl_segments[i],
  788. r_xprt, NULL);
  789. break;
  790. default:
  791. break;
  792. }
  793. dprintk("RPC: %s: xprt_complete_rqst(0x%p, 0x%p, %d)\n",
  794. __func__, xprt, rqst, status);
  795. xprt_complete_rqst(rqst->rq_task, status);
  796. spin_unlock(&xprt->transport_lock);
  797. }