raw.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804
  1. /*
  2. * raw.c - Raw sockets for protocol family CAN
  3. *
  4. * Copyright (c) 2002-2007 Volkswagen Group Electronic Research
  5. * All rights reserved.
  6. *
  7. * Redistribution and use in source and binary forms, with or without
  8. * modification, are permitted provided that the following conditions
  9. * are met:
  10. * 1. Redistributions of source code must retain the above copyright
  11. * notice, this list of conditions and the following disclaimer.
  12. * 2. Redistributions in binary form must reproduce the above copyright
  13. * notice, this list of conditions and the following disclaimer in the
  14. * documentation and/or other materials provided with the distribution.
  15. * 3. Neither the name of Volkswagen nor the names of its contributors
  16. * may be used to endorse or promote products derived from this software
  17. * without specific prior written permission.
  18. *
  19. * Alternatively, provided that this notice is retained in full, this
  20. * software may be distributed under the terms of the GNU General
  21. * Public License ("GPL") version 2, in which case the provisions of the
  22. * GPL apply INSTEAD OF those given above.
  23. *
  24. * The provided data structures and external interfaces from this code
  25. * are not restricted to be used by modules with a GPL compatible license.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
  38. * DAMAGE.
  39. *
  40. * Send feedback to <socketcan-users@lists.berlios.de>
  41. *
  42. */
  43. #include <linux/module.h>
  44. #include <linux/init.h>
  45. #include <linux/uio.h>
  46. #include <linux/net.h>
  47. #include <linux/slab.h>
  48. #include <linux/netdevice.h>
  49. #include <linux/socket.h>
  50. #include <linux/if_arp.h>
  51. #include <linux/skbuff.h>
  52. #include <linux/can.h>
  53. #include <linux/can/core.h>
  54. #include <linux/can/raw.h>
  55. #include <net/sock.h>
  56. #include <net/net_namespace.h>
  57. #define CAN_RAW_VERSION CAN_VERSION
  58. static __initdata const char banner[] =
  59. KERN_INFO "can: raw protocol (rev " CAN_RAW_VERSION ")\n";
  60. MODULE_DESCRIPTION("PF_CAN raw protocol");
  61. MODULE_LICENSE("Dual BSD/GPL");
  62. MODULE_AUTHOR("Urs Thuermann <urs.thuermann@volkswagen.de>");
  63. MODULE_ALIAS("can-proto-1");
  64. #define MASK_ALL 0
  65. /*
  66. * A raw socket has a list of can_filters attached to it, each receiving
  67. * the CAN frames matching that filter. If the filter list is empty,
  68. * no CAN frames will be received by the socket. The default after
  69. * opening the socket, is to have one filter which receives all frames.
  70. * The filter list is allocated dynamically with the exception of the
  71. * list containing only one item. This common case is optimized by
  72. * storing the single filter in dfilter, to avoid using dynamic memory.
  73. */
  74. struct raw_sock {
  75. struct sock sk;
  76. int bound;
  77. int ifindex;
  78. struct notifier_block notifier;
  79. int loopback;
  80. int recv_own_msgs;
  81. int count; /* number of active filters */
  82. struct can_filter dfilter; /* default/single filter */
  83. struct can_filter *filter; /* pointer to filter(s) */
  84. can_err_mask_t err_mask;
  85. };
  86. /*
  87. * Return pointer to store the extra msg flags for raw_recvmsg().
  88. * We use the space of one unsigned int beyond the 'struct sockaddr_can'
  89. * in skb->cb.
  90. */
  91. static inline unsigned int *raw_flags(struct sk_buff *skb)
  92. {
  93. BUILD_BUG_ON(sizeof(skb->cb) <= (sizeof(struct sockaddr_can) +
  94. sizeof(unsigned int)));
  95. /* return pointer after struct sockaddr_can */
  96. return (unsigned int *)(&((struct sockaddr_can *)skb->cb)[1]);
  97. }
  98. static inline struct raw_sock *raw_sk(const struct sock *sk)
  99. {
  100. return (struct raw_sock *)sk;
  101. }
  102. static void raw_rcv(struct sk_buff *oskb, void *data)
  103. {
  104. struct sock *sk = (struct sock *)data;
  105. struct raw_sock *ro = raw_sk(sk);
  106. struct sockaddr_can *addr;
  107. struct sk_buff *skb;
  108. unsigned int *pflags;
  109. /* check the received tx sock reference */
  110. if (!ro->recv_own_msgs && oskb->sk == sk)
  111. return;
  112. /* clone the given skb to be able to enqueue it into the rcv queue */
  113. skb = skb_clone(oskb, GFP_ATOMIC);
  114. if (!skb)
  115. return;
  116. /*
  117. * Put the datagram to the queue so that raw_recvmsg() can
  118. * get it from there. We need to pass the interface index to
  119. * raw_recvmsg(). We pass a whole struct sockaddr_can in skb->cb
  120. * containing the interface index.
  121. */
  122. BUILD_BUG_ON(sizeof(skb->cb) < sizeof(struct sockaddr_can));
  123. addr = (struct sockaddr_can *)skb->cb;
  124. memset(addr, 0, sizeof(*addr));
  125. addr->can_family = AF_CAN;
  126. addr->can_ifindex = skb->dev->ifindex;
  127. /* add CAN specific message flags for raw_recvmsg() */
  128. pflags = raw_flags(skb);
  129. *pflags = 0;
  130. if (oskb->sk)
  131. *pflags |= MSG_DONTROUTE;
  132. if (oskb->sk == sk)
  133. *pflags |= MSG_CONFIRM;
  134. if (sock_queue_rcv_skb(sk, skb) < 0)
  135. kfree_skb(skb);
  136. }
  137. static int raw_enable_filters(struct net_device *dev, struct sock *sk,
  138. struct can_filter *filter, int count)
  139. {
  140. int err = 0;
  141. int i;
  142. for (i = 0; i < count; i++) {
  143. err = can_rx_register(dev, filter[i].can_id,
  144. filter[i].can_mask,
  145. raw_rcv, sk, "raw");
  146. if (err) {
  147. /* clean up successfully registered filters */
  148. while (--i >= 0)
  149. can_rx_unregister(dev, filter[i].can_id,
  150. filter[i].can_mask,
  151. raw_rcv, sk);
  152. break;
  153. }
  154. }
  155. return err;
  156. }
  157. static int raw_enable_errfilter(struct net_device *dev, struct sock *sk,
  158. can_err_mask_t err_mask)
  159. {
  160. int err = 0;
  161. if (err_mask)
  162. err = can_rx_register(dev, 0, err_mask | CAN_ERR_FLAG,
  163. raw_rcv, sk, "raw");
  164. return err;
  165. }
  166. static void raw_disable_filters(struct net_device *dev, struct sock *sk,
  167. struct can_filter *filter, int count)
  168. {
  169. int i;
  170. for (i = 0; i < count; i++)
  171. can_rx_unregister(dev, filter[i].can_id, filter[i].can_mask,
  172. raw_rcv, sk);
  173. }
  174. static inline void raw_disable_errfilter(struct net_device *dev,
  175. struct sock *sk,
  176. can_err_mask_t err_mask)
  177. {
  178. if (err_mask)
  179. can_rx_unregister(dev, 0, err_mask | CAN_ERR_FLAG,
  180. raw_rcv, sk);
  181. }
  182. static inline void raw_disable_allfilters(struct net_device *dev,
  183. struct sock *sk)
  184. {
  185. struct raw_sock *ro = raw_sk(sk);
  186. raw_disable_filters(dev, sk, ro->filter, ro->count);
  187. raw_disable_errfilter(dev, sk, ro->err_mask);
  188. }
  189. static int raw_enable_allfilters(struct net_device *dev, struct sock *sk)
  190. {
  191. struct raw_sock *ro = raw_sk(sk);
  192. int err;
  193. err = raw_enable_filters(dev, sk, ro->filter, ro->count);
  194. if (!err) {
  195. err = raw_enable_errfilter(dev, sk, ro->err_mask);
  196. if (err)
  197. raw_disable_filters(dev, sk, ro->filter, ro->count);
  198. }
  199. return err;
  200. }
  201. static int raw_notifier(struct notifier_block *nb,
  202. unsigned long msg, void *data)
  203. {
  204. struct net_device *dev = (struct net_device *)data;
  205. struct raw_sock *ro = container_of(nb, struct raw_sock, notifier);
  206. struct sock *sk = &ro->sk;
  207. if (!net_eq(dev_net(dev), &init_net))
  208. return NOTIFY_DONE;
  209. if (dev->type != ARPHRD_CAN)
  210. return NOTIFY_DONE;
  211. if (ro->ifindex != dev->ifindex)
  212. return NOTIFY_DONE;
  213. switch (msg) {
  214. case NETDEV_UNREGISTER:
  215. lock_sock(sk);
  216. /* remove current filters & unregister */
  217. if (ro->bound)
  218. raw_disable_allfilters(dev, sk);
  219. if (ro->count > 1)
  220. kfree(ro->filter);
  221. ro->ifindex = 0;
  222. ro->bound = 0;
  223. ro->count = 0;
  224. release_sock(sk);
  225. sk->sk_err = ENODEV;
  226. if (!sock_flag(sk, SOCK_DEAD))
  227. sk->sk_error_report(sk);
  228. break;
  229. case NETDEV_DOWN:
  230. sk->sk_err = ENETDOWN;
  231. if (!sock_flag(sk, SOCK_DEAD))
  232. sk->sk_error_report(sk);
  233. break;
  234. }
  235. return NOTIFY_DONE;
  236. }
  237. static int raw_init(struct sock *sk)
  238. {
  239. struct raw_sock *ro = raw_sk(sk);
  240. ro->bound = 0;
  241. ro->ifindex = 0;
  242. /* set default filter to single entry dfilter */
  243. ro->dfilter.can_id = 0;
  244. ro->dfilter.can_mask = MASK_ALL;
  245. ro->filter = &ro->dfilter;
  246. ro->count = 1;
  247. /* set default loopback behaviour */
  248. ro->loopback = 1;
  249. ro->recv_own_msgs = 0;
  250. /* set notifier */
  251. ro->notifier.notifier_call = raw_notifier;
  252. register_netdevice_notifier(&ro->notifier);
  253. return 0;
  254. }
  255. static int raw_release(struct socket *sock)
  256. {
  257. struct sock *sk = sock->sk;
  258. struct raw_sock *ro;
  259. if (!sk)
  260. return 0;
  261. ro = raw_sk(sk);
  262. unregister_netdevice_notifier(&ro->notifier);
  263. lock_sock(sk);
  264. /* remove current filters & unregister */
  265. if (ro->bound) {
  266. if (ro->ifindex) {
  267. struct net_device *dev;
  268. dev = dev_get_by_index(&init_net, ro->ifindex);
  269. if (dev) {
  270. raw_disable_allfilters(dev, sk);
  271. dev_put(dev);
  272. }
  273. } else
  274. raw_disable_allfilters(NULL, sk);
  275. }
  276. if (ro->count > 1)
  277. kfree(ro->filter);
  278. ro->ifindex = 0;
  279. ro->bound = 0;
  280. ro->count = 0;
  281. sock_orphan(sk);
  282. sock->sk = NULL;
  283. release_sock(sk);
  284. sock_put(sk);
  285. return 0;
  286. }
  287. static int raw_bind(struct socket *sock, struct sockaddr *uaddr, int len)
  288. {
  289. struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
  290. struct sock *sk = sock->sk;
  291. struct raw_sock *ro = raw_sk(sk);
  292. int ifindex;
  293. int err = 0;
  294. int notify_enetdown = 0;
  295. if (len < sizeof(*addr))
  296. return -EINVAL;
  297. lock_sock(sk);
  298. if (ro->bound && addr->can_ifindex == ro->ifindex)
  299. goto out;
  300. if (addr->can_ifindex) {
  301. struct net_device *dev;
  302. dev = dev_get_by_index(&init_net, addr->can_ifindex);
  303. if (!dev) {
  304. err = -ENODEV;
  305. goto out;
  306. }
  307. if (dev->type != ARPHRD_CAN) {
  308. dev_put(dev);
  309. err = -ENODEV;
  310. goto out;
  311. }
  312. if (!(dev->flags & IFF_UP))
  313. notify_enetdown = 1;
  314. ifindex = dev->ifindex;
  315. /* filters set by default/setsockopt */
  316. err = raw_enable_allfilters(dev, sk);
  317. dev_put(dev);
  318. } else {
  319. ifindex = 0;
  320. /* filters set by default/setsockopt */
  321. err = raw_enable_allfilters(NULL, sk);
  322. }
  323. if (!err) {
  324. if (ro->bound) {
  325. /* unregister old filters */
  326. if (ro->ifindex) {
  327. struct net_device *dev;
  328. dev = dev_get_by_index(&init_net, ro->ifindex);
  329. if (dev) {
  330. raw_disable_allfilters(dev, sk);
  331. dev_put(dev);
  332. }
  333. } else
  334. raw_disable_allfilters(NULL, sk);
  335. }
  336. ro->ifindex = ifindex;
  337. ro->bound = 1;
  338. }
  339. out:
  340. release_sock(sk);
  341. if (notify_enetdown) {
  342. sk->sk_err = ENETDOWN;
  343. if (!sock_flag(sk, SOCK_DEAD))
  344. sk->sk_error_report(sk);
  345. }
  346. return err;
  347. }
  348. static int raw_getname(struct socket *sock, struct sockaddr *uaddr,
  349. int *len, int peer)
  350. {
  351. struct sockaddr_can *addr = (struct sockaddr_can *)uaddr;
  352. struct sock *sk = sock->sk;
  353. struct raw_sock *ro = raw_sk(sk);
  354. if (peer)
  355. return -EOPNOTSUPP;
  356. memset(addr, 0, sizeof(*addr));
  357. addr->can_family = AF_CAN;
  358. addr->can_ifindex = ro->ifindex;
  359. *len = sizeof(*addr);
  360. return 0;
  361. }
  362. static int raw_setsockopt(struct socket *sock, int level, int optname,
  363. char __user *optval, unsigned int optlen)
  364. {
  365. struct sock *sk = sock->sk;
  366. struct raw_sock *ro = raw_sk(sk);
  367. struct can_filter *filter = NULL; /* dyn. alloc'ed filters */
  368. struct can_filter sfilter; /* single filter */
  369. struct net_device *dev = NULL;
  370. can_err_mask_t err_mask = 0;
  371. int count = 0;
  372. int err = 0;
  373. if (level != SOL_CAN_RAW)
  374. return -EINVAL;
  375. switch (optname) {
  376. case CAN_RAW_FILTER:
  377. if (optlen % sizeof(struct can_filter) != 0)
  378. return -EINVAL;
  379. count = optlen / sizeof(struct can_filter);
  380. if (count > 1) {
  381. /* filter does not fit into dfilter => alloc space */
  382. filter = memdup_user(optval, optlen);
  383. if (IS_ERR(filter))
  384. return PTR_ERR(filter);
  385. } else if (count == 1) {
  386. if (copy_from_user(&sfilter, optval, sizeof(sfilter)))
  387. return -EFAULT;
  388. }
  389. lock_sock(sk);
  390. if (ro->bound && ro->ifindex)
  391. dev = dev_get_by_index(&init_net, ro->ifindex);
  392. if (ro->bound) {
  393. /* (try to) register the new filters */
  394. if (count == 1)
  395. err = raw_enable_filters(dev, sk, &sfilter, 1);
  396. else
  397. err = raw_enable_filters(dev, sk, filter,
  398. count);
  399. if (err) {
  400. if (count > 1)
  401. kfree(filter);
  402. goto out_fil;
  403. }
  404. /* remove old filter registrations */
  405. raw_disable_filters(dev, sk, ro->filter, ro->count);
  406. }
  407. /* remove old filter space */
  408. if (ro->count > 1)
  409. kfree(ro->filter);
  410. /* link new filters to the socket */
  411. if (count == 1) {
  412. /* copy filter data for single filter */
  413. ro->dfilter = sfilter;
  414. filter = &ro->dfilter;
  415. }
  416. ro->filter = filter;
  417. ro->count = count;
  418. out_fil:
  419. if (dev)
  420. dev_put(dev);
  421. release_sock(sk);
  422. break;
  423. case CAN_RAW_ERR_FILTER:
  424. if (optlen != sizeof(err_mask))
  425. return -EINVAL;
  426. if (copy_from_user(&err_mask, optval, optlen))
  427. return -EFAULT;
  428. err_mask &= CAN_ERR_MASK;
  429. lock_sock(sk);
  430. if (ro->bound && ro->ifindex)
  431. dev = dev_get_by_index(&init_net, ro->ifindex);
  432. /* remove current error mask */
  433. if (ro->bound) {
  434. /* (try to) register the new err_mask */
  435. err = raw_enable_errfilter(dev, sk, err_mask);
  436. if (err)
  437. goto out_err;
  438. /* remove old err_mask registration */
  439. raw_disable_errfilter(dev, sk, ro->err_mask);
  440. }
  441. /* link new err_mask to the socket */
  442. ro->err_mask = err_mask;
  443. out_err:
  444. if (dev)
  445. dev_put(dev);
  446. release_sock(sk);
  447. break;
  448. case CAN_RAW_LOOPBACK:
  449. if (optlen != sizeof(ro->loopback))
  450. return -EINVAL;
  451. if (copy_from_user(&ro->loopback, optval, optlen))
  452. return -EFAULT;
  453. break;
  454. case CAN_RAW_RECV_OWN_MSGS:
  455. if (optlen != sizeof(ro->recv_own_msgs))
  456. return -EINVAL;
  457. if (copy_from_user(&ro->recv_own_msgs, optval, optlen))
  458. return -EFAULT;
  459. break;
  460. default:
  461. return -ENOPROTOOPT;
  462. }
  463. return err;
  464. }
  465. static int raw_getsockopt(struct socket *sock, int level, int optname,
  466. char __user *optval, int __user *optlen)
  467. {
  468. struct sock *sk = sock->sk;
  469. struct raw_sock *ro = raw_sk(sk);
  470. int len;
  471. void *val;
  472. int err = 0;
  473. if (level != SOL_CAN_RAW)
  474. return -EINVAL;
  475. if (get_user(len, optlen))
  476. return -EFAULT;
  477. if (len < 0)
  478. return -EINVAL;
  479. switch (optname) {
  480. case CAN_RAW_FILTER:
  481. lock_sock(sk);
  482. if (ro->count > 0) {
  483. int fsize = ro->count * sizeof(struct can_filter);
  484. if (len > fsize)
  485. len = fsize;
  486. if (copy_to_user(optval, ro->filter, len))
  487. err = -EFAULT;
  488. } else
  489. len = 0;
  490. release_sock(sk);
  491. if (!err)
  492. err = put_user(len, optlen);
  493. return err;
  494. case CAN_RAW_ERR_FILTER:
  495. if (len > sizeof(can_err_mask_t))
  496. len = sizeof(can_err_mask_t);
  497. val = &ro->err_mask;
  498. break;
  499. case CAN_RAW_LOOPBACK:
  500. if (len > sizeof(int))
  501. len = sizeof(int);
  502. val = &ro->loopback;
  503. break;
  504. case CAN_RAW_RECV_OWN_MSGS:
  505. if (len > sizeof(int))
  506. len = sizeof(int);
  507. val = &ro->recv_own_msgs;
  508. break;
  509. default:
  510. return -ENOPROTOOPT;
  511. }
  512. if (put_user(len, optlen))
  513. return -EFAULT;
  514. if (copy_to_user(optval, val, len))
  515. return -EFAULT;
  516. return 0;
  517. }
  518. static int raw_sendmsg(struct kiocb *iocb, struct socket *sock,
  519. struct msghdr *msg, size_t size)
  520. {
  521. struct sock *sk = sock->sk;
  522. struct raw_sock *ro = raw_sk(sk);
  523. struct sk_buff *skb;
  524. struct net_device *dev;
  525. int ifindex;
  526. int err;
  527. if (msg->msg_name) {
  528. struct sockaddr_can *addr =
  529. (struct sockaddr_can *)msg->msg_name;
  530. if (msg->msg_namelen < sizeof(*addr))
  531. return -EINVAL;
  532. if (addr->can_family != AF_CAN)
  533. return -EINVAL;
  534. ifindex = addr->can_ifindex;
  535. } else
  536. ifindex = ro->ifindex;
  537. if (size != sizeof(struct can_frame))
  538. return -EINVAL;
  539. dev = dev_get_by_index(&init_net, ifindex);
  540. if (!dev)
  541. return -ENXIO;
  542. skb = sock_alloc_send_skb(sk, size, msg->msg_flags & MSG_DONTWAIT,
  543. &err);
  544. if (!skb)
  545. goto put_dev;
  546. err = memcpy_fromiovec(skb_put(skb, size), msg->msg_iov, size);
  547. if (err < 0)
  548. goto free_skb;
  549. err = sock_tx_timestamp(sk, &skb_shinfo(skb)->tx_flags);
  550. if (err < 0)
  551. goto free_skb;
  552. /* to be able to check the received tx sock reference in raw_rcv() */
  553. skb_shinfo(skb)->tx_flags |= SKBTX_DRV_NEEDS_SK_REF;
  554. skb->dev = dev;
  555. skb->sk = sk;
  556. err = can_send(skb, ro->loopback);
  557. dev_put(dev);
  558. if (err)
  559. goto send_failed;
  560. return size;
  561. free_skb:
  562. kfree_skb(skb);
  563. put_dev:
  564. dev_put(dev);
  565. send_failed:
  566. return err;
  567. }
  568. static int raw_recvmsg(struct kiocb *iocb, struct socket *sock,
  569. struct msghdr *msg, size_t size, int flags)
  570. {
  571. struct sock *sk = sock->sk;
  572. struct sk_buff *skb;
  573. int err = 0;
  574. int noblock;
  575. noblock = flags & MSG_DONTWAIT;
  576. flags &= ~MSG_DONTWAIT;
  577. skb = skb_recv_datagram(sk, flags, noblock, &err);
  578. if (!skb)
  579. return err;
  580. if (size < skb->len)
  581. msg->msg_flags |= MSG_TRUNC;
  582. else
  583. size = skb->len;
  584. err = memcpy_toiovec(msg->msg_iov, skb->data, size);
  585. if (err < 0) {
  586. skb_free_datagram(sk, skb);
  587. return err;
  588. }
  589. sock_recv_ts_and_drops(msg, sk, skb);
  590. if (msg->msg_name) {
  591. msg->msg_namelen = sizeof(struct sockaddr_can);
  592. memcpy(msg->msg_name, skb->cb, msg->msg_namelen);
  593. }
  594. /* assign the flags that have been recorded in raw_rcv() */
  595. msg->msg_flags |= *(raw_flags(skb));
  596. skb_free_datagram(sk, skb);
  597. return size;
  598. }
  599. static const struct proto_ops raw_ops = {
  600. .family = PF_CAN,
  601. .release = raw_release,
  602. .bind = raw_bind,
  603. .connect = sock_no_connect,
  604. .socketpair = sock_no_socketpair,
  605. .accept = sock_no_accept,
  606. .getname = raw_getname,
  607. .poll = datagram_poll,
  608. .ioctl = can_ioctl, /* use can_ioctl() from af_can.c */
  609. .listen = sock_no_listen,
  610. .shutdown = sock_no_shutdown,
  611. .setsockopt = raw_setsockopt,
  612. .getsockopt = raw_getsockopt,
  613. .sendmsg = raw_sendmsg,
  614. .recvmsg = raw_recvmsg,
  615. .mmap = sock_no_mmap,
  616. .sendpage = sock_no_sendpage,
  617. };
  618. static struct proto raw_proto __read_mostly = {
  619. .name = "CAN_RAW",
  620. .owner = THIS_MODULE,
  621. .obj_size = sizeof(struct raw_sock),
  622. .init = raw_init,
  623. };
  624. static const struct can_proto raw_can_proto = {
  625. .type = SOCK_RAW,
  626. .protocol = CAN_RAW,
  627. .ops = &raw_ops,
  628. .prot = &raw_proto,
  629. };
  630. static __init int raw_module_init(void)
  631. {
  632. int err;
  633. printk(banner);
  634. err = can_proto_register(&raw_can_proto);
  635. if (err < 0)
  636. printk(KERN_ERR "can: registration of raw protocol failed\n");
  637. return err;
  638. }
  639. static __exit void raw_module_exit(void)
  640. {
  641. can_proto_unregister(&raw_can_proto);
  642. }
  643. module_init(raw_module_init);
  644. module_exit(raw_module_exit);