compaction.c 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770
  1. /*
  2. * linux/mm/compaction.c
  3. *
  4. * Memory compaction for the reduction of external fragmentation. Note that
  5. * this heavily depends upon page migration to do all the real heavy
  6. * lifting
  7. *
  8. * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  9. */
  10. #include <linux/swap.h>
  11. #include <linux/migrate.h>
  12. #include <linux/compaction.h>
  13. #include <linux/mm_inline.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/sysctl.h>
  16. #include <linux/sysfs.h>
  17. #include "internal.h"
  18. #define CREATE_TRACE_POINTS
  19. #include <trace/events/compaction.h>
  20. /*
  21. * compact_control is used to track pages being migrated and the free pages
  22. * they are being migrated to during memory compaction. The free_pfn starts
  23. * at the end of a zone and migrate_pfn begins at the start. Movable pages
  24. * are moved to the end of a zone during a compaction run and the run
  25. * completes when free_pfn <= migrate_pfn
  26. */
  27. struct compact_control {
  28. struct list_head freepages; /* List of free pages to migrate to */
  29. struct list_head migratepages; /* List of pages being migrated */
  30. unsigned long nr_freepages; /* Number of isolated free pages */
  31. unsigned long nr_migratepages; /* Number of pages to migrate */
  32. unsigned long free_pfn; /* isolate_freepages search base */
  33. unsigned long migrate_pfn; /* isolate_migratepages search base */
  34. bool sync; /* Synchronous migration */
  35. /* Account for isolated anon and file pages */
  36. unsigned long nr_anon;
  37. unsigned long nr_file;
  38. unsigned int order; /* order a direct compactor needs */
  39. int migratetype; /* MOVABLE, RECLAIMABLE etc */
  40. struct zone *zone;
  41. };
  42. static unsigned long release_freepages(struct list_head *freelist)
  43. {
  44. struct page *page, *next;
  45. unsigned long count = 0;
  46. list_for_each_entry_safe(page, next, freelist, lru) {
  47. list_del(&page->lru);
  48. __free_page(page);
  49. count++;
  50. }
  51. return count;
  52. }
  53. /* Isolate free pages onto a private freelist. Must hold zone->lock */
  54. static unsigned long isolate_freepages_block(struct zone *zone,
  55. unsigned long blockpfn,
  56. struct list_head *freelist)
  57. {
  58. unsigned long zone_end_pfn, end_pfn;
  59. int nr_scanned = 0, total_isolated = 0;
  60. struct page *cursor;
  61. /* Get the last PFN we should scan for free pages at */
  62. zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
  63. end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
  64. /* Find the first usable PFN in the block to initialse page cursor */
  65. for (; blockpfn < end_pfn; blockpfn++) {
  66. if (pfn_valid_within(blockpfn))
  67. break;
  68. }
  69. cursor = pfn_to_page(blockpfn);
  70. /* Isolate free pages. This assumes the block is valid */
  71. for (; blockpfn < end_pfn; blockpfn++, cursor++) {
  72. int isolated, i;
  73. struct page *page = cursor;
  74. if (!pfn_valid_within(blockpfn))
  75. continue;
  76. nr_scanned++;
  77. if (!PageBuddy(page))
  78. continue;
  79. /* Found a free page, break it into order-0 pages */
  80. isolated = split_free_page(page);
  81. total_isolated += isolated;
  82. for (i = 0; i < isolated; i++) {
  83. list_add(&page->lru, freelist);
  84. page++;
  85. }
  86. /* If a page was split, advance to the end of it */
  87. if (isolated) {
  88. blockpfn += isolated - 1;
  89. cursor += isolated - 1;
  90. }
  91. }
  92. trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
  93. return total_isolated;
  94. }
  95. /* Returns true if the page is within a block suitable for migration to */
  96. static bool suitable_migration_target(struct page *page)
  97. {
  98. int migratetype = get_pageblock_migratetype(page);
  99. /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
  100. if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
  101. return false;
  102. /* If the page is a large free page, then allow migration */
  103. if (PageBuddy(page) && page_order(page) >= pageblock_order)
  104. return true;
  105. /* If the block is MIGRATE_MOVABLE, allow migration */
  106. if (migratetype == MIGRATE_MOVABLE)
  107. return true;
  108. /* Otherwise skip the block */
  109. return false;
  110. }
  111. /*
  112. * Based on information in the current compact_control, find blocks
  113. * suitable for isolating free pages from and then isolate them.
  114. */
  115. static void isolate_freepages(struct zone *zone,
  116. struct compact_control *cc)
  117. {
  118. struct page *page;
  119. unsigned long high_pfn, low_pfn, pfn;
  120. unsigned long flags;
  121. int nr_freepages = cc->nr_freepages;
  122. struct list_head *freelist = &cc->freepages;
  123. /*
  124. * Initialise the free scanner. The starting point is where we last
  125. * scanned from (or the end of the zone if starting). The low point
  126. * is the end of the pageblock the migration scanner is using.
  127. */
  128. pfn = cc->free_pfn;
  129. low_pfn = cc->migrate_pfn + pageblock_nr_pages;
  130. /*
  131. * Take care that if the migration scanner is at the end of the zone
  132. * that the free scanner does not accidentally move to the next zone
  133. * in the next isolation cycle.
  134. */
  135. high_pfn = min(low_pfn, pfn);
  136. /*
  137. * Isolate free pages until enough are available to migrate the
  138. * pages on cc->migratepages. We stop searching if the migrate
  139. * and free page scanners meet or enough free pages are isolated.
  140. */
  141. for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
  142. pfn -= pageblock_nr_pages) {
  143. unsigned long isolated;
  144. if (!pfn_valid(pfn))
  145. continue;
  146. /*
  147. * Check for overlapping nodes/zones. It's possible on some
  148. * configurations to have a setup like
  149. * node0 node1 node0
  150. * i.e. it's possible that all pages within a zones range of
  151. * pages do not belong to a single zone.
  152. */
  153. page = pfn_to_page(pfn);
  154. if (page_zone(page) != zone)
  155. continue;
  156. /* Check the block is suitable for migration */
  157. if (!suitable_migration_target(page))
  158. continue;
  159. /*
  160. * Found a block suitable for isolating free pages from. Now
  161. * we disabled interrupts, double check things are ok and
  162. * isolate the pages. This is to minimise the time IRQs
  163. * are disabled
  164. */
  165. isolated = 0;
  166. spin_lock_irqsave(&zone->lock, flags);
  167. if (suitable_migration_target(page)) {
  168. isolated = isolate_freepages_block(zone, pfn, freelist);
  169. nr_freepages += isolated;
  170. }
  171. spin_unlock_irqrestore(&zone->lock, flags);
  172. /*
  173. * Record the highest PFN we isolated pages from. When next
  174. * looking for free pages, the search will restart here as
  175. * page migration may have returned some pages to the allocator
  176. */
  177. if (isolated)
  178. high_pfn = max(high_pfn, pfn);
  179. }
  180. /* split_free_page does not map the pages */
  181. list_for_each_entry(page, freelist, lru) {
  182. arch_alloc_page(page, 0);
  183. kernel_map_pages(page, 1, 1);
  184. }
  185. cc->free_pfn = high_pfn;
  186. cc->nr_freepages = nr_freepages;
  187. }
  188. /* Update the number of anon and file isolated pages in the zone */
  189. static void acct_isolated(struct zone *zone, struct compact_control *cc)
  190. {
  191. struct page *page;
  192. unsigned int count[NR_LRU_LISTS] = { 0, };
  193. list_for_each_entry(page, &cc->migratepages, lru) {
  194. int lru = page_lru_base_type(page);
  195. count[lru]++;
  196. }
  197. cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
  198. cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
  199. __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
  200. __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
  201. }
  202. /* Similar to reclaim, but different enough that they don't share logic */
  203. static bool too_many_isolated(struct zone *zone)
  204. {
  205. unsigned long active, inactive, isolated;
  206. inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
  207. zone_page_state(zone, NR_INACTIVE_ANON);
  208. active = zone_page_state(zone, NR_ACTIVE_FILE) +
  209. zone_page_state(zone, NR_ACTIVE_ANON);
  210. isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
  211. zone_page_state(zone, NR_ISOLATED_ANON);
  212. return isolated > (inactive + active) / 2;
  213. }
  214. /* possible outcome of isolate_migratepages */
  215. typedef enum {
  216. ISOLATE_ABORT, /* Abort compaction now */
  217. ISOLATE_NONE, /* No pages isolated, continue scanning */
  218. ISOLATE_SUCCESS, /* Pages isolated, migrate */
  219. } isolate_migrate_t;
  220. /*
  221. * Isolate all pages that can be migrated from the block pointed to by
  222. * the migrate scanner within compact_control.
  223. */
  224. static isolate_migrate_t isolate_migratepages(struct zone *zone,
  225. struct compact_control *cc)
  226. {
  227. unsigned long low_pfn, end_pfn;
  228. unsigned long last_pageblock_nr = 0, pageblock_nr;
  229. unsigned long nr_scanned = 0, nr_isolated = 0;
  230. struct list_head *migratelist = &cc->migratepages;
  231. /* Do not scan outside zone boundaries */
  232. low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
  233. /* Only scan within a pageblock boundary */
  234. end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
  235. /* Do not cross the free scanner or scan within a memory hole */
  236. if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
  237. cc->migrate_pfn = end_pfn;
  238. return ISOLATE_NONE;
  239. }
  240. /*
  241. * Ensure that there are not too many pages isolated from the LRU
  242. * list by either parallel reclaimers or compaction. If there are,
  243. * delay for some time until fewer pages are isolated
  244. */
  245. while (unlikely(too_many_isolated(zone))) {
  246. /* async migration should just abort */
  247. if (!cc->sync)
  248. return ISOLATE_ABORT;
  249. congestion_wait(BLK_RW_ASYNC, HZ/10);
  250. if (fatal_signal_pending(current))
  251. return ISOLATE_ABORT;
  252. }
  253. /* Time to isolate some pages for migration */
  254. cond_resched();
  255. spin_lock_irq(&zone->lru_lock);
  256. for (; low_pfn < end_pfn; low_pfn++) {
  257. struct page *page;
  258. bool locked = true;
  259. /* give a chance to irqs before checking need_resched() */
  260. if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
  261. spin_unlock_irq(&zone->lru_lock);
  262. locked = false;
  263. }
  264. if (need_resched() || spin_is_contended(&zone->lru_lock)) {
  265. if (locked)
  266. spin_unlock_irq(&zone->lru_lock);
  267. cond_resched();
  268. spin_lock_irq(&zone->lru_lock);
  269. if (fatal_signal_pending(current))
  270. break;
  271. } else if (!locked)
  272. spin_lock_irq(&zone->lru_lock);
  273. /*
  274. * migrate_pfn does not necessarily start aligned to a
  275. * pageblock. Ensure that pfn_valid is called when moving
  276. * into a new MAX_ORDER_NR_PAGES range in case of large
  277. * memory holes within the zone
  278. */
  279. if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
  280. if (!pfn_valid(low_pfn)) {
  281. low_pfn += MAX_ORDER_NR_PAGES - 1;
  282. continue;
  283. }
  284. }
  285. if (!pfn_valid_within(low_pfn))
  286. continue;
  287. nr_scanned++;
  288. /*
  289. * Get the page and ensure the page is within the same zone.
  290. * See the comment in isolate_freepages about overlapping
  291. * nodes. It is deliberate that the new zone lock is not taken
  292. * as memory compaction should not move pages between nodes.
  293. */
  294. page = pfn_to_page(low_pfn);
  295. if (page_zone(page) != zone)
  296. continue;
  297. /* Skip if free */
  298. if (PageBuddy(page))
  299. continue;
  300. /*
  301. * For async migration, also only scan in MOVABLE blocks. Async
  302. * migration is optimistic to see if the minimum amount of work
  303. * satisfies the allocation
  304. */
  305. pageblock_nr = low_pfn >> pageblock_order;
  306. if (!cc->sync && last_pageblock_nr != pageblock_nr &&
  307. get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
  308. low_pfn += pageblock_nr_pages;
  309. low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
  310. last_pageblock_nr = pageblock_nr;
  311. continue;
  312. }
  313. if (!PageLRU(page))
  314. continue;
  315. /*
  316. * PageLRU is set, and lru_lock excludes isolation,
  317. * splitting and collapsing (collapsing has already
  318. * happened if PageLRU is set).
  319. */
  320. if (PageTransHuge(page)) {
  321. low_pfn += (1 << compound_order(page)) - 1;
  322. continue;
  323. }
  324. /* Try isolate the page */
  325. if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
  326. continue;
  327. VM_BUG_ON(PageTransCompound(page));
  328. /* Successfully isolated */
  329. del_page_from_lru_list(zone, page, page_lru(page));
  330. list_add(&page->lru, migratelist);
  331. cc->nr_migratepages++;
  332. nr_isolated++;
  333. /* Avoid isolating too much */
  334. if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
  335. break;
  336. }
  337. acct_isolated(zone, cc);
  338. spin_unlock_irq(&zone->lru_lock);
  339. cc->migrate_pfn = low_pfn;
  340. trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
  341. return ISOLATE_SUCCESS;
  342. }
  343. /*
  344. * This is a migrate-callback that "allocates" freepages by taking pages
  345. * from the isolated freelists in the block we are migrating to.
  346. */
  347. static struct page *compaction_alloc(struct page *migratepage,
  348. unsigned long data,
  349. int **result)
  350. {
  351. struct compact_control *cc = (struct compact_control *)data;
  352. struct page *freepage;
  353. /* Isolate free pages if necessary */
  354. if (list_empty(&cc->freepages)) {
  355. isolate_freepages(cc->zone, cc);
  356. if (list_empty(&cc->freepages))
  357. return NULL;
  358. }
  359. freepage = list_entry(cc->freepages.next, struct page, lru);
  360. list_del(&freepage->lru);
  361. cc->nr_freepages--;
  362. return freepage;
  363. }
  364. /*
  365. * We cannot control nr_migratepages and nr_freepages fully when migration is
  366. * running as migrate_pages() has no knowledge of compact_control. When
  367. * migration is complete, we count the number of pages on the lists by hand.
  368. */
  369. static void update_nr_listpages(struct compact_control *cc)
  370. {
  371. int nr_migratepages = 0;
  372. int nr_freepages = 0;
  373. struct page *page;
  374. list_for_each_entry(page, &cc->migratepages, lru)
  375. nr_migratepages++;
  376. list_for_each_entry(page, &cc->freepages, lru)
  377. nr_freepages++;
  378. cc->nr_migratepages = nr_migratepages;
  379. cc->nr_freepages = nr_freepages;
  380. }
  381. static int compact_finished(struct zone *zone,
  382. struct compact_control *cc)
  383. {
  384. unsigned int order;
  385. unsigned long watermark;
  386. if (fatal_signal_pending(current))
  387. return COMPACT_PARTIAL;
  388. /* Compaction run completes if the migrate and free scanner meet */
  389. if (cc->free_pfn <= cc->migrate_pfn)
  390. return COMPACT_COMPLETE;
  391. /*
  392. * order == -1 is expected when compacting via
  393. * /proc/sys/vm/compact_memory
  394. */
  395. if (cc->order == -1)
  396. return COMPACT_CONTINUE;
  397. /* Compaction run is not finished if the watermark is not met */
  398. watermark = low_wmark_pages(zone);
  399. watermark += (1 << cc->order);
  400. if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
  401. return COMPACT_CONTINUE;
  402. /* Direct compactor: Is a suitable page free? */
  403. for (order = cc->order; order < MAX_ORDER; order++) {
  404. /* Job done if page is free of the right migratetype */
  405. if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
  406. return COMPACT_PARTIAL;
  407. /* Job done if allocation would set block type */
  408. if (order >= pageblock_order && zone->free_area[order].nr_free)
  409. return COMPACT_PARTIAL;
  410. }
  411. return COMPACT_CONTINUE;
  412. }
  413. /*
  414. * compaction_suitable: Is this suitable to run compaction on this zone now?
  415. * Returns
  416. * COMPACT_SKIPPED - If there are too few free pages for compaction
  417. * COMPACT_PARTIAL - If the allocation would succeed without compaction
  418. * COMPACT_CONTINUE - If compaction should run now
  419. */
  420. unsigned long compaction_suitable(struct zone *zone, int order)
  421. {
  422. int fragindex;
  423. unsigned long watermark;
  424. /*
  425. * order == -1 is expected when compacting via
  426. * /proc/sys/vm/compact_memory
  427. */
  428. if (order == -1)
  429. return COMPACT_CONTINUE;
  430. /*
  431. * Watermarks for order-0 must be met for compaction. Note the 2UL.
  432. * This is because during migration, copies of pages need to be
  433. * allocated and for a short time, the footprint is higher
  434. */
  435. watermark = low_wmark_pages(zone) + (2UL << order);
  436. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  437. return COMPACT_SKIPPED;
  438. /*
  439. * fragmentation index determines if allocation failures are due to
  440. * low memory or external fragmentation
  441. *
  442. * index of -1000 implies allocations might succeed depending on
  443. * watermarks
  444. * index towards 0 implies failure is due to lack of memory
  445. * index towards 1000 implies failure is due to fragmentation
  446. *
  447. * Only compact if a failure would be due to fragmentation.
  448. */
  449. fragindex = fragmentation_index(zone, order);
  450. if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
  451. return COMPACT_SKIPPED;
  452. if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
  453. 0, 0))
  454. return COMPACT_PARTIAL;
  455. return COMPACT_CONTINUE;
  456. }
  457. static int compact_zone(struct zone *zone, struct compact_control *cc)
  458. {
  459. int ret;
  460. ret = compaction_suitable(zone, cc->order);
  461. switch (ret) {
  462. case COMPACT_PARTIAL:
  463. case COMPACT_SKIPPED:
  464. /* Compaction is likely to fail */
  465. return ret;
  466. case COMPACT_CONTINUE:
  467. /* Fall through to compaction */
  468. ;
  469. }
  470. /* Setup to move all movable pages to the end of the zone */
  471. cc->migrate_pfn = zone->zone_start_pfn;
  472. cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
  473. cc->free_pfn &= ~(pageblock_nr_pages-1);
  474. migrate_prep_local();
  475. while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
  476. unsigned long nr_migrate, nr_remaining;
  477. int err;
  478. switch (isolate_migratepages(zone, cc)) {
  479. case ISOLATE_ABORT:
  480. ret = COMPACT_PARTIAL;
  481. goto out;
  482. case ISOLATE_NONE:
  483. continue;
  484. case ISOLATE_SUCCESS:
  485. ;
  486. }
  487. nr_migrate = cc->nr_migratepages;
  488. err = migrate_pages(&cc->migratepages, compaction_alloc,
  489. (unsigned long)cc, false,
  490. cc->sync);
  491. update_nr_listpages(cc);
  492. nr_remaining = cc->nr_migratepages;
  493. count_vm_event(COMPACTBLOCKS);
  494. count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
  495. if (nr_remaining)
  496. count_vm_events(COMPACTPAGEFAILED, nr_remaining);
  497. trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
  498. nr_remaining);
  499. /* Release LRU pages not migrated */
  500. if (err) {
  501. putback_lru_pages(&cc->migratepages);
  502. cc->nr_migratepages = 0;
  503. }
  504. }
  505. out:
  506. /* Release free pages and check accounting */
  507. cc->nr_freepages -= release_freepages(&cc->freepages);
  508. VM_BUG_ON(cc->nr_freepages != 0);
  509. return ret;
  510. }
  511. unsigned long compact_zone_order(struct zone *zone,
  512. int order, gfp_t gfp_mask,
  513. bool sync)
  514. {
  515. struct compact_control cc = {
  516. .nr_freepages = 0,
  517. .nr_migratepages = 0,
  518. .order = order,
  519. .migratetype = allocflags_to_migratetype(gfp_mask),
  520. .zone = zone,
  521. .sync = sync,
  522. };
  523. INIT_LIST_HEAD(&cc.freepages);
  524. INIT_LIST_HEAD(&cc.migratepages);
  525. return compact_zone(zone, &cc);
  526. }
  527. int sysctl_extfrag_threshold = 500;
  528. /**
  529. * try_to_compact_pages - Direct compact to satisfy a high-order allocation
  530. * @zonelist: The zonelist used for the current allocation
  531. * @order: The order of the current allocation
  532. * @gfp_mask: The GFP mask of the current allocation
  533. * @nodemask: The allowed nodes to allocate from
  534. * @sync: Whether migration is synchronous or not
  535. *
  536. * This is the main entry point for direct page compaction.
  537. */
  538. unsigned long try_to_compact_pages(struct zonelist *zonelist,
  539. int order, gfp_t gfp_mask, nodemask_t *nodemask,
  540. bool sync)
  541. {
  542. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  543. int may_enter_fs = gfp_mask & __GFP_FS;
  544. int may_perform_io = gfp_mask & __GFP_IO;
  545. struct zoneref *z;
  546. struct zone *zone;
  547. int rc = COMPACT_SKIPPED;
  548. /*
  549. * Check whether it is worth even starting compaction. The order check is
  550. * made because an assumption is made that the page allocator can satisfy
  551. * the "cheaper" orders without taking special steps
  552. */
  553. if (!order || !may_enter_fs || !may_perform_io)
  554. return rc;
  555. count_vm_event(COMPACTSTALL);
  556. /* Compact each zone in the list */
  557. for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
  558. nodemask) {
  559. int status;
  560. status = compact_zone_order(zone, order, gfp_mask, sync);
  561. rc = max(status, rc);
  562. /* If a normal allocation would succeed, stop compacting */
  563. if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
  564. break;
  565. }
  566. return rc;
  567. }
  568. /* Compact all zones within a node */
  569. static int compact_node(int nid)
  570. {
  571. int zoneid;
  572. pg_data_t *pgdat;
  573. struct zone *zone;
  574. if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
  575. return -EINVAL;
  576. pgdat = NODE_DATA(nid);
  577. /* Flush pending updates to the LRU lists */
  578. lru_add_drain_all();
  579. for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
  580. struct compact_control cc = {
  581. .nr_freepages = 0,
  582. .nr_migratepages = 0,
  583. .order = -1,
  584. };
  585. zone = &pgdat->node_zones[zoneid];
  586. if (!populated_zone(zone))
  587. continue;
  588. cc.zone = zone;
  589. INIT_LIST_HEAD(&cc.freepages);
  590. INIT_LIST_HEAD(&cc.migratepages);
  591. compact_zone(zone, &cc);
  592. VM_BUG_ON(!list_empty(&cc.freepages));
  593. VM_BUG_ON(!list_empty(&cc.migratepages));
  594. }
  595. return 0;
  596. }
  597. /* Compact all nodes in the system */
  598. static int compact_nodes(void)
  599. {
  600. int nid;
  601. for_each_online_node(nid)
  602. compact_node(nid);
  603. return COMPACT_COMPLETE;
  604. }
  605. /* The written value is actually unused, all memory is compacted */
  606. int sysctl_compact_memory;
  607. /* This is the entry point for compacting all nodes via /proc/sys/vm */
  608. int sysctl_compaction_handler(struct ctl_table *table, int write,
  609. void __user *buffer, size_t *length, loff_t *ppos)
  610. {
  611. if (write)
  612. return compact_nodes();
  613. return 0;
  614. }
  615. int sysctl_extfrag_handler(struct ctl_table *table, int write,
  616. void __user *buffer, size_t *length, loff_t *ppos)
  617. {
  618. proc_dointvec_minmax(table, write, buffer, length, ppos);
  619. return 0;
  620. }
  621. #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
  622. ssize_t sysfs_compact_node(struct sys_device *dev,
  623. struct sysdev_attribute *attr,
  624. const char *buf, size_t count)
  625. {
  626. compact_node(dev->id);
  627. return count;
  628. }
  629. static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
  630. int compaction_register_node(struct node *node)
  631. {
  632. return sysdev_create_file(&node->sysdev, &attr_compact);
  633. }
  634. void compaction_unregister_node(struct node *node)
  635. {
  636. return sysdev_remove_file(&node->sysdev, &attr_compact);
  637. }
  638. #endif /* CONFIG_SYSFS && CONFIG_NUMA */